Research article Special Issues

Barycentric rational collocation method for semi-infinite domain problems

  • Received: 25 December 2022 Revised: 01 February 2023 Accepted: 02 February 2023 Published: 07 February 2023
  • MSC : 65D32, 65D30, 65R20

  • The barycentric rational collocation method for solving semi-infinite domain problems is presented. Following the barycentric interpolation method of rational polynomial and Chebyshev polynomial, matrix equation is obtained from discrete semi-infinite domain problem. Truncation method and transformation method are presented to solve linear and nonlinear differential equation defined on the semi-infinite domain problems. At last, three numerical examples are presented to valid our theoretical analysis.

    Citation: Jin Li. Barycentric rational collocation method for semi-infinite domain problems[J]. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439

    Related Papers:

  • The barycentric rational collocation method for solving semi-infinite domain problems is presented. Following the barycentric interpolation method of rational polynomial and Chebyshev polynomial, matrix equation is obtained from discrete semi-infinite domain problem. Truncation method and transformation method are presented to solve linear and nonlinear differential equation defined on the semi-infinite domain problems. At last, three numerical examples are presented to valid our theoretical analysis.



    加载中


    [1] M. Maleki, I. Hashim, S. Abbasbandy, Analysis of IVPs and BVPs on semi-infinite domains via collocation methods, J. Appl. Math., 2012 (2012), 1–21. https://doi.org/10.1155/2012/696574 doi: 10.1155/2012/696574
    [2] S. A. Odejide, Y. A. S. Aregbesola, Applications of method of weighted residuals to problems with Semi-infinite domain, Rom. J. Phys., 56 (2011), 14–24.
    [3] F. Auteri, L. Quartapelle, Galerkin-Laguerre spectral solution of self-similar boundary layer problems, Commun. Comput. Phys., 12 (2012), 1329–1358. https://doi.org/10.4208/cicp.130411.230911a doi: 10.4208/cicp.130411.230911a
    [4] A. O. Adewumi, S. O. Akindeinde, A. A. Aderogba, Laplace-weighted residual method for problems with semi-infinite domain, J. Mod. Method Numer. Math., 7 (2016), 59–66.
    [5] H. F. Ismael, H. Bulut, H. M. Baskonus, W. Gao, Dynamical behaviors to the coupled schrdinger-boussinesq system with the beta derivative, AIMS Math., 6 (2021), 7909–7928. https://doi.org/10.3934/math.2021459 doi: 10.3934/math.2021459
    [6] H. Jafari, N. Kadkhoda, D. Baleanu, Lie group theory for nonlinear fractional K(m, n) type equation with variable coefficients, Meth. Math. Model. Comput. Complex Syst., 2021,207–227. https://doi.org/10.1007/978-3-030-77169-0_8
    [7] D. Baleanu, Z. B. Guvenc, J. Machado, New trends in nanotechnology and fractional calculus applications, Springer Netherlands, 2010. https://doi.org/10.1007/978-90-481-3293-5
    [8] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 1–10. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
    [9] Gulnur Yel, C. Cattani, H. M. Baskonus, W. Gao, On the complex simulations with dark-bright to the hirota-maccari system, J. Comput. Nonlinear Dyn., 6 (2021), 16. https://doi.org/ 10.1115/1.4050677 doi: 10.1115/1.4050677
    [10] Y. M. Li, H. M. Baskonus, A. M. Khudhur, Investigations of the complex wave patterns to the generalized calogero-bogoyavlenskii-schiff equation, Soft Comput., 25 (2021), 6999–7008. https://doi.org/10.1007/s00500-021-05627-2 doi: 10.1007/s00500-021-05627-2
    [11] S. Rashid, S. Parveen, H. Ahmad, Y. M. Chu, New quantum integral inequalities for some new classes of generalized $\phi$-convex functions and their scope in physical systems, Open Phys., 19 (2021), 35–50. https://doi.org/10.1515/phys-2021-0001 doi: 10.1515/phys-2021-0001
    [12] S. Rashid, D. Baleanu, Y. M. Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, Open Phys., 18 (2020), 478–491. https://doi.org/10.1515/phys-2020-0114 doi: 10.1515/phys-2020-0114
    [13] L. Xu, Y. M. Chu, S. Rashid, A. A. El-Deeb, K. S. Nisar, On new unified bounds for a family of functions via fractional-calculus theory, J. Funct. Space., 2020 (2020), 1–9. https://doi.org/10.1155/2020/4984612 doi: 10.1155/2020/4984612
    [14] S. Rashid, M. Can, D. Baleanu, M. C. Yu, Generation of new fractional inequalities via n polynomials s-type convexity with applications, Adv. Differential Equ., 2020 (2020), 1–20. https://doi.org/10.1186/S13662-020-02720-Y doi: 10.1186/S13662-020-02720-Y
    [15] S. Rashid, Z. Hammouch, D. Baleanu, M. C. Yu, New generalizations in the sense of the weighted non-singular fractional integral operator, Fractalsy, 28 (2020), 2040003. https://doi.org/10.1142/S0218348X20400034 doi: 10.1142/S0218348X20400034
    [16] S. Rashid, H. Kalsoom, Z. Hammouch, R. Ashraf, Y. M. Chu, New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating-convex functions in hilbert space, Symmetry, 12 (2020), 222. https://doi.org/10.1016/s0362-546x(01)00646-0 doi: 10.1016/s0362-546x(01)00646-0
    [17] Y. B. Yang, S. R. Kuo, H. H. Hung, Frequency-independent infinite elements for analysing semi-infinite problems, Int. J. Numer. Method Eng., 39 (1996), 3553–3569. https://doi.org/10.1002/(SICI)1097-0207(19961030)39:20<3553::AID-NME16>3.0.CO;2-6 doi: 10.1002/(SICI)1097-0207(19961030)39:20<3553::AID-NME16>3.0.CO;2-6
    [18] A. Akgül, A novel method for the solution of Blasius equation in semi-infinite domains, IJOCTA, 7 (2017), 225–233. https://doi.org/10.11121/ijocta.01.2017.00363 doi: 10.11121/ijocta.01.2017.00363
    [19] P. Berrut, M. S. Floater, G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math., 61 (2011), 989–1000. https://doi.org/10.1016/j.apnum.2011.05.001 doi: 10.1016/j.apnum.2011.05.001
    [20] J. P. Berrut, S. A. Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36 (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020
    [21] M. Floater, H. Kai, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
    [22] G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
    [23] G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
    [24] L. H. Wang, M. H. Hu, Z. Zhong, F. Yang, Stabilized lagrange interpolation collocation method: A meshfree method incorporating the advantages of finite element method, Comput. Method. Appl. M., 404 (2023), 115780. https://doi.org/10.1016/j.cma.2022.115780 doi: 10.1016/j.cma.2022.115780
    [25] Z. H. Qian, L. H. Wang, A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation, Comput. Method. Appl. M., 371 (2020), 113303. https://doi.org/10.1016/j.cma.2020.113303 doi: 10.1016/j.cma.2020.113303
    [26] Z. H. Qian, L. H. Wang, Y. Gu, C. Z. Zhang, An efficient meshfree gradient smoothing collocation method (GSCM) using reproducing kernel approximation, Comput. Method. Appl. M., 374 (2021), 113573. https://doi.org/10.1016/j.cma.2020.113573 doi: 10.1016/j.cma.2020.113573
    [27] M. N. Rasoulizadeh, M. J. Ebadi, Z. Avazzadeh, O. Nikan, An efficient local meshless method for the equal width equation in fluid mechanics, Eng. Anal. Bound. Elem., 131 (2021), 258–268. https://doi.org/10.1016/j.enganabound.2021.07.001 doi: 10.1016/j.enganabound.2021.07.001
    [28] O. Nikan, Avazzadeh, An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory, Eng. Anal. Bound. Elem., 130 (2021), 268–285. https://doi.org/10.1016/j.enganabound.2021.05.019 doi: 10.1016/j.enganabound.2021.05.019
    [29] O. Nikan, Z. Avazzadeh, A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics, Math. Comput. Simul., 199 (2022), 394–413. https://doi.org/10.1016/j.matcom.2022.04.006 doi: 10.1016/j.matcom.2022.04.006
    [30] O. Nikan, Z. Avazzadeh, M. N. Rasoulizadeh, Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces, Eng. Anal. Bound. Elem., 143 (2022), 14–27. https://doi.org/10.1016/j.enganabound.2022.05.026 doi: 10.1016/j.enganabound.2022.05.026
    [31] O. Nikan, Z. Avazzadeh, M. N. Rasoulizadeh, Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory, Nonlinear Dyn., 106 (2021), 783–813. https://doi.org/10.1007/s11071-021-06822-4 doi: 10.1007/s11071-021-06822-4
    [32] Z. Avazzadeh, O. Nikan, J. A. T. Machado, Solitary wave solutions of the generalized Rosenau-KdV-RLW equation, Mathematics, 8 (2020), 1601. https://doi.org/10.3390/math8091601 doi: 10.3390/math8091601
    [33] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Meth. Part. D. E., 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [34] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-1114-z
    [35] J. Li, Y. L. Cheng, Z. C. Li, Z. K. Tian, Linear barycentric rational collocation method for solving generalized Poisson equations, MBE, 20 (2023), 4782–4797. https://doi.org/10.3934/mbe.2023221 doi: 10.3934/mbe.2023221
    [36] J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Meth. Part. D. E., 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638
    [37] Z. Wang, S. Li, Barycentric interpolation collocation method for nonlinear problems, National Defense Industry Press, Beijing, 2015.
    [38] Z. Wang, Z. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201.
    [39] Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(921) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Tables(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog