Research article

Prime decomposition of quadratic matrix polynomials

  • Received: 27 April 2021 Accepted: 30 June 2021 Published: 05 July 2021
  • MSC : 15A23, 15A24, 34A05

  • We study the prime decomposition of a quadratic monic matrix polynomial. From the prime decomposition of a quadratic matrix polynomial, we obtain a formula of the general solution to the corresponding second-order differential equation. For a quadratic matrix polynomial with pairwise commuting coefficients, we get a sufficient condition for the existence of a prime decomposition.

    Citation: Yunbo Tian, Sheng Chen. Prime decomposition of quadratic matrix polynomials[J]. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576

    Related Papers:

  • We study the prime decomposition of a quadratic monic matrix polynomial. From the prime decomposition of a quadratic matrix polynomial, we obtain a formula of the general solution to the corresponding second-order differential equation. For a quadratic matrix polynomial with pairwise commuting coefficients, we get a sufficient condition for the existence of a prime decomposition.



    加载中


    [1] C. Campos, J. E. Roman, Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems, Numer. Linear Algebra Appl., 27 (2020), e2293.
    [2] S. Chen, Y. Tian, On solutions of generalized Sylvester equation in polynomial matrices, J. Franklin Inst., 351 (2014), 5376-5385. doi: 10.1016/j.jfranklin.2014.09.024
    [3] P. M. Cohn, The range of derivations on a skew field and the equation $ax-xb = c$, J. Indian Math. Soc., 37 (1973), 61-69.
    [4] P. V. Dooren, Rational and polynomial matrix factorizations via recursive pole-zero cancellation, Linear Algebra Appl., 137 (1990), 663-697.
    [5] H. Flanders, H. K. Wimmer, On the matrix equations $AX-XB = C$ and $AX-YB = C$, SIAM J. Appl. Math., 32 (1977), 707-710. doi: 10.1137/0132058
    [6] S. D. Garveya, P. Lancaster, A. A. Popov, U. Prells, I. Zaballa, Filters connecting isospectral quadratic systems, Linear Algebra Appl., 438 (2013), 1497-1516. doi: 10.1016/j.laa.2011.03.040
    [7] I. Gobherg, P. Lancaster, L. Rodman, Matrix polynomials, In: Indefinite linear algebra and applications, Birkhäuser Basel, 2009.
    [8] S. K. Jain, T. Y. Lam, A. Leroy, Ore extensions and V-domains, Rings, Modules and Representations: International Conference on Rings and Things in Honor of Carl Faith and Barbara Osofsky, Ohio University-Zanesville, 480 (2009), 249-262.
    [9] P. S. Kazimirski, Separation of a regular linear factor of a simple structure from a matrix polynomial, Theor. Appl. Probl. Algebra Differ. Equations, 119 (1976), 29-40.
    [10] P. S. Kazimirski, V. M. Petrichkovich, Decomposability of polynomial matrices into a product of linear factors, Mat. Met. Fiz.-Mekh. Polya, 8 (1978), 3-9.
    [11] I. N. Krupnik, Decomposition of a monic polynomial into a product of linear factors, Linear Algebra Appl., 167 (1992), 239-242. doi: 10.1016/0024-3795(92)90355-E
    [12] P. Lancaster, F. Tisseur, Hermitian quadratic matrix polynomials: Solvents and inverse problems, Linear Algebra Appl., 436 (2012), 4017-4026. doi: 10.1016/j.laa.2010.06.047
    [13] A. Malyshev, M. Sadkane, Computing the distance to continuous-time instability of quadratic matrix polynomials, Numer. Math., 145 (2020), 149-165. doi: 10.1007/s00211-020-01108-0
    [14] B. Z. Shavarovskii, Factorable polynomial matrices, Math. Notes, 68 (2000), 507-518. doi: 10.1007/BF02676732
    [15] B. Z. Shavarovs'kyi, Decomposability of matrix polynomials with commuting coefficients into a product of linear factors, Ukr. Math. J., 62 (2011), 1295-1306. doi: 10.1007/s11253-011-0430-2
    [16] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286. doi: 10.1137/S0036144500381988
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2147) PDF downloads(98) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog