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Abstract: We study the prime decomposition of a quadratic monic matrix polynomial. From the
prime decomposition of a quadratic matrix polynomial, we obtain a formula of the general solution to
the corresponding second-order differential equation. For a quadratic matrix polynomial with pairwise
commuting coefficients, we get a sufficient condition for the existence of a prime decomposition.
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1. Introduction

The linear second-order differential equation

q̈(t) + Aq̇(t) + Bq(t) = f (t), (1.1)

where A, B ∈ Cn×n and q(t) is an nth-order vector, frequently arise in the fields of mechanical and
electrical oscillation [16]. The study of the solutions of the Eq (1.1) lead to the research of a quadratic
matrix polynomial

L(λ) = λ2 + Aλ + B, (1.2)

where A, B ∈ Mn(C) and I is the identity matrix of order n [7]. In this work we investigate the
prime decomposition of quadratic matrix polynomial (1.2). By the prime decomposition of (1.2),
we represent the general solution of Eq (1.1).

Consider the solution of the homogeneous equation (1.1) with n = 1 and f = 0, rewritten in the
form

q̈(t) + aq̇(t) + bq(t) = 0. (1.3)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021576


9912

We knows that the general solution of Eq (1.3) with a2 − 4b , 0 is

q(t) = c1eλ1 + c2eλ2 , (1.4)

where c1, c2 are constants and λ1, λ2 are the roots of λ2 + aλ+ b = 0. In analogy with Formula (1.4) we
ask whether Eq (1.1) has the formula of the general solution.

The quadratic matrix polynomial (1.2) is called factorizable if it can be factorized into a product of
two linear matrix polynomial, i.e.

L(λ) = (Iλ + C)(Iλ + D), (1.5)

where C,D ∈ Cn×n, and Iλ+ D is called a right divisor of L(λ). Right divisors Iλ+ D1, Iλ+ D2 for L(λ)
are said to form a complete pair if D1 − D2 is invertible.

There have been extensive study and application of the matrix polynomial factorization (see [4,
9–11, 14, 15]). The quadratic eigenvalue problems (see [13, 16] ) received much attention because
of its applications in the dynamic analysis of mechanical systems in acoustics and linear stability of
flows in fluid mechanics. A solution of a quadratic matrix equation can be obtained by the fraction
of a quadratic matrix polynomial [7]. A system of second-order differential equation with self-adjoint
coefficients may describe the ubiquitous problem of damped oscillatory systems with a finite number
of degrees of freedom. This leads to the study of Hermitian quadratic matrix polynomials [1, 12].

Gohberg, Lancaster and Rodman analyzed some properties of linear second-order differential
equation (1.1) and quadratic matrix polynomial (1.2) in [7]. It was shown that Eq (1.1) has a formula
of the general solution similar to Formula (1.4) if the quadratic matrix polynomial (1.2) has a
complete pair [7]. Motivated by results in [7], we propose a concept of prime decomposition to
generalized this result.

This paper is organized as follows. In section 2, we give the definition of prime decomposition of
a quadratic monic matrix polynomial L(λ) and some properties. By the prime decomposition, we get
an integral formula for the corresponding second order matrix differential equation. In section 3, we
investigate the prime decomposition of a class of quadratic matrix polynomial. A sufficient condition
for L(λ) having a prime decomposition is presented in Theorem 3.1.

2. Prime decomposition and its applications

First we give the definition of prime decomposability of a quadratic matrix polynomial L(λ). Some
equivalent conditions of prime decomposability are given in Remark 2.2.

Definition 2.1. The matrix polynomial L(λ) has a prime decomposition if there exist C,D ∈ Mn(C)
such that

L(λ) = (λI + C)(λI + D) (2.1)

and there are U,V ∈ Mn(C) such that

U(λI + C) + (λI + D)V = I. (2.2)

Remark 2.2. Our definition of prime decomposition of matrix polynomials is different from the
definition of coprime factorization of matrix polynomials which was studied in many papers (e.g.
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Definition 3.1 in [6]). By Lemma 3.1 in [2], it is easy to verify that condition (2.2) is equivalent to
each of the following statements:

(1) There is H ∈ Mn(C) such that
DH − HC = I. (2.3)

(2) There are matrix polynomials U(λ),V(λ) such that

U(λ)(λI + C) + (λI + D)V(λ) = I.

Motivated by Lemma 3.1 in [8], we have the following theorem. It shows the significance of prime
decomposability in solving equations.

Theorem 2.3. Let R be a ring with identity 1. Suppose that f , g, a, b ∈ R satisfy the condition

a f + gb = 1.

Let m be in a left R module M. If y, z ∈ M and f (y) = m,

g(z) = a(m),

then x = by + z is a solution of the equation f g(x) = m. Conversely, any solution x ∈ M of the equation
f g(x) = m can be written as the following form, x = by + z, where y, z ∈ M and f (y) = m,

g(z) = a(m).

In particular, by taking m = 0 we get ker( f g) = b ker( f ) + ker(g).

Proof. Suppose that  f (y) = m,

g(z) = a(m).

Then we have

f g(x) = f gb(y) + f g(z) = f (1 − a f )(y) + f a(m) = f (y) − f a f (y) + f a(m) = m.

So x = by + z is a solution to f g(x) = m.
Conversely, if f g(x) = m, then we take y = g(x),

z = x − by.

We will get  f (y) = m,

g(z) = a(m).

The proof is complete. �
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The following result, whose proof is obvious, presents an immediate application of the the above
theorem to differential equations.

Corollary 2.4. Suppose that L(λ) = λ2I+λA+B is prime decomposable, i.e., there are C,D,H ∈ Mn(C)
such that L(λ) = (λI + C)(λI + D) and DH − HC = I. Then the solution of L(d/dt)u = f has the form

u(t) = He−Ctα1 + e−Dtα2 +

∫ t

0
He(s−t)C f (s)ds −

∫ t

0
e(s−t)DH f (s)ds

for some α1, α2 ∈ C
n. In particular, the solution of L(d/dt)u = 0 has the form

u(t) = He−Ctα1 + e−Dtα2

for some α1, α2 ∈ C
n.

Remark 2.5. Suppose that
Iλ − S 1, Iλ − S 2

is a complete pair for L(λ) ( see Section 2.5 in [7]). Then S 2 − S 1 is some invertible matrix, say P. Let
C = PS 2P−1,D = S 1. Then P−1C − DP−1 = I. So

L(λ) = (λI − PS 2P−1)(λI − S 1)

is a prime decomposition. Thus we can recover Theorem 2.16 in [7] from Corollary 2.4.

3. The prime decomposability of a quadratic matrix polynomial

We first propose some notations used in this section. Let R1,R2 be n× n matrices with R1R2 = R2R1.
The joint spectrum, denoted by σ(R1,R2), is a subset of C2 defined by

σ(R1,R2) = {k = (k1, k2) ∈ C2|∃x ∈ Cn s.t. x , 0, and Rix = kix, i = 1, 2}.

Since R1R2 = R2R1, there exists an invertible matrix T such that

TRiT−1 =


k(i)

1 ∗ · · · · · ·

0 k(i)
2 · · · · · ·

...
...

. . .
...

0 0 · · · k(i)
n

 , i = 1, 2, (3.1)

and the joint spectrum σ(R1,R2) can be read off from the diagonal elements in (3.1), namely,

σ(R1,R2) = {k j = (k(1)
j , k

(2)
j )| j = 1, . . . , n}.

The multiplicity of k ∈ σ(R1,R2) is the number of ki, i = 1, . . . , n which are same as k. The matrix M
is called upper Toeplitz matrix if

M =



a1 a2 · · · an−1 an

0 a1 · · · an−2 an−1
...

...
. . .

...
...

0 0 · · · a1 a2

0 0 · · · 0 a1


.
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The polynomial F(λ) is called upper Toeplitz matrix polynomial if

F(λ) =



f1(λ) f2(λ) · · · fn−1 fn(λ)
0 f1(λ) · · · fn−2 fn−1(λ)
...

...
. . .

...
...

0 0 · · · f1(λ) f2(λ)
0 0 · · · 0 f1(λ)


,

where f1(λ) = λ2 + aλ + b, and deg( fi) ≤ 1, i = 2, . . . , n.
It is shown that a matrix polynomial with pairwise commuting coefficients of the simple structure

can be represented in the form of a product of linear factors [15]. Motivated by [15], we investigate the
prime decomposability of L(λ) with pairwise commuting coefficients. The following theorem gives a
sufficient condition for L(λ) having a prime decomposition.

Theorem 3.1. If polynomial matrix L(λ) = λ2I + Aλ + B satisfies the following conditions:
(i) AB = BA,
(ii) each nonlinear elementary divisor of A and B is coprime with the other elementary divisors of

A and B, respectively,
(iii) the degrees of elementary divisors of L(λ) are not great than 2,
(iv) the multiplicity of eigenvalue k = (a, b) ∈ σ(A1, A0) satisfying a2 − 4b = 0 is even.
Then L(λ) has a prime decomposition.

Prior to the proof of this theorem, we formulate several auxiliary statements. By the following
two lemmas, the problem of prime decomposability of a quadratic monic matrix polynomials can be
reduced in some sense.

Lemma 3.2. Suppose that A, B,T ∈ Mn(C), where T is invertible. Then L(λ) = λ2I + Aλ + B is prime
decomposable if and only if T L(λ)T−1 is prime decomposable.

Proof. Note that T L(λ)T−1 = (λI+TCT−1)(λI+T DT−1),where T is invertible. Furthermore, Eq (2.3) is
equivalent to equation (T DT−1)(T HT−1)− (T HT−1)(TCT−1) = I. By Definition 2.1, the result follows.
The proof is complete. �

Lemma 3.3. Suppose a ∈ C. Then L(λ) = λ2I+Aλ+B is prime decomposable if and only if λ2I+λÃ+B̃
is prime decomposable, where Ã = 2aI + A, B̃ = a2I + aA + B.

Proof. If L(λ) is decomposable, then there exist C,D ∈ Mn(C) such that

λ2I + λA + B = (λI + C)(λI + D).

Let C̃ = aI + C, and D̃ = aI + D. We have

λ2I + λ(2aI + A) + a2I + aA + B = (λI + C̃)(λI + D̃).

Furthermore, the condition that there exists H such that DH − HC = I is equivalent to the condition
C̃H − HD̃ = I. By Definition 2.1, the result follows. �

The following lemma is a well known result about Sylvester equation which was studied in many
papers [3, 5].
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Lemma 3.4. [7] Let C,D ∈ Mn(C). If σ(C) ∩ σ(D) = ∅, where σ(X) is the set of eigenvalues of the
matrix X, then for any U ∈ Mn(C), there exists a unique H ∈ Mn(C) such that DH − HC = U.

Lemma 3.5. Suppose F(λ) is upper Toeplitz matrix polynomial with f1(λ) = λ2+aλ+b on the diagonal.
If a2 , 4b, then F(λ) has a prime decomposition.

Proof. As shown in [15], F(λ) can be decomposed into a product of linear factors which has only one
(without regard for multiplicity) characteristic root. By Lemma 3.4, we know that the decomposition
is a prime decomposition. �

Lemma 3.6. Suppose F(λ) is upper Toeplitz matrix polynomial with f1(λ) = λ2+aλ+b on the diagonal,
and n is the order of F(λ). If a2 = 4b and the degrees of elementary divisors of F(λ) are not great than
2, then F(λ) has a prime decomposition if and only if n is even.

Proof. Since the degrees of elementary divisors of F(λ) are not great than 2, we have

F(λ) = λ2In + 2c1In + c2
1I,

where c1 = a
2 . By Lemma 3.3, it suffices to prove the prime decomposability of λ2In, i.e., there exists

C such that
λ2In = (λIn + C)(λIn −C), (3.2)

where C2 = 0 and there is H satisfying

−CH − HC = I. (3.3)

We prove the result in two cases.
Case 1. n = 2k, k is an nonnegative integer.
Let

Ci =

[
1 1
−1 −1

]
,Hi =

[
0 1
0 0

]
.

Then
C = diag(C1, . . . ,Ck),H = diag(H1, . . . ,Hk),

satisfy Eqs (3.2) and (3.3).
Case 2. n = 2k + 1, k is an nonnegative integer.
By Lemma 3.2, we suppose C = diag(J1, . . . , Js), where Ji is a Jordan block with zero on the

diagonal for i = 1, . . . , s. Since C2 = 0, the order of Ji is not great than 2 for i = 1, . . . , s. Thus
there exists r such that Jr = 0. Without loss of generality, we assume J1 = 0. Then the (1, 1) entry of
−CH − HC is 0. Hence there does not exist H satisfying Eq (3.3). �

Now we are ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose that L(λ) = λ2I+λA+B satisfies the conditions of Theorem 3.1. Hence
there exists an invertible matrix T such that

T BT−1 = diag(b1Ir1 , . . . , blIrl , Jl+1, . . . , Js),
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where Ji is a Jordan block with bi on the diagonal for i = l+1, . . . , s, and bi , b j for i , j(i, j = 1, . . . , s).
Since AB = BA, we have

T AT−1 = diag(M1, . . . ,Ml,Ml+1, . . . ,Ms),

where Mi(i > l) is upper Toeplitz matrix(see Theorem S2.2 in [7]). Note that there exist invertible Ti

such that
TiMiT−1

i = diag(Ji1 , . . . , Jimi
), i = 1, . . . , l,

where Ji j is a Jordan block with ai j on the diagonal for j = l, . . . ,mi.
Let H = Tdiag(T1, . . . ,Tl, I, . . . , I). We have

HL(λ)H−1 = diag(L1(λ), . . . , Lh(λ)),

where h =
∑l

i=0 mi + s − l, and Li(λ) is upper Toeplitz matrix polynomial for i = 1, . . . , h. Because
Li(λ)(i = 1, . . . , h) satisfy the conditions of Theorem 3.1, from Lemmas 3.5 and 3.6, we know that
Li(λ)(i = 1, . . . , h) has a prime decomposition, say

Li(λ) = (λI + Ci)(λI + Di).

Hence HL(λ)H−1 has a prime decomposition

HL(λ)H−1 = diag(λI + C1, . . . , λI + Ch)diag(λI + D1, . . . , λI + Dh).

By Lemma 3.2, we know that L(λ) has a prime decomposition. �

4. Conclusions

In this paper, we have presented the prime decomposition of a quadratic monic matrix polynomial
and the application in solving corresponding second-order differential equation. We have got a
sufficient condition for the existence of a prime decomposition for a quadratic matrix polynomial with
pairwise commuting coefficients. As has been said, a complete pair can be used to form a prime
decomposition of the quadratic matrix polynomial. Thus, we expect that the relation between a prime
decomposition and a complete pair can be studied more thoroughly. The prime decomposition of a
matrix polynomial with degree n will be investigated in a future paper.

Acknowledgments

The first author is supported by the Natural Science Foundation of Shandong Province, China (Grant
No. ZR2018PA002).

Conflict of interest

The authors declare that they have no conflicts of interest.

AIMS Mathematics Volume 6, Issue 9, 9911–9918.



9918

References

1. C. Campos, J. E. Roman, Inertia-based spectrum slicing for symmetric quadratic eigenvalue
problems, Numer. Linear Algebra Appl., 27 (2020), e2293.

2. S. Chen, Y. Tian, On solutions of generalized Sylvester equation in polynomial matrices, J. Franklin
Inst., 351 (2014), 5376–5385.

3. P. M. Cohn, The range of derivations on a skew field and the equation ax − xb = c, J. Indian Math.
Soc., 37 (1973), 61–69.

4. P. V. Dooren, Rational and polynomial matrix factorizations via recursive pole-zero cancellation,
Linear Algebra Appl., 137 (1990), 663–697.

5. H. Flanders, H. K. Wimmer, On the matrix equations AX − XB = C and AX − YB = C, SIAM J.
Appl. Math., 32 (1977), 707–710.

6. S. D. Garveya, P. Lancaster, A. A. Popov, U. Prells, I. Zaballa, Filters connecting isospectral
quadratic systems, Linear Algebra Appl., 438 (2013), 1497–1516.

7. I. Gobherg, P. Lancaster, L. Rodman, Matrix polynomials, In: Indefinite linear algebra and
applications, Birkhäuser Basel, 2009.
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