Research article

The altered Hermite matrix: implications and ramifications

  • Received: 27 June 2024 Revised: 13 August 2024 Accepted: 19 August 2024 Published: 30 August 2024
  • MSC : 11C08, 05A10, 11B83, 15A23, 15B05

  • Matrix theory is essential for addressing practical problems and executing computational tasks. Matrices related to Hermite polynomials are essential due to their applications in quantum mechanics, numerical analysis, probability, and signal processing. Their orthogonality, recurrence relations, and spectral properties make them a valuable tool for both theoretical research and practical applications. From a different perspective, we introduced a variant of the Hermite matrix that incorporates triple factorials and demonstrated that this matrix satisfies various properties. By utilizing effective matrix algebra techniques, various algebraic properties of this matrix have been determined, including the product formula, inverse matrix and eigenvalues. Additionally, we extended this matrix to a more generalized form and derived several identities.

    Citation: Gonca Kizilaslan. The altered Hermite matrix: implications and ramifications[J]. AIMS Mathematics, 2024, 9(9): 25360-25375. doi: 10.3934/math.20241238

    Related Papers:

  • Matrix theory is essential for addressing practical problems and executing computational tasks. Matrices related to Hermite polynomials are essential due to their applications in quantum mechanics, numerical analysis, probability, and signal processing. Their orthogonality, recurrence relations, and spectral properties make them a valuable tool for both theoretical research and practical applications. From a different perspective, we introduced a variant of the Hermite matrix that incorporates triple factorials and demonstrated that this matrix satisfies various properties. By utilizing effective matrix algebra techniques, various algebraic properties of this matrix have been determined, including the product formula, inverse matrix and eigenvalues. Additionally, we extended this matrix to a more generalized form and derived several identities.



    加载中


    [1] P. Agarwal, R. Goyal, T. Kim, S. Momani, Certain extended hypergeometric matrix functions of two or three variables, Adv. Stud. Contemp. Math., 33 (2023), 95–106.
    [2] R. Aggarwala, M. P. Lamoureux, Inverting the Pascal matrix plus one, Amer. Math. Montly, 109 (2002), 371–377. https://doi.org/10.1080/00029890.2002.11920898 doi: 10.1080/00029890.2002.11920898
    [3] I. Akkus, G. Kizilaslan, Generalization of a statistical matrix and its factorization, Commun. Stat.-Theory Meth., 50 (2021), 963–978. https://doi.org/10.1080/03610926.2019.1645854 doi: 10.1080/03610926.2019.1645854
    [4] I. Akkus, G. Kizilaslan, L. Verde-Star, A unified approach to generalized Pascal-like matrices: $q$-analysis, Linear Algebra Appl., 673 (2023), 138–159. https://doi.org/10.1016/j.laa.2023.05.011 doi: 10.1016/j.laa.2023.05.011
    [5] M. Bayat, H. Teimoori, The linear algebra of the generalized Pascal functional matrix, Linear Algebra Appl., 295 (1999), 81–89. https://doi.org/10.1016/S0024-3795(99)00062-2 doi: 10.1016/S0024-3795(99)00062-2
    [6] M. Bayat, H. Teimoori, Pascal $k$-eliminated functional matrix and its property, Linear Algebra Appl., 308 (2000), 65–75. https://doi.org/10.1016/S0024-3795(99)00266-9 doi: 10.1016/S0024-3795(99)00266-9
    [7] R. Brawer, Potenzen der Pascalmatrix und eine identität der kombinatorik, Elem. Math., 45 (1990), 107–110.
    [8] R. Brawer, M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl., 174 (1992), 13–23. https://doi.org/10.1016/0024-3795(92)90038-C doi: 10.1016/0024-3795(92)90038-C
    [9] G. S. Call, D. J. Velleman, Pascal's matrices, Amer. Math. Monthly, 100 (1993), 372–376. https://doi.org/10.1080/00029890.1993.11990415
    [10] D. Callan, A combinatorial survey of identities for the double factorial, preprint paper, 2009. https://doi.org/10.48550/arXiv.0906.1317
    [11] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88.
    [12] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33.
    [13] A. Edelman, G. Strang, Pascal matrices, Amer. Math. Monthly, 111 (2004), 189–197. https://doi.org/10.1080/00029890.2004.11920065
    [14] T. Ernst, Faktorisierungen von $q-$Pascalmatrizen (Factorizations of $q-$Pascal matrices), Algebras Groups Geom., 31 (2014), 387–405.
    [15] T. Ernst, Factorizations for $q$-Pascal matrices of two variables, Spec. Matrices, 3 (2015), 207–213. https://doi.org/10.1515/spma-2015-0020 doi: 10.1515/spma-2015-0020
    [16] C. Fonseca, C. Kizilates, N. Terzioglu, A second-order difference equation with sign-alternating coefficients, Kuwait J. Sci., 50 (2023). https://doi.org/10.48129/kjs.20425
    [17] C. Fonseca, C. Kizilates, N. Terzioglu, A new generalization of min and max matrices and their reciprocals counterparts, Filomat, 38 (2024), 421–435.
    [18] M. Hanada, Double Factorial Binomial Coefficients, Diss. Wellesley College, 2021.
    [19] M. A. Khan, G. S. Abukhammash, On Hermite polynomials of two variables suggested by S.F. Ragab's Laguerre polynomials of two variables, Bulletin Cal. Math. Soc., 90 (1998), 61–76.
    [20] C. Kızılateş, N. Terzioglu, On $r$-min and $r$-max matrices, J. Appl. Math. Comput., 68 (2022), 4559–4588. https://doi.org/10.1007/s12190-022-01717-y doi: 10.1007/s12190-022-01717-y
    [21] D. S. Kim, T. Kim, A matrix approach to some identities involving Sheffer polynomial sequences, Appl. Math. Comput., 253 (2015), 83–101. https://doi.org/10.1016/j.amc.2014.12.048 doi: 10.1016/j.amc.2014.12.048
    [22] T. Kim, D. S. Kim, On some degenerate differential and degenerate difference operators, Russ. J. Math. Phys., 29 (2022), 37–46. https://doi.org/10.1134/S1061920822010046 doi: 10.1134/S1061920822010046
    [23] T. Kim, D. San Kim, L. C. Jang, H. Lee, H. Kim, Representations of degenerate Hermite polynomials, Adv. Appl. Math., 139 (2022), 102359. https://doi.org/10.1016/j.aam.2022.102359 doi: 10.1016/j.aam.2022.102359
    [24] T. Kim, D. San Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/S106192084010072 doi: 10.1134/S106192084010072
    [25] T. Kim, D. San Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535 doi: 10.1016/j.aam.2023.102535
    [26] G. Kizilaslan, Pascal-like matrix with double factorial binomial coefficients, Ind. J. Pure Appl. Math., 2023. https://doi.org/10.1007/s13226-023-00496-x
    [27] G. Kizilaslan, The linear algebra of a generalized Tribonacci matrix, Commun. Faculty Sci. Uni. Ankara Ser. A1 Math. Stat., 72 (2023), 169–181. https://doi.org/10.31801/cfsuasmas.1052686 doi: 10.31801/cfsuasmas.1052686
    [28] B. Kurt, Y. Simsek, Frobenius-Euler type polynomials related to Hermite-Bernoulli polyomials, AIP Conf. Proc., 1389 (2011), 385–388. https://doi.org/10.1063/1.3636743 doi: 10.1063/1.3636743
    [29] Y. Ma, T. Kim, H. Lee, D. S. Kim, Some identities of fully degenerate dowling and fully degenerate Bell polynomials arising from $\lambda$-umbral calculus, Fractals, 30 (2022), 2240257. https://doi.org/10.1142/S0218348X22402575 doi: 10.1142/S0218348X22402575
    [30] W. Ramírez, D. Bedoya, A. Urieles, C. Cesarano, M. Ortega, New $U$-Bernoulli, $U$-Euler and $U$-Genocchi polynomials and their matrice, Carpathian Math. Publ., 15 (2023), 449–467.
    [31] W. Ramírez, A. Urieles, M. Riyasat, M. J. Ortega, L. Siado, A new extension of generalized Pascal-type matrix and their representations via Riordan matrix, Bol. Soc. Mat. Mex., 30 (2024), 41. https://doi.org/10.1007/s40590-024-00609-4 doi: 10.1007/s40590-024-00609-4
    [32] B. Shi, C. Kızılateş, A new generalization of the Frank matrix and its some properties, Comput. Appl. Math., 43 (2024), 19. https://doi.org/10.1007/s40314-023-02524-2 doi: 10.1007/s40314-023-02524-2
    [33] B. Shi, C. Kızılateş, On linear algebra of $r$-Hankel and $r$-Toeplitz matrices with geometric sequence, J. Appl. Math. Comput., 2024. https://doi.org/10.1007/s12190-024-02151-y
    [34] M. Spivey, A. Zimmer, Symmetric polynomials, Pascal matrices and Stirling matrices, Linear Algebra Appl., 428 (2008), 1127–1134. https://doi.org/10.1016/j.laa.2007.09.014 doi: 10.1016/j.laa.2007.09.014
    [35] J. E. Strum, Binomial matrices, Two-year College Math. J., 8 (1977), 260–266.
    [36] A. Urieles, W. Ramírez, R. Herrera, M. J. Ortega, New family of Bernoulli-type polynomials and some application, Dolom. Res. Notes Approx., 16 (2023), 20–30.
    [37] A. Urieles, W. Ramírez, L. C. P. Ha, M. J. Ortegac, J. Arenas-Penaloza, On $F$-Frobenius-Euler polynomials and their matrix approach, J. Math. Computer Sci., 32 (2024), 377–386. https://doi.org/10.22436/jmcs.032.04.07 doi: 10.22436/jmcs.032.04.07
    [38] L. Verde-Star, Interpolation and combinatorial functions, Stud. Appl. Math., 79 (1988), 65–92. https://doi.org/10.1002/sapm198879165 doi: 10.1002/sapm198879165
    [39] L. Verde-Star, Groups of generalized Pascal matrices, Linear Algebra Appl., 382 (2004), 179–194. https://doi.org/10.1016/j.laa.2003.12.015 doi: 10.1016/j.laa.2003.12.015
    [40] L. Verde-Star, Infinite triangular matrices, $q$-Pascal matrices, and determinantal representations, Linear Algebra Appl., 434 (2011), 307–318. https://doi.org/10.1016/j.laa.2010.08.022 doi: 10.1016/j.laa.2010.08.022
    [41] S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 840. https://doi.org/10.3390/sym15040840 doi: 10.3390/sym15040840
    [42] Y. Yang, C. Micek, Generalized Pascal functional matrix and its applications, Linear Algebra Appl., 423 (2007), 230–245. https://doi.org/10.1016/j.laa.2006.12.014 doi: 10.1016/j.laa.2006.12.014
    [43] M. Zayed, S. A. Wani, G. I. Oros, W. Ramírez, A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators, AIMS Math., 9 (2024), 16297–16312. https://doi.org/10.3934/math.2024789 doi: 10.3934/math.2024789
    [44] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 250 (1997), 51–60.
    [45] Z. Zhang, M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl., 271 (1998), 169–177. https://doi.org/10.1016/S0024-3795(97)00266-8 doi: 10.1016/S0024-3795(97)00266-8
    [46] Z. Zhang, X. Wang, A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math., 155 (2007), 2371–2376. https://doi.org/10.1016/j.dam.2007.06.024 doi: 10.1016/j.dam.2007.06.024
    [47] X. Zhao, T. Wang, The algebraic properties of the generalized Pascal functional matrices associated with the exponential families, Linear Algebra Appl., 318 (2000), 45–52. https://doi.org/10.1016/S0024-3795(00)00132-4 doi: 10.1016/S0024-3795(00)00132-4
    [48] D. Y. Zheng, I. Akkus, G. Kizilaslan, The linear algebra of a Pascal-like matrix, Linear Multil Algebra, 70 (2022), 2629–2641. https://doi.org/10.1080/03081087.2020.1809619 doi: 10.1080/03081087.2020.1809619
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(604) PDF downloads(113) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog