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to be sharp.

Keywords: Hankel determinant; bounded turning functions; cosine hyperbolic function; logarithmic
coefficient problems
Mathematics Subject Classification: 30C45, 30C50

1. Introduction

Complex analysis is one of the major disciplines nowadays due to its numerous applications in
mathematical science and other fields. Geometric function theory is an intriguing topic of complex
analysis that involves the geometrical characteristics of analytic functions. This area is crucial to
applied mathematics, particularly in fields such as engineering, electronics, nonlinear integrable system
theory, fluid dynamics, modern mathematical physics, and partial differential equation theory. The key
problem that led to the rapid emergence of geometric function theory is the Bieberbach conjecture.
It is about the coefficient bounds for functions belonging to the class S of univalent functions. This
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conjecture states that if g ∈ S with the Taylor-Maclaurin series expansion of the form

g(z) = z +

∞∑
k=2

dkzk, z ∈ D, (1.1)

where D := {z ∈ C : |z| < 1} , then |dk| ≤ k for all k ≥ 2. Let A be the class of analytic functions
with the series representation given in (1.1) . The set S is a subclass of A which was first taken into
account by Koebe in 1907. The above famous conjecture was proposed by Bieberbach [1] in 1916. He
proved this for k = 2, and subsequent researchers, including Löwner [2], Garabedian and Schiffer [3],
Pederson and Schiffer [4], and Pederson [5], confirmed it for k = 3, 4, 5, and 6, respectively. However,
settling the conjecture for k ≥ 7 remained elusive until 1985 when de Branges [6] used hypergeometric
functions to prove it for every k ≥ 2. Lawrence Zalcman proposed the inequality

∣∣∣d2
k − d2k−1

∣∣∣ ≤ (k − 1)2

with k ≥ 2 for g ∈ S in the late 1960’s as a way of establishing the Bieberbach conjecture. Due to this,
a number of articles [7–9] have been published on the Zalcman hypothesis and its generalized form∣∣∣λd2

k − d2k−1

∣∣∣ ≤ λk2 − 2k + 1 with λ ≥ 0 for different subclasses of the class S. This conjecture has
remained unsolved for a long time. Krushkal [10] established this hypothesis for k ≤ 6. In an attempt
to solve the Zalcman conjecture, Krushkal [11] investigated the inequality

∣∣∣dl
k − dl(k−1)

2

∣∣∣ ≤ 2l(k−1) − kl

with k, l ≥ 2 for g ∈ S. A broader Zalcman hypothesis for g ∈ S was proposed by Ma [12] later, in
1999, and is given by ∣∣∣d jdk − d j+k−1

∣∣∣ ≤ ( j − 1) (k − 1) , j, k ≥ 2.

He only proved it for a subclass of S. The challenge is still open for the class S.
Now, we recall the definition of subordination, which actually provides a relationship between

analytic functions. We write g1 ≺ g2 to illustrate that g1 is subordinate to g2. It is explained that for two
given functions g1, g2 ∈ A, a Schwarz function w exists such that g1(z) = g2 (w(z)) for z ∈ D. Once g2

is univalent in D, then this relation is equivalent to saying that

g1 (z) ≺ g2 (z) , z ∈ D

if and only if
g1(0) = g2(0) and g1(D) ⊂ g2(D).

The three classic subclasses of univalent functions are C, S∗ and K , of which their functions are
known respectively as convex functions, starlike functions and close-to-convex functions. These
classes are defined by

C :=
{

g ∈ S :
(zg′ (z))′

g′ (z)
≺

1 + z
1 − z

, z ∈ D
}
,

S∗ :=
{

g ∈ S :
zg′ (z)
g (z)

≺
1 + z
1 − z

, z ∈ D
}
,

and

K :=
{

g ∈ S :
zg′ (z)
h (z)

≺
1 + z
1 − z

, z ∈ D
}

for some h ∈ S∗. Taking h (z) = z, the class K reduces to the class BT of bounded turning functions.
Further, replacing 1+z

1−z by some other special functions, various interesting subfamilies of the class S
were studied; interested readers may refer to [13–18].
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The determinant Dλ,n (g), where n, λ ∈ N = {1, 2, . . .}, is known as the Hankel determinant and was
presented by Pommerenke [19,20]. It is formed by the coefficients of the function g ∈ S and is defined
by

Dλ,n (g) :=

∣∣∣∣∣∣∣∣∣∣∣∣
dn dn+1 . . . dn+λ−1

dn+1 dn+2 . . . dn+λ

...
... . . .

...

dn+λ−1 dn+λ . . . dn+2λ−2

∣∣∣∣∣∣∣∣∣∣∣∣ .
Hankel matrices are used in both pure mathematics and technological applications, including the

theory of Markov processes, the theory of non-stationary signals in the Hamburger moment problem,
and many other topics, see for example [21–24]. There are relatively few publications on the bounds of
the Hankel determinant for functions in the general classS. The best estimate for g ∈ Swas determined
by Hayman in [25], which asserted that

∣∣∣D2,n (g)
∣∣∣ ≤ |η|, where η is a constant. Additionally, for g ∈ S,

it was shown in [26] that the second-order Hankel determinant
∣∣∣D2,2 (g)

∣∣∣ ≤ η for 0 ≤ η ≤ 11/3.
The two determinants D2,1 (g) and D2,2 (g) have been extensively studied in the literature for various
subfamilies of univalent functions. The works [27–31], in which the sharp bounds of the second-order
Hankel determinant for some subclasses of S are determined, are particularly noteworthy.

In comparison to the second-order Hankel determinant, the sharp bound of the third-order Hankel
determinant D3,1 (g) for certain analytic univalent functions is much harder to find. The investigation
on D3,1 (g) for S was initiated by Babalola [32] in 2010. The exact bounds of this determinant were
proved recently for the classes C, S∗, and BT in [33], [34], and [35], respectively. These bounds are
given by

∣∣∣D3,1 (g)
∣∣∣ ≤


4

135 , for g ∈ C,
4
9 , for g ∈ S∗,
1
4 , for g ∈ BT .

By employing similar techniques, Khalil Ullah et al. [36] and Lecko et al. [37] derived the sharp
bounds for

∣∣∣D3,1 (g)
∣∣∣ when considering functions belonging to the families S∗tanh and S∗ (1/2),

respectively. Additionally, the works [38–43] proved the sharp bounds for the same third-order
Hankel determinant in various novel subfamilies of analytic univalent functions.

Let us consider the two function classes defined respectively by

S∗cosh :=
{

g ∈ S :
zg′ (z)
g (z)

≺ cosh
√

z (z ∈ D)
}

and

BT cosh :=
{
g ∈ S : g′ (z) ≺ cosh

√
z (z ∈ D)

}
.

These classes were introduced and studied by Mundalia et al. [44] and Ghaffar et al. [45],
respectively. In this paper, we improved the bound of the third-order Hankel determinant

∣∣∣D3,1 (g)
∣∣∣,

which was determined by Ghaffar et al. and published recently in AIMS Mathematics [45].
Furthermore, we obtain the sharp estimates of the Fekete-Szegö, Krushkal, and Zalcman functionals
with logarithmic coefficients as entries.
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2. A set of Lemmas

In the theory of univalent functions, the Carathéodory functions are well studied. They are analytic
in D with positive real part and take series representations of the form

p (z) = 1 +

∞∑
n=1

τnzn (z ∈ D) . (2.1)

We denote by P the set of these functions.
To prove the main theorems, we need the following lemmas.

Lemma 2.1 [46] Let p ∈ P be the form of (2.1) with τ1 ≥ 0. Then

2τ2 = τ2
1 + β

(
4 − τ2

1

)
, (2.2)

4τ3 = τ3
1 + 2

(
4 − τ2

1

)
τ1β − τ1

(
4 − τ2

1

)
β2 + 2

(
4 − τ2

1

) (
1 − |β|2

)
η, (2.3)

8τ4 = τ4
1 +

(
4 − τ2

1

)
β
[
τ2

1

(
β2 − 3β + 3

)
+ 4β

]
− 4

(
4 − τ2

1

) (
1 − |β|2

)
·
[
τ1 (β − 1) η + βη2 −

(
1 − |η|2

)
κ
]

(2.4)

for some β, η, κ ∈ D := {z ∈ C : |z| ≤ 1}.
Lemma 2.2 [47] If p ∈ P is of the form (2.1) and ϑ ∈ C, we have

|τn − ϑτkτn−k| ≤ 2 max {1, |2ϑ − 1|} (2.5)

for all 1 ≤ k ≤ n − 1.
Lemma 2.3 [48] Let µ, λ, ζ, and ς satisfy λ ∈ (0, 1), ζ ∈ (0, 1) and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) . (2.6)

If p ∈ P is of the form (2.1), then∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ ≤ 2.

Lemma 2.4 [49] Suppose that p ∈ P is provided by (2.1). If R ∈ [0, 1] and R (2R − 1) ≤ S ≤ R, then
we have ∣∣∣τ3 − 2Rτ1τ2 + S τ3

1

∣∣∣ ≤ 2. (2.7)

3. Coefficient results for the class BT cosh

Theorem 3.1 If g ∈ BT cosh is of the form (1.1), then

|d5 − d2d4| ≤
1

10
.

This inequality is sharp.
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Proof. Let g ∈ BT cosh. Then g can be easily expressed by using the Schwarz function as

g′ (z) = cosh
√

w (z), z ∈ D.

If p ∈ P, then we can write it in the form of

p (z) =
1 + w (z)
1 − w (z)

= 1 + τ1z + τ2z2 + τ3z3 + · · · .

It follows that

w (z) =
1
2
τ1z +

1
4

(
2τ2 − τ

2
1

)
z2 +

1
8

(
τ3

1 − 4τ1τ2 + 4τ3

)
z3

+
1

16

(
−τ4

1 + 6τ2
1τ2 − 8τ1τ3 − 4τ2

2 + 8τ4

)
z4 + · · · . (3.1)

From (1.1), we have

g′ (z) = 1 + 2d2z + 3d3z2 + 4d4z3 + 5d5z4 + · · · . (3.2)

Using the series expansion of (3.1) with simple calculation, we get

cosh
√

w (z) = 1 +
1
4
τ1z +

(
1
4
τ2 −

11
96
τ2

1

)
z2 +

(
301

5760
τ3

1 −
11
48
τ1τ2 +

1
4
τ3

)
z3

+

(
1
4
τ4 −

11
96
τ2

2 +
301

1920
τ2

1τ2 −
15287

645120
τ4

1 −
11
48
τ1τ3

)
z4 + · · · . (3.3)

Comparing the coefficients in (3.2) and (3.3), we obtain

d2 =
1
8
τ1, (3.4)

d3 =
1

12
τ2 −

11
288

τ2
1, (3.5)

d4 =
301

23040
τ3

1 +
1

16
τ3 −

11
192

τ1τ2, (3.6)

d5 = −
11
480

τ2
2 −

15287
3225600

τ4
1 +

1
20
τ4 +

301
9600

τ2
1τ2 −

11
240

τ1τ3. (3.7)

Employing (3.4), (3.6) and (3.7), we may write

|d5 − d2d4| =
1
20

∣∣∣∣∣∣ 13703
107520

τ4
1 +

11
24
τ2

2 + 2
(
103
192

)
τ1τ3 −

3
2

(
493
960

)
τ2

1τ2 − τ4

∣∣∣∣∣∣ .
=

1
20

∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ , (3.8)

where
µ =

13703
107520

, λ =
11
24
, ζ =

103
192

, ς =
493
960

.

These constants satisfy λ ∈ (0, 1), ζ ∈ (0, 1), and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) .
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Hence, by Lemma 2.3 and (3.8), we deduce that

|d5 − d2d4| ≤
1

10
.

This required result is sharp and determined by

g4 (z) =

∫ z

0

(
cosh

√
t4
)

dt = z +
1
10

z5 +
1

216
z9 + · · · , (3.9)

where we choose the branch of the square root function so that

cosh
√

z4 = 1 +
1
2!

z4 +
1
4!

z8 +
1
6!

z12 + · · · (3.10)

�

Theorem 3.2 If g ∈ BT cosh is of the form of (1.1), then∣∣∣d5 − d2
3

∣∣∣ ≤ 1
10
.

This inequality is sharp.

Proof. From (3.5) and (3.7), we obtain

∣∣∣d5 − d2
3

∣∣∣ =
1

20

∣∣∣∣∣∣ 179933
1451520

τ4
1 +

43
72
τ2

2 + 2
(
11
24

)
τ1τ3 −

3
2

(
3259
6480

)
τ2

1τ2 − τ4

∣∣∣∣∣∣
=

1
20

∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ , (3.11)

where
µ =

179933
1451520

, λ =
43
72
, ζ =

11
24
, ς =

3259
6480

.

These constants satisfy λ ∈ (0, 1), ζ ∈ (0, 1), and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) .

Hence, by Lemma 2.3 and (3.11), we deduce that∣∣∣d5 − d2
3

∣∣∣ ≤ 1
10
.

This required outcome is sharp for the function g4 given in (3.9). �

Theorem 3.3 If g ∈ BT cosh is of the form of (1.1), then∣∣∣d4 − d3
2

∣∣∣ ≤ 1
8
.

This inequality is sharp.
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Proof. Using (3.4) and (3.6), we have∣∣∣d4 − d3
2

∣∣∣ =
1

16

∣∣∣∣∣∣τ3 − 2
(
11
24

)
τ1τ2 +

(
8

45

)
τ3

1

∣∣∣∣∣∣ .
Let R = 11

24 and S = 8
45 . It is clear that

R (2R − 1) = −
11
288
≤ S ≤ R.

All the conditions of Lemma 2.4 are satisfied, and thus we have∣∣∣d4 − d3
2

∣∣∣ ≤ 1
8
.

This result is the best possible and equality is attained by

g3 (z) =

∫ z

0

(
cosh

√
t3
)

dt = z +
1
8

z4 +
1

168
z7 + · · · , (3.12)

where we choose the branch of the square root function so that

cosh
√

z3 = 1 +
1
2!

z3 +
1
4!

z6 +
1
6!

z9 + · · · (3.13)

�

Theorem 3.4 If g ∈ BT cosh is of the form of (1.1), then∣∣∣d5 − d4
2

∣∣∣ ≤ 1
10
.

This inequality is sharp.

Proof. From (3.4) and (3.7), we obtain∣∣∣d5 − d4
2

∣∣∣ =
1
20

∣∣∣∣∣∣ 32149
322560

τ4
1 +

11
24
τ2

2 + 2
(
11
24

)
τ1τ3 −

3
2

(
301
720

)
τ2

1τ2 − τ4

∣∣∣∣∣∣
=

1
20

∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ , (3.14)

where
µ =

32149
322560

, λ =
11
24
, ζ =

11
24
, ς =

301
720

.

These constants satisfy λ ∈ (0, 1), ζ ∈ (0, 1), and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) .

Hence, by Lemma 2.3 and (3.14), we deduce that∣∣∣d5 − d4
2

∣∣∣ ≤ 1
10
.

This required inequality is sharp for the function g4 given in (3.9). �
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Theorem 3.5 If g ∈ BT cosh has the form of (1.1), then∣∣∣D3,1 (g)
∣∣∣ ≤ 1

64
.

This inequality is sharp.

Proof. From the definition, we know

D3,1 (g) = 2d2d3d4 − d3
3 − d2

4 + d3d5 − d2
2d5. (3.15)

Let g ∈ BT cosh and gθ(z) = e−iθg
(
eiθz

)
with θ ∈ R. It is noted that g′θ(z) = g′

(
eiθz

)
and thus

gθ ∈ BT cosh for all θ ∈ R. Since
∣∣∣D3,1 (gθ)

∣∣∣ =
∣∣∣D3,1 (g)

∣∣∣, we may choose the coefficient d2 of g to be a
non-negative real number when estimating the functional

∣∣∣D3,1 (g)
∣∣∣. Then, since d2 = 1

8τ1 and τ1 is a
coefficient of a function in P, it follows that τ1 is real and τ1 = τ ∈ [0, 2]. Putting the estimations of
di’s from (3.4), (3.5), (3.6), and (3.7) into D3,1 (g) with τ1 = τ, we have

D3,1 (g) =
1

33443020800

(
513823τ6 − 4378896τ4τ2 + 7922880τ3τ3 + 5552064τ2τ2

2

−89994240τ2τ4 + 155312640ττ2τ3 − 83220480τ3
2 + 139345920τ2τ4 − 130636800τ2

3

)
.

Let r = 4 − τ2. Then, by (2.2), (2.3), and (2.4), we obtain

D3,1 (g) =
1

33443020800

{
−329τ6 − 10402560β3r3 + 34836480β3r2 + 10160640τ3rβ

(
1 − |β|2

)
η

+ 10160640τ2rβ
(
1 − |β|2

)
η2 − 10160640τ2r

(
1 − |β|2

) (
1 − |η|2

)
κ

+ 8346240τr2β
(
1 − |β|2

)
η − 2177280τr2β2

(
1 − |β|2

)
η − 34836480r2ββη2

(
1 − |β|2

)
+ 34836480r2β

(
1 − |β|2

) (
1 − |η|2

)
κ + 2476656τ2r2β2 − 10160640τ2rβ2

− 2540160τ4rβ3 − 12882240τ2r2β3 + 544320τ2r2β4 − 32659200r2η2
(
1 − |β|2

)2

+2555280τ4rβ2 + 12024τ4rβ − 30240τ3r
(
1 − |β|2

)
η
}
.

It is seen that we can write D3,1 (g) in the form of

D3,1 (g) =
1

33443020800

[
l1 (τ, β) + l2 (τ, β) η + l3 (τ, β) η2 + l4 (τ, β, η) κ

]
,

where β, η, κ ∈ D, and

l1 (τ, β) = −329τ6 +
(
4 − τ2

) [(
4 − τ2

) (
−6773760β3 − 2479680τ2β3 + 2476656τ2β2

+544320τ2β4
)

+ 2555280τ4β2 + 12024τ4β − 10160640τ2β2 − 2540160τ4β3
]
,

l2 (τ, β) = 30240
(
4 − τ2

) (
1 − |β|2

) [(
4 − τ2

) (
−72τβ2 + 276τβ

)
+ 336τ3β − τ3

]
,

l3 (τ, β) = 725760
(
4 − τ2

) (
1 − |β|2

) [(
4 − τ2

) (
−3 |β|2 − 45

)
+ 14τ2β

]
,

l4 (τ, β, η) = 725760
(
4 − τ2

) (
1 − |β|2

) (
1 − |η|2

) [
48β

(
4 − τ2

)
− 14τ2

]
.
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By using |β| = κ, |η| = y and utilizing the fact |κ| ≤ 1, we obtain∣∣∣D3,1 (g)
∣∣∣ ≤ 1

33443020800

[
|l1 (τ, β)| + |l2 (τ, β)| y + |l3 (τ, β)| y2 + |l4 (τ, β, η)|

]
.

≤
1

33443020800
M (τ, κ, y) , (3.16)

where
M (τ, κ, y) = m1 (τ, κ) + m2 (τ, κ) y + m3 (τ, κ) y2 + m4 (τ, κ)

(
1 − y2

)
,

with

m1 (τ, κ) = 329τ6 +
(
4 − τ2

) [(
4 − τ2

) (
6773760κ3 + 2479680τ2κ3 + 2476656τ2κ2

+544320τ2κ4
)

+ 2555280τ4κ2 + 12024τ4κ + 10160640τ2κ2 + 2540160τ4κ3
]
,

m2 (τ, κ) = 30240
(
4 − τ2

) (
1 − κ2

) [(
4 − τ2

) (
72τκ2 + 276τκ

)
+ 336τ3κ + τ3

]
,

m3 (τ, κ) = 725760
(
4 − τ2

) (
1 − κ2

) [(
4 − τ2

) (
3κ2 + 45

)
+ 14τ2κ

]
,

m4 (τ, κ) = 725760
(
4 − τ2

) (
1 − κ2

) [
48κ

(
4 − τ2

)
+ 14τ2

]
.

Now, we have to maximize M in the closed cuboid Υ := [0, 2] × [0, 1] × [0, 1] .
In light of (τ, κ) ∈ [0, 2] × [0, 1], we observe that

m3 (τ, κ) ≤ 725760
(
4 − τ2

) (
1 − κ2

) [(
4 − τ2

) (
3κ2 + 45

)
+ 14τ2

]
=: g3 (τ, κ) . (3.17)

Taking gi (τ, κ) = mi (τ, κ) for i = 1, 2, 4 and

G (τ, κ, y) = g1 (τ, κ) + g2 (τ, κ) y + g3 (τ, κ) y2 + g4 (τ, κ)
(
1 − y2

)
, (3.18)

it is not hard to see that M (τ, κ, y) ≤ G (τ, κ, y) in the cuboid Υ. In the following, we aim to find the
maximum value of G in Υ.

By partially differentiating G with respect to y, we have

∂G
∂y

= g2 (τ, κ) + 2
[
g3 (τ, κ) − g4 (τ, κ)

]
y. (3.19)

In view of g2 (τ, κ) ≥ 0 and

g3 (τ, κ) − g4 (τ, κ) = 725760
(
4 − τ2

) (
1 − κ2

) [(
3κ2 − 48κ + 45

) (
4 − τ2

)]
≥ 0 (3.20)

on [0, 2] × [0, 1], we have ∂G
∂y ≥ 0 for all y ∈ [0, 1]. It follows that

G (τ, κ, y) ≤ G (τ, κ, 1) , (3.21)

where

G (τ, κ, 1) = g1 (τ, κ) + g2 (τ, κ) + g3 (τ, κ)

= 329τ6 + 72(4 − τ2)
[
q4 (τ) κ4 + q3 (τ) κ3 + q2 (τ) κ2 + q1 (τ) κ + q0 (τ)

]
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=: Q (τ, κ) ,

where

q4(τ) = 7560(4 − τ2)(τ2 − 4τ − 4),
q3(τ) = 840(τ4 − 30τ3 + 52τ2 − 552τ + 448),
q2(τ) = 84(13τ4 − 365τ3 + 6678τ2 + 1440τ − 20160),
q1(τ) = τ(167τ3 + 25200τ2 + 463680),
q0(τ) = 420(τ3 − 744τ2 + 4320).

Then the problem reduces to finding the maximum value of Q on [0, 2] × [0, 1]. By noting that
q4(τ) ≤ 0 for all τ ∈ [0, 2], we obtain that

Q (τ, κ) ≤ 329τ6 + 72(4 − τ2)
[
q3 (τ) κ3 + q2 (τ) κ2 + q1 (τ) κ + q0 (τ)

]
=: W (τ, κ) . (3.22)

Setting τ = 0, we obtain

W(0, κ) = 108380160κ3 − 487710720κ2 + 522547200

= 108380160κ2
(
κ −

9
2

)
+ 522547200

≤ 522547200 ≈ 5.2255 × 108

for all κ ∈ [0, 1]. Setting τ = 2, we get

W(2, κ) ≡ 21056, κ ∈ [0, 1].

It is left to consider the case of τ ∈ (0, 2). For the system of equations

∂W
∂τ

= 0 and
∂W
∂κ

= 0

with (τ, κ) ∈ (0, 2) × (0, 1) , a numerical computation indicates that all the real approximate solutions
are listed as (1.6125,−1.0547), (158.7578,−0.6573), (2.0982,−0.4927), (2.1274, 0.3361),
(1.0709, 0.9834), (0, 0), and (2, 2.1500). Thus, the only critical point of W that lies in (0, 2) × (0, 1) is
about (1.0709, 0.9834). For this point, we have W(1.0709, 0.9834) ≈ 1.9621 × 108.

Thus, from above cases, we conclude that

M (τ, κ, y) ≤ G (τ, κ, y) ≤ G (τ, κ, 1) ≤ Q (τ, κ) ≤ W (τ, κ) ≤ 522547200

on [0, 2] × [0, 1] × [0, 1]. From (3.16) we get that∣∣∣D3,1 (g)
∣∣∣ ≤ 1

33443020800
[
M (τ, κ, y)

]
≤

522547200
33443020800

=
1

64
.

If g ∈ BT cosh, then the sharp bound for this Hankel determinant is determined by∣∣∣D3,1 (g)
∣∣∣ =

1
64
≈ 0.01562,

with an extremal function g3 given in (3.12) . �
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4. Logarithmic coefficient problems

The logarithmic coefficients ξk of g ∈ S are given by

Gg(z) := log
(
g (z)

z

)
= 2

∞∑
k=1

ξkzk, z ∈ D.

These coefficients contribute significantly in many estimations to the theory of univalent functions.
In 1985, de Branges [6] completed the proof of the Milin conjecture [50], which asserted that for all
positive integers k ≥ 1,

k∑
l=1

l (k − l + 1) |ξk|
2
≤

k∑
l=1

k − l + 1
l

,

and equality holds if and only if g takes the form z/
(
1 − eiϕz

)2
for some ϕ ∈ R. This inequality leads

to the famous Bieberbach–Robertson–Milin conjectures. In 2005, Kayumov [51] was able to solve the
Brennans conjecture for conformal mappings by considering the logarithmic coefficients. For some
recent works on the study of logarithmic coefficients, see, for example, [52–56].

If g ∈ S is in the form of (1.1), then its logarithmic coefficients are given by

ξ1 =
1
2

d2, (4.1)

ξ2 =
1
2

(
d3 −

1
2

d2
2

)
, (4.2)

ξ3 =
1
2

(
d4 − d2d3 +

1
3

d3
2

)
, (4.3)

ξ4 =
1
2

(
d5 − d2d4 + d2

2d3 −
1
2

d2
3 −

1
4

d4
2

)
. (4.4)

Plugging (3.4), (3.5), (3.6), and (3.7) into (4.1), (4.2), (4.3), and (4.4), we get

ξ1 =
1

16
τ1, (4.5)

ξ2 =
1

24
τ2 −

53
2304

τ2
1, (4.6)

ξ3 =
71

7680
τ3

1 +
1

32
τ3 −

13
384

τ1τ2, (4.7)

ξ4 = −
19

1440
τ2

2 −
1802099

464486400
τ4

1 +
1

40
τ4 +

14861
691200

τ2
1τ2 −

103
3840

τ1τ3. (4.8)

Define

D2,1

(
Gg/2

)
:= ξ1ξ3 − ξ

2
2, (4.9)

D2,2

(
Gg/2

)
:= ξ2ξ4 − ξ

2
3. (4.10)

It is observed that D2,1

(
Gg/2

)
resembles the well-known functional D2,1(g) = d1d3 − d2

2 over the
class S or its subclasses.
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Theorem 4.1 If g ∈ BT cosh is of the form (1.1) , then

∣∣∣ξ2 − ϑξ
2
1

∣∣∣ ≤ max
{

1
12
,
|9ϑ + 5|

576

}
, ϑ ∈ C.

This inequality is sharp.

Proof. By employing (4.5) and (4.6), we may write∣∣∣ξ2 − ϑξ
2
1

∣∣∣ =
1
24

∣∣∣∣∣τ2 −
9ϑ + 53

96
τ2

1

∣∣∣∣∣ .
An application of Lemma 2.2 leads to

∣∣∣ξ2 − ϑξ
2
1

∣∣∣ ≤ max
{

1
12
,
|9ϑ + 5|

576

}
.

The bound 1
12 is achieved by the function g2 given as

g2 (z) =

∫ z

0

(
cosh

√
t2
)

dt = z +
1
6

z3 +
1

120
z5 + · · · . (4.11)

The bound |9ϑ+5|
576 for ϑ ∈ C is attained by the function g1 given as

g1 (z) =

∫ z

0

(
cosh

√
t
)

dt = z +
1
4

z2 +
1
72

z3 + · · · . (4.12)

Here, we choose the branch of the square root function so that

cosh
√

z2 = 1 +
1
2!

z2 +
1
4!

z4 +
1
6!

z6 + · · · (4.13)

and
cosh

√
z = 1 +

1
2!

z +
1
4!

z2 +
1
6!

z3 + · · · . (4.14)

�

Substituting ϑ = 1, we deduce the corollary stated below.
Corollary 4.1 If the function g ∈ BT cosh has the form of (1.1), then∣∣∣ξ2 − ξ

2
1

∣∣∣ ≤ 1
12
.

This bound is achieved by the function g2 given in (4.11).
Theorem 4.2 If g ∈ BT cosh has the form of (1.1), then

|ξ1ξ2 − ξ3| ≤
1

16
.

This inequality is sharp.
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Proof. Using (4.5), (4.6), and (4.7), we have

|ξ1ξ2 − ξ3| =
1
32

∣∣∣∣∣∣τ3 − 2
(

7
12

)
τ1τ2 +

1969
5760

τ3
1

∣∣∣∣∣∣ .
Let R = 7

12 and S = 1969
5760 . It is clear that

R (2R − 1) =
7
72
≤ S ≤ R.

By Lemma 2.4, we obtain

|ξ1ξ2 − ξ3| ≤
1

16
.

The equality is attained by the function g3 given in (3.12). �

Theorem 4.3 Let g ∈ BT cosh have the series expansion (1.1). Then

|ξ4 − ξ1ξ3| ≤
1

20
.

The inequality is sharp.

Proof. From (4.5), (4.7), and (4.8), we have

|ξ4 − ξ1ξ3| =
1

40

∣∣∣∣∣∣ 2070479
11612160

τ4
1 +

19
36
τ2

2 + 2
(
221
384

)
τ1τ3 −

3
2

(
32647
51840

)
τ2

1τ2 − τ4

∣∣∣∣∣∣
=

1
40

∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ , (4.15)

where

µ =
2070479

11612160
, λ =

19
36
, ζ =

221
384

, ς =
32647
51840

.

These constants satisfy λ ∈ (0, 1), ζ ∈ (0, 1), and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) .

Hence, by Lemma 2.3 and (4.15), we deduce that

|ξ4 − ξ1ξ3| ≤
1

20
.

This equality is achieved by the function g4 given in (3.9). �

Theorem 4.4 Let g ∈ BT cosh be in the form of (1.1). Then∣∣∣ξ4 − ξ
2
2

∣∣∣ ≤ 1
20
.

This inequality is sharp.
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Proof. From (4.6) and (4.8), we obtain

∣∣∣ξ4 − ξ
2
2

∣∣∣ =
1
40

∣∣∣∣∣∣ 4095773
23224320

τ4
1 +

43
72
τ2

2 + 2
(
103
192

)
τ1τ3 −

3
2

(
8093

12960

)
τ2

1τ2 − τ4

∣∣∣∣∣∣ .
=

1
40

∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ , (4.16)

where

µ =
4095773

23224320
, λ =

43
72
, ζ =

103
192

, ς =
8093
12960

.

These constants satisfy λ ∈ (0, 1), ζ ∈ (0, 1), and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) .

Hence, by Lemma 2.3 and (4.16), we deduce that∣∣∣ξ4 − ξ
2
2

∣∣∣ ≤ 1
20
.

The required inequality is sharp and determined by the function g4 given in (3.9). �

Theorem 4.5 If g ∈ BT cosh has the form of (1.1), then∣∣∣ξ3 − ξ
3
1

∣∣∣ ≤ 1
16
.

This inequality is sharp.

Proof. Using (4.5) and (4.7), we have

∣∣∣ξ3 − ξ
3
1

∣∣∣ =
1
32

∣∣∣∣∣∣τ3 − 2
(
13
24

)
τ1τ2 +

553
1920

τ3
1

∣∣∣∣∣∣ .
Let R = 13

24 and S = 553
1920 . It is clear that

R (2R − 1) =
13

288
≤ S ≤ R.

By Lemma 2.4, it follows that ∣∣∣ξ3 − ξ
3
1

∣∣∣ ≤ 1
16
.

This result is the best possible and the extremal function is g3 as given in (3.12). �

Theorem 4.6 If g ∈ BT cosh is of the form (1.1), then∣∣∣ξ4 − ξ
4
1

∣∣∣ ≤ 1
20
.

This inequality is sharp.
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Proof. From (4.5) and (4.8), we obtain

∣∣∣ξ4 − ξ
4
1

∣∣∣ =
1
40

∣∣∣∣∣∣ 3618373
23224320

τ4
1 +

19
36
τ2

2 + 2
(
103
192

)
τ1τ3 −

3
2

(
14861
25920

)
τ2

1τ2 − τ4

∣∣∣∣∣∣ .
=

1
40

∣∣∣∣∣µτ4
1 + λτ2

2 + 2ζτ1τ3 −
3
2
ςτ2

1τ2 − τ4

∣∣∣∣∣ , (4.17)

where
µ =

3618373
23224320

, λ =
19
36
, ζ =

103
192

, ς =
14861
25920

.

These constants satisfy λ ∈ (0, 1), ζ ∈ (0, 1), and

8λ (1 − λ)
[
(ζς − 2µ)2 + (ζ (λ + ζ) − ς)2

]
+ ζ (1 − ζ) (ς − 2λζ)2

≤ 4λζ2 (1 − ζ)2 (1 − λ) .

Hence, by Lemma 2.3 and (4.17), we deduce that∣∣∣ξ4 − ξ
4
1

∣∣∣ ≤ 1
20
.

This required inequality is sharp and determined by using (4.1), (4.4) and (3.9). �

Theorem 4.7 If g ∈ BT cosh has the form of (1.1), then∣∣∣∣D2,2

(
Gg/2

)∣∣∣∣ ≤ 1
256

.

This inequality is sharp.

Proof. Suppose that g ∈ BT cosh and gθ(z) = e−iθg
(
eiθz

)
with θ ∈ R. Since

∣∣∣∣D2,2

(
Ggθ/2

)∣∣∣∣ =
∣∣∣∣D2,2

(
Gg/2

)∣∣∣∣
for all θ ∈ R, we still assume that τ1 = τ ∈ [0, 2]. Putting (4.6), (4.7), and (4.8) into (4.10) with τ1 = τ,

we obtain

D2,2

(
Gg/2

)
=

1
1070176665600

(
4047343τ6 − 32414400τ4τ2 + 41973120τ3τ3 + 56996352τ2τ2

2

− 615444480τ2τ4 + 1068318720ττ2τ3 − 588349440τ3
2 + 1114767360τ2τ4

−1045094400τ2
3

)
.

Let r = 4 − τ2. Then, by (2.2), (2.3), and (2.4), we obtain

D2,2

(
Gg/2

)
=

1
1070176665600

{
−2237760τ3r

(
1 − |β|2

)
η − 73543680β3r3 + 278691840β3r2

+ 29030400τ3rβ
(
1 − |β|2

)
η + 29030400τ2rβη2

(
1 − |β|2

)
− 29030400τ2r

(
1 − |β|2

) (
1 − |η|2

)
κ + 23224320τβr2η

(
1 − |β|2

)
− 17418240τβ2r2

(
1 − |β|2

)
η − 278691840βr2

(
1 − |β|2

)
βη2

+ 278691840βr2
(
1 − |β|2

) (
1 − |η|2

)
κ − 261273600r2

(
1 − |β|2

)2
κ2

+ 8376480τ4rβ2 − 107424τ4βr + 8443008τ2β2r2 − 29030400rτ2β2
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−7257600τ4rβ3 − 81285120β3r2τ2 + 4354560β4r2τ2 + 2671τ6
}
.

It is observed that we can write D2,2

(
Gg/2

)
in the form of

D2,2

(
Gg/2

)
=

1
1070176665600

[
k1 (τ, β) + k2 (τ, β) η + k3 (τ, β) η2 + k4 (τ, β, η) κ

]
,

where β, η, κ ∈ D, and

k1 (τ, β) = 2671τ6 +
(
4 − τ2

) [(
4 − τ2

) (
8443008τ2β2 − 15482880β3 − 7741440τ2β3

+4354560τ2β4
)
− 29030400τ2β2 + 8376480τ4β2 − 107424τ4β − 7257600τ4β3

]
,

k2 (τ, β) = 60480
(
4 − τ2

) (
1 − |β|2

) [(
4 − τ2

) (
−288τβ2 + 384τβ

)
+ 480τ3β − 37τ3

]
,

k3 (τ, β) = 5806080
(
4 − τ2

) (
1 − |β|2

) [(
4 − τ2

) (
−3 |β|2 − 45

)
+ 5τ2β

]
,

k4 (τ, β, η) = 5806080
(
4 − τ2

) (
1 − |β|2

) (
1 − |η|2

) [
−5τ2 + 48β

(
4 − τ2

)]
.

Now, by using |β| = κ, |η| = y and utilizing the fact |κ| ≤ 1, we get∣∣∣∣D2,2

(
Gg/2

)∣∣∣∣ ≤ 1
1070176665600

[
|k1 (τ, β)| + |k2 (τ, β)| y + |k3 (τ, β)| y2 + |k4 (τ, β, η)|

]
.

≤
1

1070176665600
Λ (τ, κ, y) , (4.18)

where
Λ (τ, κ, y) = t1 (τ, κ) + t2 (τ, κ) y + t3 (τ, κ) y2 + t4 (τ, κ)

(
1 − y2

)
,

with

t1 (τ, κ) = 2671τ6 +
(
4 − τ2

) [(
4 − τ2

) (
8443008τ2κ2 + 15482880κ3 + 7741440τ2κ3

+4354560τ2κ4
)

+ 29030400τ2κ2 + 8376480τ4κ2 + 107424τ4κ + 7257600τ4κ3
]
,

t2 (τ, κ) = 60480
(
4 − τ2

) (
1 − κ2

) [(
4 − τ2

) (
288τκ2 + 384τκ

)
+ 480τ3κ + 37τ3

]
,

t3 (τ, κ) = 5806080
(
4 − τ2

) (
1 − κ2

) [(
4 − τ2

) (
3κ2 + 45

)
+ 5τ2κ

]
,

t4 (τ, κ) = 5806080
(
4 − τ2

) (
1 − κ2

) [
5τ2 + 48κ

(
4 − τ2

)]
.

Now, we have to maximize Λ in the closed cuboid Υ.
In view of

t3 (τ, κ) ≤ 5806080
(
4 − τ2

) (
1 − κ2

) [(
4 − τ2

) (
3κ2 + 45

)
+ 5τ2

]
=: u3 (τ, κ) (4.19)

for all (τ, κ) ∈ [0, 2] × [0, 1], by setting ui (τ, κ) = ti (τ, κ) (i = 1, 2, 4) and

Θ (τ, κ, y) = u1 (τ, κ) + u2 (τ, κ) y + u3 (τ, κ) y2 + u4 (τ, κ)
(
1 − y2

)
,

it is not hard to see that Λ (τ, κ, y) ≤ Θ (τ, κ, y) on Υ. In the following, we aim to discuss the maximum
value of Θ on Υ.
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By partially differentiating Θ with respect to y, we get

∂Θ

∂y
= u2 (τ, κ) + 2 [u3 (τ, κ) − u4 (τ, κ)] y.

Because u2 (τ, κ) ≥ 0 and

u3 (τ, κ) − u4 (τ, κ) = 5806080
(
4 − τ2

) (
1 − κ2

) [(
3κ2 − 48κ + 45

) (
4 − τ2

)]
≥ 0

on [0, 2] × [0, 1], we have ∂Θ
∂y ≥ 0 for all y ∈ [0, 1]. Hence, we obtain

Θ (τ, κ, y) ≤ Θ (τ, κ, 1) , (4.20)

where

Θ (τ, κ, 1) = u1 (τ, κ) + u2 (τ, κ) + u3 (τ, κ)

= 2671τ6 + 288(4 − τ2)
[
v4(τ)κ4 + v3(τ)κ3 + v2(τ)κ2 + v1(τ)κ + v0(τ)

]
=: V(τ, κ),

where

v4(τ) = 15120(4 − τ2)(τ2 − 4τ − 4), (4.21)
v3(τ) = −1680(τ4 + 12τ3 − 32τ2 + 192τ − 128), (4.22)
v2(τ) = −21(11τ4 + 3250τ3 − 45904τ2 − 11520τ + 161280), (4.23)
v1(τ) = τ(373τ3 + 20160τ2 + 322560), (4.24)
v0(τ) = 30(259τ3 − 26880τ2 + 120960). (4.25)

Taking the fact of v4(τ) ≤ 0 for all τ ∈ [0, 2], we obtain

V(τ, κ) ≤ 2671τ6 + 288(4 − τ2)
[
v3(τ)κ3 + v2(τ)κ2 + v1(τ)κ + v0(τ)

]
=: K(τ, κ). (4.26)

Now, we need to find the maximum value of K on [0, 2] × [0, 1]. For τ = 0, we have

K(0, κ) = 247726080κ2
(
κ −

63
4

)
+ 4180377600 ≤ 4180377600 (4.27)

for all κ ∈ [0, 1]. If τ = 2, it is calculated that K(2, κ) ≡ 170944 with κ ∈ [0, 1]. Hence, it is left to
discuss the case of (τ, κ) ∈ (0, 2) × (0, 1).

For the system of equations

∂K
∂τ

= 0 and
∂K
∂κ

= 0

with (τ, κ) ∈ (0, 2) × (0, 1), a numerical computation indicates that the approximate solutions are
(0, 0), (1.7758,−1.2237), (2.0405,−0.4933), (52.7638, 0.2085), (−212.4757, 0.2665),
(−2.0293, 0.3246), (−1.5447, 1.0839), (5.1393, 2.5129), (2, 2.1720), and (−2,−1.1906). It is found
that there are no critical points of K that lie in (0, 2) × (0, 1).
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From the above cases we conclude that

Λ (τ, κ, y) ≤ Θ (τ, κ, y) ≤ Θ (τ, κ, 1) = V (τ, κ) ≤ K (τ, κ) ≤ 4180377600

on [0, 2] × [0, 1] × [0, 1]. Using (4.18), we have∣∣∣∣D2,2

(
Gg/2

)∣∣∣∣ ≤ 1
1070176665600

Λ (τ, κ, y) ≤
4180377600

1070176665600
=

1
256
≈ 0.003906.

If g ∈ BT cosh, then the sharp bound for this second-order Hankel determinant is determined by
using (4.2), (4.3), (4.4), and (3.12). �

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

Acknowledgments

The authors would like to extend their sincere-appreciation to the Researchers Supporting Project
number (RSPD2024R802) King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

Prof. Dr. Nak Eun Cho is the Guest Editor of special issue “Geometric Function Theory and Special
Functions” for AIMS Mathematics. Prof. Dr. Nak Eun Cho was not involved in the editorial review
and the decision to publish this article.

The authors declare that they have no conflicts of interest.

References

1. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung
des Eintheitskreises vermiteln, Sitzungsberichte Preussische Akademie der Wissenschaften, 138
(1916), 940–955.
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