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1. Introduction

In mathematics, linear algebra is essential for resolving real-world issues. Any numerical approach
used to approximated differential equations leads to different matrices, and among them are structured,
multilevel, banded matrices, and matrix-sequences play an important role. At the beginning of the 20th
century, Otto Toeplitz (1881–1940), a German mathematician, introduced the notion of the Toeplitz
matrix and the Toeplitz operator. After the Fourier transformation was discovered, in order to determine
the spectral theory of the Toeplitz matrix associated with the Laurent operators L = (Φ j−i)i, j∈Z on
the Lebesgue space ł2(z), Otto Toeplitz employed the multiplication operation. This resulted in the
following:

Ψ(p) =
∑
j∈Z

Φ jei jp .

Stated otherwise, this defines the Toeplitz matrix of size n with a fixed entry along each diagonal as

Tn(Φ) =



Φ0 Φ−1 Φ−2 · · · · · · Φ−(n−1)

Φ1 Φ0 Φ−1
. . .

...

Φ1 Φ2
. . .

. . .
. . .

...
...

. . .
. . .

. . . Φ−1 Φ−2
...

. . . Φ1 Φ0 Φ−1

Φn−1 · · · · · · Φ2 Φ1 Φ0


. (1.1)

Grenander and Szego [4] state that the nth Toeplitz matrix generated by Φ, for a complex valued
Lebesgue integrable function Φ : [−π, π]→ C, is given by

Tn(Φ) =
[
Φ̂i− j

]n
i, j=1,

where the Fourier coefficients of Φ are denoted by the quantities Φ̂k, i.e.,

Φ̂k =
1

2π

∫ π

−π

Φ(Θ) e−ikΘdΘ, k ∈ Z.

The Toeplitz sequence created by Φ, also known as the generating function of {Tn(Φ)}n, is denoted
as {Tn(Φ)}n. The spectral properties of all the matrices Tn(Φ) where Φ is real-valued are well-
known, ranging from the eigenvalue localization to the Weyl sense asymptotic spectral distribution.
Specifically, if Φ is real-valued, Φ represents {Tn(Φ)} spectrally; see, for example, [18] and the
references therein for further details.

More specifically, any eigenvalue of Tn(Φ) with Φ being real-valued and not identically constant
falls in (mΦ,MΦ), where mΦ and MΦ represent the infimum and supremum of Φ, respectively. In the
event that Φ is constant, there is no problem; if Φ = m then Tn(Φ) = mIn, where In represents the
identity of size n. Therefore, Tn(Φ) is Hermitian positive definite if MΦ > 0 and Φ is non-negative
almost everywhere. The eigenvalues of banded symmetric Toeplitz (BST) matrices asymptotically
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expand when the generating symbol is a real-valued cosine trigonometry polynomial (RCTP) in the
form specified by Ekstrm et al. [7]

Ω(Θ) = Ω̂0 + 2
m∑

j=1

Ω̂ j cos( jΘ), Ω̂0, Ω̂1, . . . , Ω̂m ∈ R, m ∈ N. (1.2)

Over the interval [0, π], the RCTP is either monotonically increasing or decreasing. The n × n real
banded symmetric Toeplitz (BST) matrix is generated by Ω. We focus on the following assumptions
in this paper: Tn(Ω), Tn(Φ) are both real symmetric Toeplitz matrices, given

Ω(Θ) = Ω̂0 + 2
m1∑
j=1

Ω̂ j cos( jΘ), Ω̂0, Ω̂1, . . . , Ω̂m1 ∈ R, m1 ∈ N.

Φ(Θ) = Φ̂0 + 2
m2∑
j=1

Φ̂ j cos( jΘ), Φ̂0, Φ̂1, . . . , Φ̂m2 ∈ R, m2 ∈ N.

• Tn(Φ) is a positive definite matrix.
• We take Pn(Ω,Φ) = T−1

n (Ω)Tn(Φ) as the ‘preconditioned’ matrix and define r = Φ/Ω.

The Toeplitz matrix of order n × n with bandwidth 2m + 1 was generated by the symbol p ∈ {Ω,Φ},
where m ∈ {m1,m2} (notice that m = m1 when p = Ω and m = m2 when p = Φ). Consequently, the
matrix is

Tn(p) =



p̂0 p̂1 · · · p̂m

p̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

p̂m
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

p̂m · · · p̂1 p̂0 p̂1 · · · p̂m
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . p̂m

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . p̂1

p̂m · · · p̂1 p̂0



.

The quick solution of large Toeplitz linear systems requires matrices of the form Pn(Ω,Φ) (in
relation to the preconditioned conjugate gradient method). Their spectral characteristics have been
thoroughly investigated. To be more precise, if r = m, then Pn(Ω,Φ) = rIn; on the other hand, all
eigenvalues of Pn(Ω,Φ) belong to (mr,Mr) if mr < Mr (see, for example, [21]) and r = Φ/Ω is the
Weyl sense spectral distribution for the complete sequence {Pn(Ω,Φ)}n [24]. If a function increases or
decreases over the interval [0, π], it is considered monotone in our context. Assuming that r = Φ/Ω
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is monotone, we experimentally demonstrate in this article that the following asymptotic expansion
holds [5] for every n, every integer α ≥ 0, and every k = 1, . . . , n.

υk(Pn(Ω,Φ) = r(Θk,n) +

α∑
k=1

ζ j(Θk,n)Λ j + εk,n,α, (1.3)

where

• eigenvalues of Pn(Ω,Φ) are arranged in either non-increasing or non-decreasing order, contingent
on whether r is increasing or decreasing;
• a series of functions from [0, π] to R that depends entirely on r is denoted as {ζ j} j=1,2,...;
• Λ = 1

n+1 and Θk,n = kπ
n+1 = kπΛ;

• the remainder (error) is ε j,n,α = O(Λα+1). This results in an inequality for some constant Cα that
depends only on α and r: |εk,n,α| ≤ CαΛ

α+1.

If the RCTP Φ is monotone and satisfies other conditions, like Φ′(Θ) , 0 and Φ′′(Θ) , 0 for Θ ∈

{0, π}, the result is proven in [14,16,17]. This is the pure Toeplitz case, meaning that Pn(Ω,Φ) = Tn(Φ)
and r = Φ are equivalent for Ω = 1. Particularly interesting are

Ωq(Θ) = (2 − 2 cos Θ)q, q = 1, 2, . . . (1.4)

that appear when discretizing differential equations. Sadly, if q ≥ 2, the condition that Φ′′(0) , 0 is
not satisfied. Even in this “degenerate case” the higher order approximation (1.3) holds, according to
numerical evidence in [22]. Here, given the preconditioned matrices Pn(Ω,Φ), we numerically prove
the same. Theoretically, the demonstration of the aforementioned conjecture when α = 0 complements
the numerical testing.

The authors of [22] utilized the asymptotic expansion (1.3) to approximate υk(Tn(Ω)) for very large
n, given that the values for fairly sized n1, . . . , ns with Θk1,n1 = · · · = Θks,ns = Θk,n, s ≥ 2 are available.
This paper’s second goal is to implement this theory and provide evidence for it through numerical
experiments and a suitable spline error analysis. Specifically, we provide a method that can compute
υk(Pn(Ω,Φ) with low computational cost and high degree of accuracy. The method is comparable to the
extrapolation process used in Romberg integration to produce high-precision integral estimates from
a small number of imprecise trapezoidal approximations. This is where the Euler-Maclaurin formula
and the asymptotic expansion (1.3) come into play.

2. Algorithm

Throughout the entire work, we make use of the following parameters: Step size Λ = 1/(n + 1),
for certain positive integers n ∈ N, and the grid points Θ = kπΛ, k = 1, 2, 3 · · · , n. We make some
assumptions and employ expansion (1.3) throughout this section:

• The RCTPs are Ω, Φ, r, and they increase monotonically.
• Suppose that α and n(1), n ∈ N, are fixed parameters.
• Either n j = m j−1(n(1) + 1) − 1 or n j are selected at random.
• Give definitions to the PBST matrix sequences Pn j(Ω,Φ).

AIMS Mathematics Volume 9, Issue 6, 15782–15795.



15786

• Determine the eigenvalues of each and every PBST matrix, Pn j(Ω,Φ).

This algorithm is intended to compute the eigenvalues of the Pn(Ω,Φ) when n is very large, which are
very difficult to compute by the standard eigensolver (e.g., MATLAB function, ‘eig’). Therefore, in
order to expedite computation, we compute the eigenvalues of thePn1 , Pn2 , · · · ,Pns , for small n j by the
eigensolver. Using these eigenvalues of the small size PBST matrices, we can evaluate the eigenvalues
of the large size PBST matrix.

Interpolation and extrapolation

When Θ j,n1 = Θ j,ns is fixed, we can compute the eigenvalues of all Pn j(Ω,Φ) and set them in Table 1
against Λ j as

Table 1. Eigenvalues of Pn j matrices according to s.

Λ1 υ1,1 υ2,1 · · · υn1,1

Λ2 υ1,2 υ2,2 · · · υn2,2

Λ3 υ1,3 υ2,3 · · · υn3,3
...

...
... · · ·

...

Λs υ1,s υ2,s · · · υns,s

Every collection of eigenvalues needs to have a grid attached to it. In order to define the grid,
we define Θn j,k = k Λ j π for k = 1, 2, 3, · · · , n j, and Λ j = 1

n j+1 . For k = 1, 2, 3, · · · nβ, the Θ-grid
of the Pnβ(Ω,Φ) is Θnβ, j = j Λ π. For j = 1, 2, 3, · · · , s, the number of eigenvalues in Pnβ(Ω,Φ) is
significantly more than that in Pn j(Ω,Φ). For each set of eigenvalues of size n j, j = 1, 2, 3, · · · , s
attached to Θ-grid Θn j,k, k = 1, 2, 3, · · · , nβ, we interpolate and extrapolate the nβ-eigenvalues before
doing the extrapolation k = n j, · · · , 1, 2, 3. We apply a higher-order spline-curve fitting for all Θ-grids
in order to attain the higher order of precision in the interpolation and extrapolation of eigenvalues.
For the interior Θ-grid node, the suggested higher-order spline fitting performs well; nevertheless,
performance degrades toward the grid’s edge. We apply lower-order shape-preserving spline curve
fitting to solve this issue.

After all Θ-grids have been interpolated and extrapolated, we perform one last extrapolation to
obtain the eigenvalues of Pnβ(Ω,Φ). We have all of the interpolated and extrapolated eigenvalues of
the PBST matrices Pn j(Ω,Φ). We can now compute the ζ̃k(Θn j, j) using these eigenvalues. We extend
the expansion (1.3) for α = 4 in order to achieve this.

υk(Pn(Ω,Φ)) = r(Θk,n) + ζ1(Θk,n) h + ζ2(Θk,n) Λ2 + ζ3(Θk,n) Λ3 + ζ4(Θk,n) Λ4 + εk,n,4,

εk,n,0 = υk(Pn(Ω,Φ)) − r(Θk,n) = ζ1(Θk,n) h + ζ2(Θk,n) Λ2 + ζ3(Θk,n) Λ3 + ζ4(Θk,n) Λ4 + εk,n,4 .
(2.1)

Set n j, j ∈ {1, 2, 3, 4} for any positive integers m and n j, then satisfy n j = m j−1(n(1) + 1) − 1 or pick n j

randomly. The expansion (2.1) for the four matrices of n j is as follows:

εk1,n1,0 = ζ1(Θk1,n1) Λ1 + ζ2(Θk1,n1) Λ2
1 + ζ3(Θk1,n1) Λ3

1 + ζ4(Θk1,n1) Λ4
1 + εk1,n1,4,

εk2,n2,0 = ζ1(Θk2,n2) Λ2 + ζ2(Θk2,n2) Λ2
2 + ζ3(Θk2,n1) Λ3

2 + ζ4(Θk2,n1) Λ4
2 + εk2,n2,4,

εk3,n3,0 = ζ1(Θk3,n3) Λ3 + ζ2(Θk3,n3) Λ2
3 + ζ3(Θk3,n1) Λ3

3 + ζ4(Θk3,n1) Λ4
3 + εk3,n3,4,

εk4,n4,0 = ζ1(Θk4,n4) Λ4 + ζ2(Θk4,n4) Λ2
4 + ζ3(Θk4,n1) Λ3

4 + ζ4(Θk4,n1) Λ4
4 + εk4,n4,4 .

(2.2)
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Observe that Θki,ni = Θk1,n1 = Θ̄ for k1 ∈ {1, 2, · · · , n1} where Λi = 1
ni+1 . The numerical estimate of

ζ j(Θ̄) for j ∈ {1, 2, 3, 4} is of interest to us. The set of Eq (2.2) becomes

εk1,n1,0 = ζ̃1(Θ̄) Λ1 + ζ̃2(Θ̄) Λ2
1 + ζ̃3(Θ̄) Λ3

1 + ζ̃4(Θ̄) Λ1

εk2,n2,0 = ζ̃1(Θ̄) Λ2 + ζ̃2(Θ̄) Λ2
2 + ζ̃3(Θ̄) Λ3

2 + ζ̃4(Θ̄) Λ2

εk3,n3,0 = ζ̃1(Θ̄) Λ3 + ζ̃2(Θ̄) Λ2
3 + ζ̃3(Θ̄) Λ3

3 + ζ̃4(Θ̄) Λ3

εk4,n4,0 = ζ̃1(Θ̄) Λ4 + ζ̃2(Θ̄) Λ2
4 + ζ̃3(Θ̄) Λ3

4 + ζ̃4(Θ̄) Λ4 .

(2.3)

For k1 ∈ 1, 2, · · · , n1, we solve the aforementioned system of linear equations to obtain ζ̃k(Θ̄). The big
size nβ matrix’s eigenvalues are estimated using the computed ζ̃ j by utilizing

υ̃k(Pnβ(Ω,Φ)) = r(Θk,nβ) + Λnβ ζ̃ .

References for the error bounds of ζk in the asymptotic expansion are provided in [5].

3. Description of the algorithm

Finding all of the eigenvalues of the large-size PBST matrices is the primary goal of the numerical
algorithm. Using conventional eigenvalue solvers such as the ‘eig’ function in MATLAB, we can
obtain the spectrum information of smaller PBST matrices. The generating symbol is the quotient of
RCTPs since we are working with PBST matrices. In order for the suggested technique to achieve
high accuracy in the numerically computed eigenvalues, the generating symbol’s monotonicity is
essential. The algorithm remains functional even when dealing with non-monotonically generated
symbols; however, the non-monotonic part’s numerical accuracy suffers as a result.

Let {Pn(Ω,Φ) = T−1
n (Φ)Tn(Ω)} be a sequence of preconditioned symmetric banded Toeplitz

matrices. For k = n1, n2, n3, · · · ns, we select a collection of Pk(Ω,Φ). The total number of small
size Pk(Ω,Φ) is denoted by s in this case. Furthermore, the n j are ordered as follows: n1 < n2 < n3 <

· · · < ns. We do not impose any stringent requirements on selecting n j’s, but careful selection can raise
the accuracy of our numerical findings. We might calculate the eigenvalues of Pn j(Ω,Φ) for each n j.
For i = 1, 2, 3, · · · , s, we have s-sets of eigenvalues with sizes n j. Assume that nβ is a huge number
and that we are interested in calculating the spectrum of a large size Pnβ(Ω,Φ). Every collection of
eigenvalues needs to have a grid attached to it. In order to define the grid, we define Θn j,k = k Λ j π for
k = 1, 2, 3, · · · , n j, and Λ j = 1

n j+1 . For k = 1, 2, 3, · · · nβ, the Θ-grid of the Pnβ(Ω,Φ) is Θnβ, j = j Λ π.
For j = 1, 2, 3, · · · , s, the number of eigenvalues in Pnβ(Ω,Φ) is significantly more than that in

Pn j(Ω,Φ). For each set of eigenvalues of size n j, j = 1, 2, 3, · · · , s attached to Θ-grid Θn j,k, k =

1, 2, 3, · · · , nβ, we interpolate and extrapolate the nβ-eigenvalues before doing the extrapolation. We
employ higher-order spline-curve fitting across all Θ-grids to achieve greater precision in interpolating
and extrapolating eigenvalues. For nodes within the Θ-grid, this advanced spline fitting shows
commendable performance; however, its efficacy diminishes near the grid’s boundaries. To address
this, we resort to lower-order, shape-preserving spline fitting. Once interpolation and extrapolation
are completed for all Θ-grids, a final extrapolation step is undertaken to ascertain the eigenvalues of
Pnβ(Ω,Φ).

It is worth mentioning that Bogoya et al. [6] recently published an article introducing a new
algorithm that can accurately interpolate and extrapolate the spectrum of preconditioned Toeplitz
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matrix sequences at machine level accuracy. The approach described by Bogoya et al. [6] differs
from the current idea, primarily in that it requires the generating symbol to be directly inverted.
Alternatively, one can solve a nonlinear equation to get the inversely projected values; however, our
current methodology does not require this step.

An algorithm for extracting particular eigenvalues from huge preconditioned matrices generated
from a sequence of preconditioned Toeplitz matrices was published by Fayyaz et al. [5]. Our current
work is novel since we can extrapolate and interpolate the whole spectrum. One limitation of our
strategy is that it necessitates the use of two different kinds of smoothing-spline methods, particularly
in proximity to boundaries where a shape-preserving smoothing-spline approach is required.

4. Numerical testing

Here we perform numerical testing on a collection of problems taken from the paper of Ekström
et al. [7]. We assume Θ ∈ [0, π] and Ω(Θ) > 0, ∀Θ ∈ [0, π], Φ′′(0) , 0, for all of our numerical testing.

Example 1. Consider the monotonic rising functions Ω, Φ, and r, which are defined as

Ω(Θ) = 1,
Φ(Θ) = 6 − 8 cos(Θ) + 2 cos(2Θ) ,

r(Θ) =
Φ(Θ)
Ω(Θ)

= 6 − 8 cos(Θ) + 2 cos(2Θ) .

For n = 5000, n(1) = 10, and s = 7, we wish to approximate the eigenvalues of the υn = Tn(Ω)−1TnΦ =

Tn(r). The error between eigenvalues υn and an approximated eigenvalues υ̃n is displayed in Figure 1,
when compared to Θ j,n, j = 1, 2, 3, · · · , n. The graph illustrates the compression between two
algorithms, the first of which presented in [7]. Compared to the Erik Algorithm [7], our proposed
technique is faster and more accurate, as shown by the Figure 1.

Figure 1. log10(Error) , in the case n = 5000, n(1) = 10, and s = 7 for Example 1.
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Example 2. Let the monotonic rising functions Ω, Φ, and r be defined as

Ω(Θ) = 1,
Φ(Θ) = 6 − 8 cos(Θ) + 2 cos(2Θ),

r(Θ) =
Φ(Θ)
Ω(Θ)

= 6 − 8 cos(Θ) + 2 cos(2Θ) .

For n = 10000, n(1) = 10, and s = 7, we wish to approximate the eigenvalues of the υn =

Tn(Ω)−1TnΦ = Tn(r). The error between the approximated eigenvalues υ̃n and the eigenvalues υn is
displayed in Figure 2 in relation to Θ j,n, j = 1, 2, 3, · · · , n. The graph indicates that our algorithm’s
accuracy increases as the target matrix’s size increases, with values above machine zero.

Figure 2. log10(Error) , in the case n = 10000, n(1) = 10, and s = 7 for Example 2.

Example 3. Let the monotonic rising functions Ω, Φ, and r be described as

Ω(Θ) = 1,

Φ(Θ) =
1
4
−

1
2

cos(Θ) +
1
4

cos(2Θ) −
1
12

cos(3Θ),

r(Θ) =
Φ(Θ)
Ω(Θ)

=
1
4
−

1
2

cos(Θ) +
1
4

cos(2Θ) −
1

12
cos(3Θ) ,

For n = 10000, n(1) = 10, and s = 5, we wish to approximate the eigenvalues of the υn =

Tn(Ω)−1TnΦ = Tn(r). The error between the eigenvalues υn and the approximated eigenvalues υ̃n

versus Θ j,n, j = 1, 2, 3, · · · , n, is shown in Figure 3. When we increase the value of s, it means the
sequence of the PBST matrices increases. We can observe this immediately.
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Figure 3. log10(Error) , in the case n = 10000, n(1) = 10, and s = 5 for Example 3.

Example 4. Let the monotonic rising functions Ω, Φ, and r be described as

Ω(Θ) = 1,

Φ(Θ) =
301
400

+
1
5

cos(Θ) +
1
5

cos(2Θ) +
1

10
cos(3Θ) −

1
20

cos(4Θ) +
1

400
cos(6Θ),

r(Θ) =
Φ(Θ)
Ω(Θ)

=
301
400

+
1
5

cos(Θ) +
1
5

cos(2Θ) +
1

10
cos(3Θ) −

1
20

cos(4Θ) +
1

400
cos(6Θ) .

Next, the eigenvalues of υn = Tn(Ω)−1TnΦ = Tn(r) are approximated for n = 10000, n(1) = 10, and
s = 7. The error between the eigenvalues υn and the approximated eigenvalues υ̃n versus Θ j,n, j =

1, 2, 3, · · · , n, is virtually minimum from Example 4 in [7], as we can see in Figure 4. Our algorithm
errors are quickly evaluated and range from 10−9 to over 10−16.

Figure 4. log10(Error) , in the case n = 10000, n(1) = 10, and s = 7 for Example 4.
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Example 5. Consider the monotonic rising functions Ω, Φ, and r, which are defined as

Ω(Θ) = 1,

Φ(Θ) =
301
400

+
1
5

cos(Θ) +
1
5

cos(2Θ) +
1

10
cos(3Θ) −

1
20

cos(4Θ) +
1

400
cos(6Θ),

r(Θ) =
Φ(Θ)
Ω(Θ)

=
301
400

+
1
5

cos(Θ) +
1
5

cos(2Θ) +
1

10
cos(3Θ) −

1
20

cos(4Θ) +
1

400
cos(6Θ) .

We wish to approximate the eigenvalues of the υn = Tn(Ω)−1TnΦ = Tn(r) for n = 10000, n(1) = 25, and
s = 7. The error between the estimated eigenvalues υ̃n and the eigenvalues υn is displayed in Figure 5
in relation to Θ j,n, j = 1, 2, 3, · · · , n. The lowest error is obtained for Θ j,n when j ∈ [500, 4500].

Figure 5. log10(Error) , in the case n = 10000, n(1) = 25, and s = 7 for Example 5.

Example 6. Let the monotonic rising functions Ω, Φ, and r be defined as

Ω(Θ) = 3 + 2 cos(Θ) ,
Φ(Θ) = 2 − cos(Θ) − cos(2Θ) ,

r(Θ) =
Ω(Θ)
Φ(Θ)

=
2 − cos(Θ) − cos(2Θ)

3 + 2 cos(Θ)
.

We wish to approximate the eigenvalues of the υn = Tn(Ω)−1TnΦ = Tn(r) where r = Φ/Ω for n =

5000, n(1) = 50, and s = 4. The error between the estimated eigenvalues υ̃n and the eigenvalues υn is
displayed in Figure 6 in relation to Θ j,n, j = 1, 2, 3, · · · , n. The lowest error is obtained for Θ j,n when
j ∈ [500, 4500]. The discrepancy between the eigenvalues can be observed by varying the parameters
and producing functions that are more adequate for all instances, as demonstrated in Examples 1 to 5
when Ω(Θ) is similar. These codes are found in [7]. As we can see in Figure 6, there are more errors
than machine zeros in case 6, where Ω(Θ) is not identical. When both Φ(Θ) and Ω(Θ) are not equal,
our algorithm performed most accurately.
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Figure 6. log10(Error) , in the case n = 5000, n(1) = 50, and s = 4 for Example 6.

Table 2. Example 6. CPU time , in the case Ω(Θ) = 3 + 2 cos(Θ), Φ(Θ) = 2 − cos(Θ) −
cos(2Θ).

Parameters Erik Algorithm [7](Time) Proposed Algorithm(Time)
s = 4, n = 5000, n(1) = 50 13.3093 0.8154

s = 4, n = 5000, n(1) = 100 12.8770 1.6483
s = 4, n = 5000, n(1) = 200 18.8837 3.9735
s = 4, n = 5000, n(1) = 400 25.7752 14.0923

MATLAB’s eig function 44.9260 41.1051

Example 7. Let the monotonic rising functions Ω, Φ, and r be defined as

Ω(Θ) = 1208 + 1191 cos(Θ) + 120 cos(2Θ) + cos(3Θ) ,
Φ(Θ) = 40 − 15 cos(Θ) − 24 cos(2Θ) − cos(3Θ) ,

r(Θ) =
Ω(Θ)
Φ(Θ)

=
40 − 15 cos(Θ) − 24 cos(2Θ) − cos(3Θ)

1208 + 1191 cos(Θ) + 120 cos(2Θ) + cos(3Θ)
.

We wish to approximate the eigenvalues of the υn = Tn(Ω)−1TnΦ = Tn(r) for n = 5000, n(1) = 50, and
s = 4. In Figure 7, the error between the eigenvalues υn and an approximated eigenvalues υ̃n versus
Θnβ, j, j = 1, 2, 3, · · · , nβ shows the minimum error inside of the boundary, and the maximum near the
boundary, but we achieve the minimum error, more specifically the machine zero, demonstrating the
high accuracy and speed of our proposed algorithm in comparison to that of Ekström [7].
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Figure 7. log10(Error) , in the case n = 5000, n(1) = 50, and s = 4 for Example 7.

5. Conclusions

In this work, we present an algorithm to calculate the eigenvalues of matrices extracted from a
sequence of large-scale Toeplitz matrices that are preconditioned banded symmetric (PBST). When
compared to existing eigenvalue solvers, computing the eigenvalues of large-size PBST matrices
should be more economical. We collect all the spectrum information of small-size Toeplitz PBST
matrices while taking the algorithm’s computing cost into consideration. The reciprocal sizes of
smaller PBST matrices can be used to sort their spectral information. Depending on the size of the
PBST matrix, the monotonic spectrum arrangement can be arranged in bijection with an appropriate
grid. For the large-size grid connected to the large-size PBST, we are able to interpolate and extrapolate
the eigenvalue of the small-size PBST. Now, all of the small PBSTs have the same size spectrum.
Finally, we use the extrapolation method—in our case, higher-order spline fitting—to compute the
spectrum of the large-size PBST.
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