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1. Introduction

Complex analysis is one of the major disciplines nowadays due to its numerous applications in
mathematical science and other fields. Geometric function theory is an intriguing topic of complex
analysis that involves the geometrical characteristics of analytic functions. This area is crucial to
applied mathematics, particularly in fields such as engineering, electronics, nonlinear integrable system
theory, fluid dynamics, modern mathematical physics, and partial differential equation theory. The key
problem that led to the rapid emergence of geometric function theory is the Bieberbach conjecture.
It is about the coefficient bounds for functions belonging to the class S of univalent functions. This
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conjecture states that if g € S with the Taylor-Maclaurin series expansion of the form
g =z+ ) dd, zeD, (1.1)
=2

where D := {ze€ C: |z] < 1}, then |d;| < k for all £k > 2. Let A be the class of analytic functions
with the series representation given in (1.1). The set § is a subclass of A which was first taken into
account by Koebe in 1907. The above famous conjecture was proposed by Bieberbach [1] in 1916. He
proved this for k = 2, and subsequent researchers, including Lowner [2], Garabedian and Schiffer [3],
Pederson and Schiffer [4], and Pederson [5], confirmed it for k = 3, 4, 5, and 6, respectively. However,
settling the conjecture for k > 7 remained elusive until 1985 when de Branges [6] used hypergeometric
functions to prove it for every k > 2. Lawrence Zalcman proposed the inequality |d,% - a’zk_1| < (k- 1)
with k > 2 for g € S in the late 1960’s as a way of establishing the Bieberbach conjecture. Due to this,
a number of articles [7-9] have been published on the Zalcman hypothesis and its generalized form
ﬂd,f - de_1| < Ak?* = 2k + 1 with A > O for different subclasses of the class S. This conjecture has
remained unsolved for a long time. Krushkal [10] established this hypothesis for £k < 6. In an attempt
to solve the Zalcman conjecture, Krushkal [11] investigated the inequality |d} — 5 "| < 2/*=D — k!
with k,] > 2 for g € 8. A broader Zalcman hypothesis for g € S was proposed by Ma [12] later, in
1999, and is given by
| djdi —djia| < G- D Kk=1), jk=2.

He only proved it for a subclass of S. The challenge is still open for the class S.

Now, we recall the definition of subordination, which actually provides a relationship between
analytic functions. We write g; < g5 to illustrate that g; is subordinate to g. It is explained that for two
given functions g1, g, € A, a Schwarz function w exists such that g;(z) = g, (W(z)) for z € D. Once g,
is univalent in D, then this relation is equivalent to saying that

g810)<g @), zeD

if and only if
81(0) = £2(0) and g,(D) C g>(DD).

The three classic subclasses of univalent functions are C, S* and K, of which their functions are
known respectively as convex functions, starlike functions and close-to-convex functions. These
classes are defined by

C::{geS:(Zg(Z))<1+Z, zeD},
g (2) -z
S*::{geS:Zg(Z)<£, zeD},
gl@ 1-z
and @ 1
78’ (z +z
K = €S: —_— eD
{g ho 1o ° }

for some h € §*. Taking & (z) = z, the class K reduces to the class 87 of bounded turning functions.
Further, replacing }—J_f by some other special functions, various interesting subfamilies of the class S
were studied; interested readers may refer to [13—18].
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The determinant D, , (g), where n,4 € N = {1, 2, ...}, is known as the Hankel determinant and was
presented by Pommerenke [19,20]. It is formed by the coefficients of the function g € § and is defined
by

dn dn+1 e dn+/l—1

dn+l dn+2 sen dn+/1
D)n(g) =] . : :

dn+/1—1 dn+/1 s dn+2/l—2

Hankel matrices are used in both pure mathematics and technological applications, including the
theory of Markov processes, the theory of non-stationary signals in the Hamburger moment problem,
and many other topics, see for example [21-24]. There are relatively few publications on the bounds of
the Hankel determinant for functions in the general class S. The best estimate for g € S was determined
by Hayman in [25], which asserted that |D2,,, (g)| < |n|, where 7 is a constant. Additionally, for g € S,
it was shown in [26] that the second-order Hankel determinant |D2,2 (g)| <npfor0 < np < 11/3.
The two determinants D, (g) and D, (g) have been extensively studied in the literature for various
subfamilies of univalent functions. The works [27-31], in which the sharp bounds of the second-order
Hankel determinant for some subclasses of S are determined, are particularly noteworthy.

In comparison to the second-order Hankel determinant, the sharp bound of the third-order Hankel
determinant D5 (g) for certain analytic univalent functions is much harder to find. The investigation
on Ds; (g) for S was initiated by Babalola [32] in 2010. The exact bounds of this determinant were
proved recently for the classes C, S*, and 87 in [33], [34], and [35], respectively. These bounds are
given by

é_s’ for geC,
|D3,1 (g)| <: 3, for geS,
}L, for ge BT.

By employing similar techniques, Khalil Ullah et al. [36] and Lecko et al. [37] derived the sharp
bounds for |D3,1 (g)| when considering functions belonging to the families S; . and S*(1/2),
respectively. Additionally, the works [38—43] proved the sharp bounds for the same third-order
Hankel determinant in various novel subfamilies of analytic univalent functions.

Let us consider the two function classes defined respectively by

Sl = {g €S: 28’ @) <cosh Vz (z€ D)}
g ()

and
BT cosh = {g €S:g (z) <coshVz (z¢€ D)}.

These classes were introduced and studied by Mundalia et al. [44] and Ghaffar et al. [45],
respectively. In this paper, we improved the bound of the third-order Hankel determinant |D3, 1(©)]s
which was determined by Ghaffar et al. and published recently in AIMS Mathematics [45].
Furthermore, we obtain the sharp estimates of the Fekete-Szegd, Krushkal, and Zalcman functionals
with logarithmic coeflicients as entries.

AIMS Mathematics Volume 9, Issue 6, 15761-15781.



15764

2. A set of Lemmas

In the theory of univalent functions, the Carathéodory functions are well studied. They are analytic
in D with positive real part and take series representations of the form

p@@) =1+ ZTnz" (zeD). 2.1)

n=1

We denote by P the set of these functions.
To prove the main theorems, we need the following lemmas.
Lemma 2.1 [46] Let p € P be the form of (2.1) with 7; > 0. Then

2ry =11 +B(4-11), 2.2)
dry=mi+2(4-1)rp-T(4-1)F +2(4-77)(1-187)n. (2.3)
8ra=1i+(4-77)B|7 (B - 3B+3)+4B| -4 (4 - 1)(1 - 18P)

A B=Dn+pr - (1-1n)«| 2.4)

for some 3,1,k € D:={zeC:lzg <1}
Lemma 2.2 [47] If p € P is of the form (2.1) and ¥ € C, we have

|Tn — 91k Thi| £ 2max {1, 20 - 1|} (2.5)

foralll <k<n-1.
Lemma 2.3 [48] Let u, 4, £, and ¢ satisfy 1 € (0,1), £ € (0,1) and

BA(1 =D [(Us =207 + C QA+ D =+ LU =D (¢ - 247 <47 (1=’ (1= D). (26)

If p € P is of the form (2.1), then

<2

3
,uT‘l‘ + /lré +2{1173 — Eg‘T%Tz — Ty

Lemma 2.4 [49] Suppose that p € # is provided by (2.1). If R € [0, 1] and R(2R — 1) < § < R, then
we have
|73 — 2RT T2 + S7i| < 2. 2.7)

3. Coefficient results for the class 87 ..,

Theorem 3.1 If g € BT ., is of the form (1.1), then

1
— < —.
lds — d»dy| < 0
This inequality is sharp.
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Proof. Let g € BT ¢osh- Then g can be easily expressed by using the Schwarz function as

g () = cosh \w(z), ze€D.

If p € P, then we can write it in the form of

3 1+w(2)
P = 1-w()

=14+ T2+ +130 + -
It follows that

1 1 1
w(z) = §T1Z + 1 (27'2 - T%) 7+ 3 (T‘;’ —4ri1p + 47'3) z

16( 7'1 + 677 T2 — 87173 —472 + 8T4)Z + -

From (1.1), we have

g (@) =1+ 2doz +3d37 + 4ds2> + Sdsz* + -+

Using the series expansion of (3.1) with simple calculation, we get

1 1 11 301 11 1
cosh yw(z) =1+ le+(—7'2— 2)22+( T3——T1Tz+ 7'3)23

4 4 96 5760 ' 48 4

1 11 301 15287 11
+ (—u _ 2, 2 4

— — — 4 R
477962 1920 T 645120 48T1T3)Z+

Comparing the coefficients in (3.2) and (3.3), we obtain

1
dy, = ng,
1 11
dy= —7y— — 12
3T 12T 288"
301, 1 11

T2,

‘= 23020 ' T 167 T 192
L, 1587 ] 01 , 11
5 ==

S T1T3.

4802 3225600 ' 7207 9600712 " 240
Employing (3.4), (3.6) and (3.7), we may write

1 | 13703 11 103 3 (493
s = dodil = 25 ‘ 1075207 " 237 2(@)”3 ) (960)TIT2 Rk
3
20 ,Ln'1 + /172 +2{T173 — 55'717'2 T4,
where
_damos 1 103 493
H= 7075200 YN T 1920 ST 960

These constants satisfy 4 € (0, 1), £ € (0, 1), and

BA(L =) [(Us =207 + C QA+ D =)+ (1 =) (¢ =247 <47 (1 =P (1= ).

3.1

(3.2)

(3.3)

(3.4)
(3.5)
(3.6)

(3.7

(3.8)
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Hence, by Lemma 2.3 and (3.8), we deduce that

1
— < —
|d5 d2d4| 10

This required result is sharp and determined by

Y4 1 1
gw(Z):j(;(cosh\/_)dt—z+Ez +mz +en

where we choose the branch of the square root function so that

1 1,
cosh\/_ 1+5z +EZ +6.Z + -
Theorem 3.2 If g € BT .., is of the form of (1.1), then
1
ds —d3| <
4 =10
This inequality is sharp.
Proof. From (3.5) and (3.7), we obtain
179933 43 11 3 (3259
dZ _ | 4 2 2 _ 2 _
ds 3] = |1451520 R (24)T1 ) (6480)T o
3
20 ,uT1 + /17'2 +2{11713 — Egr T2 — Tal,
where
179933 /l—ﬁ g“—ﬂ 3259
H= 14515200 "~ 720 7240 ° T 6480

These constants satisfy 4 € (0,1), £ € (0,1), and

81— D)|s =2 + A+ =P |+ {1 =D (e =247 <4 (1 -’ (1 - 0.

Hence, by Lemma 2.3 and (3.11), we deduce that

2
45 = ] < 7

This required outcome is sharp for the function g, given in (3.9).

Theorem 3.3 If g € BT .., is of the form of (1.1), then

|ds — d3| < g

This inequality is sharp.

(3.9

(3.10)

(3.11)
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Proof. Using (3.4) and (3.6), we have

1
[di - 8] = 1

11 8
T3 — 2(&)7’17’2 + (E) T?

_ 1 _ 8 .
LetR = o7 and S = 5 It is clear that

11
R(2R—l):—ﬁSS <R

All the conditions of Lemma 2.4 are satisfied, and thus we have

1
|ds — d3| < 3
This result is the best possible and equality is attained by

g(z):fz(cosh\/ﬁ)dt:z+1z4+iz7+--- (3.12)

’ 0 8 168 ’ '

where we choose the branch of the square root function so that

cosh\/z_—l+lz3+lz6+lz9+--- (3.13)

I T TR '
]

Theorem 3.4 If g € BT .., is of the form of (1.1), then
1
4

This inequality is sharp.
Proof. From (3.4) and (3.7), we obtain

1 {32149 11 11 3 (301
4] _ 4 2 2
|d5—d2|—2—0 322560T1+ﬂT2+2(ﬂ)T1T3_E(%)TIT2 T4
3
= o ,m"lt + /1‘1'% +2{11713 — EgT%TQ — T4, (3.14)
where
32149 /1_11 4_11 301
H=300560" "~ 247 T 24 T 720
These constants satisfy 4 € (0, 1), £ € (0, 1), and
8L =) |(Zs =207 + LA+ ) = |+ L1 =D (6 =240 <45 (1 =P (1 - D).
Hence, by Lemma 2.3 and (3.14), we deduce that
1
ds —di| < —.
[ds — 3] < 10
This required inequality is sharp for the function g, given in (3.9). O
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Theorem 3.5 If g € BT .4, has the form of (1.1), then

1
D < —.
| 3,1 (g)| =61
This inequality is sharp.
Proof. From the definition, we know
D (g) = 2dydsdy — ds — di + dyds — d>ds. (3.15)

Let g € BT con and gy(z) = e g (eiez) with & € R. It is noted that gj(z) = g’ (eiez) and thus
8o € BT .osn for all 6 € R. Since |D3,1 (g9)| = |D3,1 (g)|, we may choose the coefficient d, of g to be a
non-negative real number when estimating the functional |D3,1 (g)|. Then, since d, = %T] and 7 1S a
coeflicient of a function in P, it follows that 7y is real and 7, = 7 € [0, 2]. Putting the estimations of

d;’s from (3.4), (3.5), (3.6), and (3.7) into D5 (g) with 7; = 7, we have

1
D N S
31 (8) = 33023020800
~899942407°, + 15531264077,7; — 8322048073 + 1393459207,7, — 13063680073).

(5138237’6 — 437889671, + 79228807715 + 55520647773

Let r = 4 — 72. Then, by (2.2), (2.3), and (2.4), we obtain

D =—1-3207% — 104025608’ + 348364808°r* + 101606407 r3(1 — |8
1 (®) = 3322570800 | 32° P P+ (1= 18F)m

+101606407°r3 (1 — |BP) i7* — 101606407 (1 — |8P) (1 - Inl*) «

+ 834624077 (1 — |B1) - 2177280778 (1 — |B1*) 7 — 34836480,°36n” (1 - |81)
+ 3483648018 (1 - B1°) (1 - Inl*) k + 247665677 — 101606407° 15

— 254016071 — 128822407*7° + 5443207*7* — 3265920077 (1 - L3|2)2
+25552807*73” + 120247%r — 302407°r (1 - |8) 77} .

It is seen that we can write D3 (g) in the form of

D3, (9) = L @B + L@+ L@ + 1 (T k|,

33443020800
where 8,71,k € D, and
L (r.B) = =3297° + (4 - 7°) [(4 — °) (-67737608° - 24796807°8° + 24766567
+5443207°B*) + 2555280746” + 1202475 — 101606407°8” — 25401607'6% |,
L (r.) = 30240 (4 — 72) (1 - |8P) | (4 - ) (727" + 2761B) + 33608 - T°|,
L (r.B) = 725760 (4 — ) (1 - |BP) [ (4 — ) (-3 18P - 45) + 1477
ls (v. ) = 725760 (4 — °) (1 = |8P) (1 = In*) [488 (4 - =) - 147].
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By using |8| = %, |n| = y and utilizing the fact || < 1, we obtain

1 2
D51 9] < 33723030800 11 @A) + 1l @By + 1 @By + lls (. B,
<—— .
< 33423020800 1 (%) (3-16)
where
M (1,2,y) = my (7, 2) + my (1,2) y + m3 (7,) Y + my (r.20) (1 = ?)
with

my (1,2) = 3297° + (4 = 1) [(4 = 1) (6773760x" + 247968077 + 24766567
+54432072%4) +25552807%%% + 120247*% + 101606407°%° + 254016074%3] ,

my (7,2) = 30240 (4 — ) (1 = 2% [ (4 = %) (7207 + 27612) + 3367°% + °|,

m3 (r,2) = 725760 (4 — 7) (1 = 2°) (4 - 72) (3 + 45) + 147,

ma (7, 2) = 725760 (4 — 77) (1 = %) [48x (4 — 72) + 1477

Now, we have to maximize M in the closed cuboid T := [0,2] x [0, 1] x [0, 1].
In light of (7, %) € [0,2] X [0, 1], we observe that

my (r,2) < 725760 (4 — 2) (1 = ) (4 = 72) (3 + 45) + 147°| =: g3 (7. %0). (3.17)
Taking g; (1, %) = m; (t, %) fori = 1,2,4 and
G %)) =81 (1) + & TRy + g3 (10)y + g (1, 2) (1 - )), (3.18)

it is not hard to see that M (t,%,y) < G (7,%,y) in the cuboid Y. In the following, we aim to find the
maximum value of G in Y.
By partially differentiating G with respect to y, we have

9 _ 82 (1,2¢) + 2[g3 (1, %) — g4 (1,20)] y. (3.19)

dy
In view of g, (7,%) > 0 and
83 (1.%) — g4 (1.2) = 725760 (4 — 7) (1 — %) (37 — 48 + 45) (4 - *)| 2 0 (3.20)
on [0,2] x [0, 1], we have %—‘; > 0 for all y € [0, 1]. It follows that
G(1,%,y) <G (t,%,1), (3.21)

where

G(t,%,1) = g1 (1,%) + g2 (T, ) + 83 (7, %)
=3297° + 72(4 - ) [qu () * + 3 (1) 26 + g2 (D) + q1 (1) 2 + qo (7]
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= 0(1,%),
where
qa(t) = 7560(4 — T)(7* — 47 — 4),
q3(1) = 840(r* - 307° + 5277 — 5527 + 448),
q2(7) = 84(137* — 3657 + 66787> + 14407 — 20160),

q1(t) = T(1677° + 252007% + 463680),
qo(T) = 420(7° — 7447% + 4320).

Then the problem reduces to finding the maximum value of Q on [0, 2] x [0, 1]. By noting that
q4(t) < 0 for all T € [0, 2], we obtain that

Q(1,%) < 3297° + 72(4 - ) [q3 (D) + @ (1) 26? + @1 (D 2 + qo (1) | = W (1. 2). (3.22)
Setting 7 = 0, we obtain
W(0, %) = 108380160 — 487710720%° + 522547200
= 1083801602 (% - g) + 522547200
< 522547200 ~ 5.2255 x 108
for all % € [0, 1]. Setting 7 = 2, we get
W(2,%) = 21056, x € [0,1].

It is left to consider the case of 7 € (0, 2). For the system of equations

ow ow
ar o
with (1,%) € (0,2) X (0, 1), a numerical computation indicates that all the real approximate solutions
are listed as (1.6125,-1.0547), (158.7578,-0.6573), (2.0982,-0.4927), (2.1274,0.3361),
(1.0709,0.9834), (0,0), and (2,2.1500). Thus, the only critical point of W that lies in (0, 2) x (0, 1) is
about (1.0709, 0.9834). For this point, we have W(1.0709,0.9834) ~ 1.9621 x 108.
Thus, from above cases, we conclude that

0 and 0

M(t,2,y) <G (t,%,y) <G (1,%,1) < Q(1,%) < W(r,%) < 522547200
on [0,2] x [0, 1] x [0, 1]. From (3.16) we get that

1 522547200 1
D < - M D S — .
| 3.1 (g)| = 33443020800[ (T.x.y)] < 33443020800 64

If g € BT cosn, then the sharp bound for this Hankel determinant is determined by
1
D = — =~ 0.01562
D31 ()] = o7 ~ 0.01562,

with an extremal function g, given in (3.12) . O
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4. Logarithmic coefficient problems

The logarithmic coefficients & of g € S are given by

g(z>—1g(g(Z)) 2Z§kz, zeD.

These coeflicients contribute significantly in many estimations to the theory of univalent functions.
In 1985, de Branges [6] completed the proof of the Milin conjecture [50], which asserted that for all

positive integers k > 1,
. S k—1+1
Ik—1+1 2 < ,
; ( VP < ) —

and equality holds if and only if g takes the form z/ (1 — e"“"z)2 for some ¢ € R. This inequality leads
to the famous Bieberbach—Robertson—Milin conjectures. In 2005, Kayumov [51] was able to solve the
Brennans conjecture for conformal mappings by considering the logarithmic coefficients. For some
recent works on the study of logarithmic coeflicients, see, for example, [52-56].

If g € Sis in the form of (1.1), then its logarithmic coefficients are given by

1
& = Edz, 4.1)
1 1
&=5|ds- Edi), (4.2)
1 1,
& = 5 dy — drd; + §d2 , 4.3)
1 5 1, 1.,
64 = 5 d5 — d2d4 + d2d3 - §d3 — Zdz . (44)
Plugging (3.4), (3.5), (3.6), and (3.7) into (4.1), (4.2), (4.3), and (4.4), we get
_ 1 (4.5)
gl - 16T1’ *
1 53
P . 4.6
&= 54" 304" (4.6)
71 4 1 13
= — 4.7
$7 76807 T 327 T 3gg S
19 , 1802099 , 1 14861 2 103
- — — 4.
& 1440 2~ 264486400 ' T 40* T 691200 172~ 3840 " 4.8)
Define
D1 (Gy/2) =618 - &, (4.9)
D5 (Gy/2) 1= &6, - &, (4.10)

It is observed that D, (Gg / 2) resembles the well-known functional D, (g) = d,ds — d§ over the
class S or its subclasses.
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Theorem 4.1 If g € BT .o, is of the form (1.1), then

)
|§2—ﬂ§12|§max{ i +5'}, geC.

12" 576
This inequality is sharp.

Proof. By employing (4.5) and (4.6), we may write

1 99 + 53
2| _ 2
|‘§2_ﬂ§1|—2472— 9% T -
An application of Lemma 2.2 leads to
1 99 +5|
— 2| < - 4
&2 - 9éi] < max{u’ 576 }

The bound ﬁ is achieved by the function g, given as
g(z>:fz(cosh«/Fz)dt=z+1z3+iz5+--- “.11)
Y 0 6 120 ' '

The bound % for 9 € C is attained by the function g, given as

¢ 1 1
gg(z)=f (cosh \/;)dt:z+zzz+ﬁz3+---. (4.12)
0

Here, we choose the branch of the square root function so that

1 1 1
2 — 2 AL 6,
cosh\/z_—1+2!z tal el (4.13)
and
11, 1,
coshVz=1+—z+—2"+—=2 +--. (4.14)

20 41 6!

Substituting @ = 1, we deduce the corollary stated below.
Corollary 4.1 If the function g € BT .o, has the form of (1.1), then

1
|§2 - f%l < E

This bound is achieved by the function g, given in (4.11).
Theorem 4.2 If g € BT s, has the form of (1.1), then

1
16162 — & < 16

This inequality is sharp.
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Proof. Using (4.5), (4.6), and (4.7), we have

1 7 1969
|§1§2—§3|—§ T3—2(12) 57607
LetR == andS = ;228 It is clear that
RQ2R-1)= 7 <S <R
7
By Lemma 2.4, we obtain
1
— < —
6162 — &3] < 6

The equality is attained by the function g, given in (3.12).

Theorem 4.3 Let g € B7 .os, have the series expansion (1.1). Then

|E4 — &1&3] < 20
The inequality is sharp.
Proof. From (4.5), (4.7), and (4.8), we have
2070479 , 19 , 221 3 (32647 ,
— = —— 7 + + 2| — — === —
€2 =153l = 35 ‘11612160 TS (384)TIT3 2 (51840)T L
3

40 /H’l + /172 + 2{1173 — Eg‘Tsz 4|,
where

2070479 . 19 ‘- 221 32647

T 11612160° - 36 384" ° 7 51840

These constants satisfy 4 € (0, 1), £ € (0, 1), and
BA(1 =) [(Gs =20 + C QA+ D =)+ L1 = D) (¢ =247 <47 (1 =P (1= 1)

Hence, by Lemma 2.3 and (4.15), we deduce that

|64 — &1&5] < %

This equality is achieved by the function g, given in (3.9).

Theorem 4.4 Let g € BT .oq, be in the form of (1.1). Then

1
& -8l < 20

This inequality is sharp.

(4.15)
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Proof. From (4.6) and (4.8), we obtain

|§ §2| 1 | 4095773 4+432+2 10377 3 ( 8093 I
-8 = = |l—————=7 1+ =7 — - == — Ty4f.
to217 40023224320 1 T 7272 T T\192) T 212960) 2
3
=10 utt + AT5 + 207 T3 — Egrf‘rz — Ty4f, (4.16)
where
4095773 43 ‘= 103 8093
H= 23043200 "7 727 *T 1927 ST 12960°
These constants satisfy 4 € (0, 1), £ € (0, 1), and
BA(1 =) [(Gs =20 + QA+ D =)+ L1 =D (¢ =247 <47 (1 =P (1= D).
Hence, by Lemma 2.3 and (4.16), we deduce that
1
2
& -8l < >
The required inequality is sharp and determined by the function g, given in (3.9). O
Theorem 4.5 If g € BT .o, has the form of (1.1), then
1
_8 <«
|§3 §1| =16
This inequality is sharp.
Proof. Using (4.5) and (4.7), we have
1 13 553
|é:3 —fﬂ = 3—2 T3 — z(ﬁ)TlTZ + —1920‘['? .
LetR = 32 and § = 22 Itis clear that
13
RQ2R-1)=—<S <R
( ) 88—
By Lemma 2.4, it follows that
1
3
6 - €1 < 16
This result is the best possible and the extremal function is g, as given in (3.12). O

Theorem 4.6 If g € BT 4, is of the form (1.1), then
|és - &l] < i
=20
This inequality is sharp.
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Proof. From (4.5) and (4.8), we obtain

|§ —§4| _ 113618373 T4+9T2+2 103 or 3 (14861 N
ST 40023224320 1 T 36 2 T\192) 1 2\25920) 1P
3
= 10 /rr‘l1 + /17'% +2{11713 — 55‘7’%‘['2 - 74|, 4.17)
where
3618373 19 103 14861
U=, A=, {(=——, ¢=——
23224320 36 192 25920
These constants satisfy 4 € (0, 1), £ € (0, 1), and
811 = D)|Ls =2 + CA+ D= P| + L1 =D (¢ =247 <4 (1 -’ (1 - ),
Hence, by Lemma 2.3 and (4.17), we deduce that
|6 —&l] < i
=20
This required inequality is sharp and determined by using (4.1), (4.4) and (3.9). O

Theorem 4.7 If g € BT ., has the form of (1.1), then

D22 (G 12)| < ﬁ.
This inequality is sharp.

Proof. Suppose that g € BT .oq, and gy(z) = e g (eiez) with 6 € R. Since ‘Dz’z (Ggg / 2)‘ = ‘Dz’z (Gg / 2)‘
for all 6 € R, we still assume that 7, = 7 € [0, 2]. Putting (4.6), (4.7), and (4.8) into (4.10) with 7; = 7,
we obtain

1

D, (G./2) =
2’2( of ) 1070176665600
— 61544448077, + 106831872077,75 — 58834944073 + 111476736077,

~104509440073) .

(40473437° - 324144007*7, + 419731207°73 + 569963527°13

Let r = 4 — 72. Then, by (2.2), (2.3), and (2.4), we obtain

1
D 2) =

22(Ge/2) 1070176665600

+290304007°r8 (1 - |B)  + 290304007 B (1 - BF)

—290304007%r (1 — |8P) (1 = Inl*) k + 2322432078y (1 - |BF)
— 1741824078 (1 - |8 ) n — 27869184087 (1 — |81) B’

{-22377607°r (1 - |B1*)  — 735436808 + 2786918405

+ 27869184087 (1 - 1B7) (1 = InP) « — 261273600, (1 - [BF) &
+ 83764807 8> — 1074247 Br + 84430087°5°r* — 29030400173
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—72576007* 18> — 812851208°r*1> + 43545608 r** + 267176} .

It is observed that we can write D, , (Gg/ 2) in the form of

1
1070176665600

D,5(G,/2) = [l @) + ko (1. + s (@, B) 7 + ko (3, B, )

where 8,1,k € D, and

ki (7. 8) = 26717° + (4 — ) [ (4 — 77) (84430087 — 154828805 — 77414407°4°
+43545607°4) — 290304007°4” + 83764807*8% — 10742478 — 725760074’ |,
ko (r.B) = 60480 (4 — ) (1 = B) [(4 — ) (2888 + 3841B) + 48078 — 377°]
ks (x.B) = 5806080 (4 - 72) (1 - |8P) [(4 - *) (-3 181> - 45) + 57°B] .
ky (7. 8.1) = 5806080 (4 — 2) (1 = |81) (1 = IyP*) [-57* + 488 (4 - )] .

Now, by using || = x, || = y and utilizing the fact || < 1, we get

! 2
‘Dz’z (Gg/z)‘ < 1070176665600 [lkl (T’ﬁ)| + |k2 (T’ﬁ)|y + |k3 (Taﬁ)ly + |k4 (T,ﬁ, 77)'] .
1
< .
< 1070176665600 7%+ (4.18)
where
Axy) =t (00 + L0y +6TH) Y +14 (r,%)(1 _yZ),
with

1 (1,20) = 26717° + (4 — 77) [ (4 — 77) (84430087%¢” + 15482880x° + 77414407
+435456()72%4) +290304007%%* + 83764807 %% + 1074247%% + 725760074%3] ,

y (1,2¢) = 60480 (4 — 7°) (1 = ?) [ (4 — 72) (28872¢” + 3847x) + 48077 + 377,

13 (1,2) = 5806080 (4 — 7°) (1 = 27) [ (4 — %) (3% + 45) + 57%] ,

ts (,2) = 5806080 (4 — ) (1 — 27 [57% + 48x (4 - 7).

Now, we have to maximize A in the closed cuboid .
In view of

13 (1, %) < 5806080 (4 - 12) (1 - %2) [(4 - 72) (3%2 + 45) + 512] = uz (1, %) (4.19)
for all (1,%) € [0,2] x [0, 1], by setting u; (1,%) = t;(1,%) (i = 1,2,4) and
Or,x,y)=u (t,%) +ur (T,%) y + us (‘r,h:)y2 + Uy (T,%)(l —yz),

it is not hard to see that A (7,%,y) < ® (1,%,y) on Y. In the following, we aim to discuss the maximum
value of ® on Y.
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By partially differentiating ® with respect to y, we get

00
O_y =up (T,%) + 2 [uz (1,2%¢) — uy (1,%)] y.

Because u, (7,%) > 0 and
3 (7, %) = uy (7,2) = 5806080 (4 — 72) (1 — %) | (35> — 48% + 45) (4 - %) 2 0

on [0, 2] x [0, 1], we have "6—(;), > ( for all y € [0, 1]. Hence, we obtain

O(x,y)<0O(x1), (4.20)
where
O, %, 1) = uy (1,%) + up (1, %) + u3 (1, %)
= 26717° + 288(4 — ) [va(0)* + v3(1)a’ + va(1)® + vi(D)ae + v (1)
=: V(t,x),
where
va(t) = 15120(4 — T2)(1% — 47 — 4), 4.21)
v3(7) = —1680(7* + 127° — 3277 + 1927 — 128), (4.22)
vo(1) = =21(117* + 32507% — 4590472 — 115207 + 161280), (4.23)
vi(7) = (3737 + 201607 + 322560), (4.24)
vo(T) = 30(2597° — 2688072 + 120960). (4.25)

Taking the fact of v4(7) < 0 for all 7 € [0, 2], we obtain
V(T,%) < 26717° + 288(4 — 1) [v3(2)€ + va(0)ie? + vy (D) + vo()| =2 K (7, %). (4.26)

Now, we need to find the maximum value of K on [0, 2] X [0, 1]. For 7 = 0, we have
63
K(0, ) = 2477260802 (% - Z) + 4180377600 < 4180377600 4.27)

for all # € [0,1]. If T = 2, it is calculated that K(2,x) = 170944 with »x € [0, 1]. Hence, it is left to
discuss the case of (7, %) € (0,2) x (0, 1).
For the system of equations

oK _ 0K _
or o
with (1,%) € (0,2) X (0,1), a numerical computation indicates that the approximate solutions are
(0,0), (1.7758,-1.2237), (2.0405, —0.4933), (52.7638,0.2085), (-212.4757,0.2665),

(—2.0293,0.3246), (—1.5447,1.0839), (5.1393,2.5129), (2,2.1720), and (-2,-1.1906). It is found
that there are no critical points of K that lie in (0,2) x (0, 1).

0 and 0
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From the above cases we conclude that
AN(1,%,y) <O(1,2%,y) <O(1,%x,1) =V (r,%) < K(1,%) < 4180377600

on [0,2] X [0, 1] x [0, 1]. Using (4.18), we have

1 4180377600 1

D->>(G,/2)| < A(t,%,y) < =
‘ 2’2( s/ )‘— 1070176665600 (7 %) 1070176665600 256

If g € BT .osn, then the sharp bound for this second-order Hankel determinant is determined by
using (4.2), (4.3), (4.4), and (3.12). O

~ 0.003906.
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