We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Three illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether they are of Gauss/Gauss-Radau type or equally spaced.
Citation: Kareem T. Elgindy, Hareth M. Refat. A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps[J]. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181
We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Three illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS and IPS methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid, regardless of whether they are of Gauss/Gauss-Radau type or equally spaced.
[1] | S. A. Orszag, Accurate solution of the Orr–Sommerfeld stability equation, J. Fluid Mech., 50 (1971), 689–703. https://doi.org/10.1017/S0022112071002842 doi: 10.1017/S0022112071002842 |
[2] | G. S. Patterson, S. A. Orszag, Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions, Phys. Fluids, 14 (1971), 2538–2541. https://doi.org/10.1063/1.1693365 doi: 10.1063/1.1693365 |
[3] | W. Kang, N. Bedrossian, Pseudospectral optimal control theory makes debut flight, saves NASA $ 1M in under three hours, SIAM News, 40 (2007), 1–3. |
[4] | Z. Liu, S. Li, K. Zhao, Extended multi-interval Legendre-Gauss-Radau pseudospectral method for mixed-integer optimal control problem in engineering, Int. J. Syst. Sci., 52 (2021), 928–951. https://doi.org/10.1080/00207721.2020.1849862 doi: 10.1080/00207721.2020.1849862 |
[5] | K. T. Elgindy, A high-order embedded domain method combining a Predictor-Corrector-Fourier-Continuation-Gram method with an integral Fourier pseudospectral collocation method for solving linear partial differential equations in complex domains, J. Comput. Appl. Math., 361 (2019), 372–395. https://doi.org/10.1016/j.cam.2019.03.032 doi: 10.1016/j.cam.2019.03.032 |
[6] | M. Nazari, M. Nazari, M. H. N. Skandari, Pseudo-spectral method for controlling the drug dosage in cancer, IET Syst. Biol., 14 (2020), 261–270. https://doi.org/10.1049/iet-syb.2020.0054 doi: 10.1049/iet-syb.2020.0054 |
[7] | K. T. Elgindy, B. Karasözen, High-order integral nodal discontinuous Gegenbauer-Galerkin method for solving viscous Burgers' equation, Int. J. Comput. Math., 96 (2019), 2039–2078. https://doi.org/10.1080/00207160.2018.1554860 doi: 10.1080/00207160.2018.1554860 |
[8] | B. Fornberg, D. M. Sloan, A review of pseudospectral methods for solving partial differential equations, Acta Numer., 3 (1994), 203–267. https://doi.org/10.1017/S0962492900002440 doi: 10.1017/S0962492900002440 |
[9] | B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, 1996. https://doi.org/10.1017/CBO9780511626357 |
[10] | J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral methods for time-dependent problems, Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511618352 |
[11] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: fundamentals in single domains, Springer Berlin, Heidelberg, 2006. https://doi.org/10.1007/978-3-540-30726-6 |
[12] | D. Garg, Advances in global pseudospectral methods for optimal control, Ph.D. Thesis, Gainesville, FL: University of Florida, 2011. |
[13] | G. T. Huntington, Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems, Ph.D. Thesis, Massachusetts: MIT, 2007. |
[14] | J. T. Betts, Practical methods for optimal control using nonlinear programming, Philadelphia, PA: SIAM, 2001. |
[15] | C. L. Darby, hp-Pseudospectral method for solving continuous-time nonlinear optimal control problems, Ph.D. Thesis, Florida: University of Florida, 2011. |
[16] | O. von Stryk, R. Bulirsch, Direct and indirect methods for trajectory optimization, Ann. Oper. Res., 37 (1992), 357–373. https://doi.org/10.1007/BF02071065 doi: 10.1007/BF02071065 |
[17] | C. C. Francolin, Costate estimation for optimal control problems using orthogonal collocation at Gaussian quadrature points, Ph.D. Thesis, Florida: University of Florida, 2013. |
[18] | K. T. Elgindy, K. A. Smith-Miles, Fast, accurate, and small-scale direct trajectory optimization using a Gegenbauer transcription method, J. Comput. Appl. Math., 251 (2013), 93–116. https://doi.org/10.1016/j.cam.2013.03.032 doi: 10.1016/j.cam.2013.03.032 |
[19] | K. T. Elgindy, Gegenbauer collocation integration methods: advances in computational optimal control theory, Bull. Aust. Math. Soc., 89 (2014), 168–170. https://doi.org/10.1017/S0004972713001044 doi: 10.1017/S0004972713001044 |
[20] | K. T. Elgindy, K. A. Smith-Miles, Optimal Gegenbauer quadrature over arbitrary integration nodes, J. Comput. Appl. Math., 242 (2013), 82–106. https://doi.org/10.1016/j.cam.2012.10.020 doi: 10.1016/j.cam.2012.10.020 |
[21] | K. T. Elgindy, B. Karasözen, Distributed optimal control of viscous Burgers' equation via a high-order, linearization, integral, nodal discontinuous Gegenbauer-Galerkin method, Optim. Control Appl. Methods, 41 (2020), 253–277. https://doi.org/10.1002/oca.2541 doi: 10.1002/oca.2541 |
[22] | C. J. Kim, S. Sung, A comparative study of transcription techniques for nonlinear optimal control problems using a pseudo-spectral method, Int. J. Aeronaut. Space Sci., 16 (2015), 264–277. https://doi.org/10.5139/IJASS.2015.16.2.264 doi: 10.5139/IJASS.2015.16.2.264 |
[23] | K. T. Elgindy, S. A. Dahy, High-order numerical solution of viscous Burgers' equation using a Cole-Hopf barycentric Gegenbauer integral pseudospectral method, Math. Methods Appl. Sci., 41 (2018), 6226–6251. https://doi.org/10.1002/mma.5135 doi: 10.1002/mma.5135 |
[24] | K. T. Elgindy, H. M. Refat, High-order shifted Gegenbauer integral pseudo-spectral method for solving differential equations of Lane–Emden type, Appl. Numer. Math., 128, (2018), 98–124. https://doi.org/10.1016/j.apnum.2018.01.018 |
[25] | C. W. Clenshaw, A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math., 2 (1960), 197–205. https://doi.org/10.1007/bf01386223 doi: 10.1007/bf01386223 |
[26] | S. E. El-Gendi, Chebyshev solution of differential, integral and integro-differential equations, Comput. J., 12 (1969), 282–287. https://doi.org/10.1093/comjnl/12.3.282 doi: 10.1093/comjnl/12.3.282 |
[27] | X. Gao, T. Li, Q. Shan, Y. Xiao, L. Yuan, Y. Liu, Online optimal control for dynamic positioning of vessels via time-based adaptive dynamic programming, J. Ambient Intell. Human. Comput., 2019, 1–13. https://doi.org/10.1007/s12652-019-01522-9 |
[28] | D. Wang, M. Ha, M. Zhao, The intelligent critic framework for advanced optimal control, Artif. Intell. Rev., 55 (2022), 1–22. https://doi.org/10.1007/s10462-021-10118-9 doi: 10.1007/s10462-021-10118-9 |
[29] | B. Pang, L. Cui, Z. P. Jiang, Human motor learning is robust to control-dependent noise, Biol. Cybern., 116 (2022), 307–325. https://doi.org/10.1007/s00422-022-00922-z doi: 10.1007/s00422-022-00922-z |
[30] | R. F. Baum, Existence theorems for Lagrange control problems with unbounded time domain, J. Optim. Theory Appl., 19 (1976), 89–116. https://doi.org/10.1007/BF00934054 doi: 10.1007/BF00934054 |
[31] | G. R. Bates, Lower closure and existence theorems for optimal control problems with infinite horizon, J. Optim. Theory Appl., 24 (1978), 639–649. https://doi.org/10.1007/BF00935304 doi: 10.1007/BF00935304 |
[32] | A. Haurie, Existence and global asymptotic stability of optimal trajectories for a class of infinite-horizon, nonconvex systems, J. Optim. Theory Appl., 31 (1980), 515–533. https://doi.org/10.1007/BF00934475 doi: 10.1007/BF00934475 |
[33] | D. A. Carlson, A. Haurie, Infinite horizon optimal control: theory and applications, Springer Berlin, Heidelberg, 1987. https://doi.org/10.1007/978-3-662-02529-1 |
[34] | E. J. Balder, An existence result for optimal economic growth problems, J. Math. Anal. Appl., 95 (1983), 195–213. https://doi.org/10.1016/0022-247x(83)90143-9 doi: 10.1016/0022-247x(83)90143-9 |
[35] | D. A. Carlson, Existence of finitely optimal solutions for infinite-horizon optimal control problems, J. Optim. Theory Appl., 51 (1986), 41–62. https://doi.org/10.1007/BF00938602 doi: 10.1007/BF00938602 |
[36] | L. Wang, Existence and uniqueness of solutions for a class of infinite-horizon systems derived from optimal control, Int. J. Math. Math. Sci., 2005 (2005), 837–843. https://doi.org/10.1155/IJMMS.2005.837 doi: 10.1155/IJMMS.2005.837 |
[37] | S. Pickenhain, Infinite horizon optimal control problems in the light of convex analysis in hilbert spaces, Set-Valued Var. Anal., 23 (2015), 169–189. https://doi.org/10.1007/s11228-014-0304-5 doi: 10.1007/s11228-014-0304-5 |
[38] | K. O. Besov, On Balder's existence theorem for infinite-horizon optimal control problems, Math. Notes, 103 (2018), 167–174. https://doi.org/10.1134/s0001434618010182 doi: 10.1134/s0001434618010182 |
[39] | A. V. Dmitruk, N. V. Kuz'kina, Existence theorem in the optimal control problem on an infinite time interval, Math. Notes, 78 (2005), 466–480. https://doi.org/10.1007/s11006-005-0147-3 doi: 10.1007/s11006-005-0147-3 |
[40] | S. M. Aseev, An existence result for infinite-horizon optimal control problem with unbounded set of control constraints, IFAC-PapersOnLine, 51 (2018), 281–285. https://doi.org/10.1016/j.ifacol.2018.11.396 doi: 10.1016/j.ifacol.2018.11.396 |
[41] | V. Basco, H. Frankowska, Hamilton–Jacobi–Bellman equations with time-measurable data and infinite horizon, Nonlinear Differ. Equ. Appl., 26 (2019), 7. https://doi.org/10.1007/s00030-019-0553-y doi: 10.1007/s00030-019-0553-y |
[42] | H. Halkin, Necessary conditions for optimal control problems with infinite horizons, Econometrica, 42 (1974), 267–272. https://doi.org/10.2307/1911976 doi: 10.2307/1911976 |
[43] | D. Garg, W. Hager, A. V. Rao, Gauss pseudospectral method for solving infinite-horizon optimal control problems, In: AIAA guidance, navigation, and control conference, Toronto, Ontario, Canada: AIAA, 2012, 1–9. https://doi.org/10.2514/6.2010-7890 |
[44] | D. Garg, W. W. Hager, A. V. Rao, Pseudospectral methods for solving infinite-horizon optimal control problems, Automatica, 47 (2011), 829–837. https://doi.org/10.1016/j.automatica.2011.01.085 doi: 10.1016/j.automatica.2011.01.085 |
[45] | D. Garg, M. A. Patterson, C. Francolin, C. L. Darby, G. T. Huntington, W. W. Hager, et al., Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method, Comput. Optim. Appl., 49 (2011), 335–358. https://doi.org/10.1007/s10589-009-9291-0 doi: 10.1007/s10589-009-9291-0 |
[46] | X. Tang, J. Chen, Direct trajectory optimization and costate estimation of infinite-horizon optimal control problems using collocation at the flipped Legendre-Gauss-Radau points, IEEE/CAA J. Autom. Sin., 3 (2016), 174–183. https://doi.org/10.1109/JAS.2016.7451105 doi: 10.1109/JAS.2016.7451105 |
[47] | M. Shahini, M. A. Mehrpouya, Transformed Legendre spectral method for solving infinite horizon optimal control problems, IMA J. Math. Control Inf., 35 (2018), 341–356. https://doi.org/10.1093/imamci/dnw051 doi: 10.1093/imamci/dnw051 |
[48] | D. Gottlieb, C. W. Shu, On the Gibbs phenomenon IV: recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function, Math. Comput., 64 (1995), 1081–1095. https://doi.org/10.2307/2153484 doi: 10.2307/2153484 |
[49] | D. Gottlieb, C. W. Shu, On the Gibbs phenomenon and its resolution, SIAM Rev., 39 (1997), 644–668. https://doi.org/10.1137/S0036144596301390 doi: 10.1137/S0036144596301390 |
[50] | J. R. Kamm, T. O. Williams, J. S. Brock, S. Li, Application of Gegenbauer polynomial expansions to mitigate Gibbs phenomenon in Fourier–Bessel series solutions of a dynamic sphere problem, Int. J. Numer. Methods Biomed. Eng., 26 (2010), 1276–1292. https://doi.org/10.1002/cnm.1207 doi: 10.1002/cnm.1207 |
[51] | K. T. Elgindy, Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted Gegenbauer integral pseudospectral method, J. Ind. Manag. Optim., 14 (2018), 473–496. https://doi.org/10.3934/jimo.2017056 doi: 10.3934/jimo.2017056 |
[52] | W. A. Light, A comparison between Chebyshev and ultraspherical expansions, IMA J. Appl. Math., 21 (1978), 455–460. https://doi.org/10.1093/imamat/21.4.455 doi: 10.1093/imamat/21.4.455 |
[53] | J. P. Boyd, Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys., 70 (1987), 63–88. https://doi.org/10.1016/0021-9991(87)90002-7 doi: 10.1016/0021-9991(87)90002-7 |
[54] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods in fluid dynamics, Springer Berlin, Heidelberg, 1988. https://doi.org/10.1007/978-3-642-84108-8 |
[55] | F. Fahroo, I. M. Ross, Pseudospectral methods for infinite-horizon nonlinear optimal control problems, J. Guid. Control Dynam., 31 (2008), 927–936. https://doi.org/10.2514/1.33117 doi: 10.2514/1.33117 |
[56] | G. Szegö, Orthogonal polynomials, American Mathematical Society, 1939. |
[57] | H. Wang, D. Huybrechs, S. Vandewalle, Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials, Math. Comput., 83 (2014), 2893–2914. https://doi.org/10.1090/S0025-5718-2014-02821-4 doi: 10.1090/S0025-5718-2014-02821-4 |
[58] | K. T. Elgindy, High-order adaptive Gegenbauer integral spectral element method for solving non-linear optimal control problems, Optimization, 66 (2017), 811–836. https://doi.org/10.1080/02331934.2017.1298597 doi: 10.1080/02331934.2017.1298597 |
[59] | J. P. Berrut, Linear rational interpolation of continuous functions over an interval, In: W. Gautschi, Mathematics of computation 1943–1993: a half-century of computational mathematics, Proceedings of Symposia in Applied Mathematics, Vancouver, British Columbia: AMS, 1994,261–264. https://doi.org/10.1090/psapm/048/1314853 |
[60] | J. P. Berrut, H. D. Mittelmann, Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval, Comput. Math. Appl., 33 (1997), 77–86. https://doi.org/10.1016/S0898-1221(97)00034-5 doi: 10.1016/S0898-1221(97)00034-5 |
[61] | J. M. Carnicer, Weighted interpolation for equidistant nodes Carnicer, Numer. Algor., 55 (2010), 223–232. https://doi.org/10.1007/s11075-010-9399-4 doi: 10.1007/s11075-010-9399-4 |
[62] | Q. Wang, P. Moin, G. Iaccarino, A rational interpolation scheme with superpolynomial rate of convergence, SIAM J. Numer. Anal., 47 (2010), 4073–4097. https://doi.org/10.1137/080741574 doi: 10.1137/080741574 |
[63] | L. Bos, S. De Marchi, K. Hormann, J. Sidon, Bounding the Lebesgue constant for Berrut's rational interpolant at general nodes, J. Approx. Theory, 169 (2013), 7–22. https://doi.org/10.1016/j.jat.2013.01.004 doi: 10.1016/j.jat.2013.01.004 |
[64] | J. P. Berrut, Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl., 15 (1988), 1–16. https://doi.org/10.1016/0898-1221(88)90067-3 doi: 10.1016/0898-1221(88)90067-3 |
[65] | L. Bos, S. De Marchi, K. Hormann, On the Lebesgue constant of Berrut's rational interpolant at equidistant nodes, J. Comput. Appl. Math., 236 (2011), 504–510. https://doi.org/10.1016/j.cam.2011.04.004 doi: 10.1016/j.cam.2011.04.004 |
[66] | K. T. Elgindy, High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures, Appl. Numer. Math., 113 (2017), 1–25. https://doi.org/10.1016/j.apnum.2016.10.014 doi: 10.1016/j.apnum.2016.10.014 |
[67] | M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303–320. https://doi.org/10.1007/BF00927673 doi: 10.1007/BF00927673 |
[68] | M. J. D. Powell, A method for nonlinear constraints in minimization problems, Optimization, 1969,283–298. |
[69] | K. T. Elgindy, Optimization via Chebyshev polynomials, J. Appl. Math. Comput., 56 (2018), 317–349. https://doi.org/10.1007/s12190-016-1076-x doi: 10.1007/s12190-016-1076-x |
[70] | P. E. Murray, W. Murray, M. A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM J. Optim., 12 (2002), 979–1006. https://doi.org/10.1137/S1052623499350013 doi: 10.1137/S1052623499350013 |
[71] | P. E. Murray, W. Murray, M. A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005), 99–131. https://doi.org/10.1137/S0036144504446096 doi: 10.1137/S0036144504446096 |
[72] | D. E. Kirk, Optimal control theory: an introduction, Englewood Cliffs, N.J.: Prentice-Hall, 1970. |
[73] | K. Mamehrashi, A. Nemati, A new approach for solving infinite horizon optimal control problems using Laguerre functions and Ritz spectral method, Int. J. Comput. Math., 97 (2020), 1529–1544. https://doi.org/10.1080/00207160.2019.1628949 doi: 10.1080/00207160.2019.1628949 |
[74] | H. S. Nik, P. Rebelo, M. S. Zahedi, Solution of infinite horizon nonlinear optimal control problems by piecewise Adomian decomposition method, Math. Model. Anal., 18 (2013), 543–560. https://doi.org/10.3846/13926292.2013.841598 doi: 10.3846/13926292.2013.841598 |