We study the prime decomposition of a quadratic monic matrix polynomial. From the prime decomposition of a quadratic matrix polynomial, we obtain a formula of the general solution to the corresponding second-order differential equation. For a quadratic matrix polynomial with pairwise commuting coefficients, we get a sufficient condition for the existence of a prime decomposition.
Citation: Yunbo Tian, Sheng Chen. Prime decomposition of quadratic matrix polynomials[J]. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576
We study the prime decomposition of a quadratic monic matrix polynomial. From the prime decomposition of a quadratic matrix polynomial, we obtain a formula of the general solution to the corresponding second-order differential equation. For a quadratic matrix polynomial with pairwise commuting coefficients, we get a sufficient condition for the existence of a prime decomposition.
[1] | C. Campos, J. E. Roman, Inertia-based spectrum slicing for symmetric quadratic eigenvalue problems, Numer. Linear Algebra Appl., 27 (2020), e2293. |
[2] | S. Chen, Y. Tian, On solutions of generalized Sylvester equation in polynomial matrices, J. Franklin Inst., 351 (2014), 5376-5385. doi: 10.1016/j.jfranklin.2014.09.024 |
[3] | P. M. Cohn, The range of derivations on a skew field and the equation $ax-xb = c$, J. Indian Math. Soc., 37 (1973), 61-69. |
[4] | P. V. Dooren, Rational and polynomial matrix factorizations via recursive pole-zero cancellation, Linear Algebra Appl., 137 (1990), 663-697. |
[5] | H. Flanders, H. K. Wimmer, On the matrix equations $AX-XB = C$ and $AX-YB = C$, SIAM J. Appl. Math., 32 (1977), 707-710. doi: 10.1137/0132058 |
[6] | S. D. Garveya, P. Lancaster, A. A. Popov, U. Prells, I. Zaballa, Filters connecting isospectral quadratic systems, Linear Algebra Appl., 438 (2013), 1497-1516. doi: 10.1016/j.laa.2011.03.040 |
[7] | I. Gobherg, P. Lancaster, L. Rodman, Matrix polynomials, In: Indefinite linear algebra and applications, Birkhäuser Basel, 2009. |
[8] | S. K. Jain, T. Y. Lam, A. Leroy, Ore extensions and V-domains, Rings, Modules and Representations: International Conference on Rings and Things in Honor of Carl Faith and Barbara Osofsky, Ohio University-Zanesville, 480 (2009), 249-262. |
[9] | P. S. Kazimirski, Separation of a regular linear factor of a simple structure from a matrix polynomial, Theor. Appl. Probl. Algebra Differ. Equations, 119 (1976), 29-40. |
[10] | P. S. Kazimirski, V. M. Petrichkovich, Decomposability of polynomial matrices into a product of linear factors, Mat. Met. Fiz.-Mekh. Polya, 8 (1978), 3-9. |
[11] | I. N. Krupnik, Decomposition of a monic polynomial into a product of linear factors, Linear Algebra Appl., 167 (1992), 239-242. doi: 10.1016/0024-3795(92)90355-E |
[12] | P. Lancaster, F. Tisseur, Hermitian quadratic matrix polynomials: Solvents and inverse problems, Linear Algebra Appl., 436 (2012), 4017-4026. doi: 10.1016/j.laa.2010.06.047 |
[13] | A. Malyshev, M. Sadkane, Computing the distance to continuous-time instability of quadratic matrix polynomials, Numer. Math., 145 (2020), 149-165. doi: 10.1007/s00211-020-01108-0 |
[14] | B. Z. Shavarovskii, Factorable polynomial matrices, Math. Notes, 68 (2000), 507-518. doi: 10.1007/BF02676732 |
[15] | B. Z. Shavarovs'kyi, Decomposability of matrix polynomials with commuting coefficients into a product of linear factors, Ukr. Math. J., 62 (2011), 1295-1306. doi: 10.1007/s11253-011-0430-2 |
[16] | F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235-286. doi: 10.1137/S0036144500381988 |