Research article Special Issues

Transportation strategy decision-making process using interval-valued complex fuzzy soft information

  • Received: 19 September 2022 Revised: 20 October 2022 Accepted: 07 November 2022 Published: 23 November 2022
  • MSC : 03E72, 03E99, 08A72

  • Transportation is among the more vital economic activities for a business and our daily life actions. At present, transport is one of the key branches playing a crucial role in the development of the economy. Transportation decision-making looks for ways to solve current and anticipated transportation problems while avoiding future problems. An interval-valued complex fuzzy set (IVCFS) is an extended form of fuzzy, interval-valued fuzzy and complex fuzzy sets, and it is used to evaluate complex and inaccurate information in real-world applications. In this research, we aim to examine the novel concept of IVCF soft relations (IVCFSRs) by utilizing the Cartesian product (CP) of two IVCF soft sets (IVCFSSs), which are determined with the help of two different concepts, referred to as IVCF relation and soft sets. Moreover, we investigated various types of relations and also explained them with the help of some appropriate examples. The IVCFSRs have a comprehensive structure discussing due dealing with the degree of interval-valued membership with multidimensional variables. Moreover, IVCFSR-based modeling techniques are included, and they use the score function to select the suitable transportation strategy to improve the value of the analyzed data. Finally, to demonstrate the effectiveness of the suggested work, comparative analysis with existing methods is performed.

    Citation: Naeem Jan, Jeonghwan Gwak, Juhee Choi, Sung Woo Lee, Chul Su Kim. Transportation strategy decision-making process using interval-valued complex fuzzy soft information[J]. AIMS Mathematics, 2023, 8(2): 3606-3633. doi: 10.3934/math.2023182

    Related Papers:

  • Transportation is among the more vital economic activities for a business and our daily life actions. At present, transport is one of the key branches playing a crucial role in the development of the economy. Transportation decision-making looks for ways to solve current and anticipated transportation problems while avoiding future problems. An interval-valued complex fuzzy set (IVCFS) is an extended form of fuzzy, interval-valued fuzzy and complex fuzzy sets, and it is used to evaluate complex and inaccurate information in real-world applications. In this research, we aim to examine the novel concept of IVCF soft relations (IVCFSRs) by utilizing the Cartesian product (CP) of two IVCF soft sets (IVCFSSs), which are determined with the help of two different concepts, referred to as IVCF relation and soft sets. Moreover, we investigated various types of relations and also explained them with the help of some appropriate examples. The IVCFSRs have a comprehensive structure discussing due dealing with the degree of interval-valued membership with multidimensional variables. Moreover, IVCFSR-based modeling techniques are included, and they use the score function to select the suitable transportation strategy to improve the value of the analyzed data. Finally, to demonstrate the effectiveness of the suggested work, comparative analysis with existing methods is performed.



    加载中


    [1] A. Mouratidis, Smooth integration of transport infrastructure into urban space, J. Infrastruct. Policy Dev., 5 (2021), 1379. https://doi.org/10.24294/jipd.v5i2.1379 doi: 10.24294/jipd.v5i2.1379
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Set. Syst., 2003,227–235. https://doi.org/10.1016/S0165-0114(02)00127-6 doi: 10.1016/S0165-0114(02)00127-6
    [4] Y. Y. Yao, A comparative study of fuzzy sets and rough sets, Inform. Sci., 109 (1998), 227–242. https://doi.org/10.1016/S0020-0255(98)10023-3 doi: 10.1016/S0020-0255(98)10023-3
    [5] D. A. Chiang, N. P. Lin, Correlation of fuzzy sets, Fuzzy Set. Syst., 102 (1999), 221–226. https://doi.org/10.1016/S0165-0114(97)00127-9 doi: 10.1016/S0165-0114(97)00127-9
    [6] C. C. Ragin, Fuzzy-set social science, University of Chicago Press, 2000.
    [7] A. L. Guiffrida, R. Nagi, Fuzzy set theory applications in production management research: A literature survey, J. Intel. Manuf., 9 (1998), 39–56. https://doi.org/10.1023/A:1008847308326 doi: 10.1023/A:1008847308326
    [8] C. Kahraman, Fuzzy applications in industrial engineering, Heidelberg: Springer, 2006. https://doi.org/10.1007/3-540-33517-X
    [9] J. M. Mendel, Fuzzy logic systems for engineering: A tutorial, P. IEEE, 83 (1995). 345–377. https://doi.org/10.1109/5.364485 doi: 10.1109/5.364485
    [10] R. T. Yeh, S. Y. Bang, Fuzzy relations, fuzzy graphs, and their applications to clustering analysis, Fuzzy set. Appl. Cogn. Decis. Process., 1975,125–149. https://doi.org/10.1628/0932456032974862 doi: 10.1628/0932456032974862
    [11] M. Braae, D. A. Rutherford, Fuzzy relations in a control setting, Kybernetes, 7 (1978), 185–188. https://doi.org/10.1108/eb005482 doi: 10.1108/eb005482
    [12] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [13] B. Hu, L. Bi, S. Dai, The orthogonality between complex fuzzy sets and its application to signal detection, Symmetry, 9 (2017), 175. https://doi.org/10.3390/sym9090175 doi: 10.3390/sym9090175
    [14] G. Zhang, T. S. Dillon, K. Y. Cai, J. Ma, J. Lu, Operation properties and δ-equalities of complex fuzzy sets, Int. J. Approx. Reason., 50 (2009), 1227–1249. https://doi.org/10.1016/j.ijar.2009.05.010 doi: 10.1016/j.ijar.2009.05.010
    [15] C. Li, C. H. Tu, Complex neural fuzzy system and its application on multi-class prediction—A novel approach using complex fuzzy sets, IIM and multi-swarm learning, Appl. Soft Comput., 84 (2019), 105735. https://doi.org/10.1016/j.asoc.2019.105735 doi: 10.1016/j.asoc.2019.105735
    [16] D. E. Tamir, N. D. Rishe, A. Kandel, Complex fuzzy sets and complex fuzzy logic an overview of theory and applications, Fifty Years Fuzzy Logic Appl., 2015,661–681. https://doi.org/10.1007/978-3-319-19683-1_31 doi: 10.1007/978-3-319-19683-1_31
    [17] M. Khan, M. Zeeshan, S. Z. Song, S. Iqbal, Types of complex fuzzy relations with applications in future commission market, J. Math., 2021. https://doi.org/10.1155/2021/6685977 doi: 10.1155/2021/6685977
    [18] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [19] H. Bustince, P. Burillo, Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning, Fuzzy Set. Syst., 113 (2000), 205–219. https://doi.org/10.1016/S0165-0114(98)00020-7 doi: 10.1016/S0165-0114(98)00020-7
    [20] B. Ashtiani, F. Haghighirad, A. Makui, G. ali Montazer, Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets, Appl. Soft Comput., 9 (2009), 457–461. https://doi.org/10.1016/j.asoc.2008.05.005 doi: 10.1016/j.asoc.2008.05.005
    [21] W. Zeng, H. Li, Relationship between similarity measure and entropy of interval valued fuzzy sets, Fuzzy Set. Syst., 157 (2006), 1477–1484. https://doi.org/10.1016/j.fss.2005.11.020 doi: 10.1016/j.fss.2005.11.020
    [22] S. Greenfield, F. Chiclana, S. Dick, Interval-valued complex fuzzy logic, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016. https://doi.org/10.1109/FUZZ-IEEE.2016.7737939
    [23] S. Dai, L. Bi, B. Hu, Distance measures between the interval-valued complex fuzzy sets, Mathematics, 7 (2019), 549. https://doi.org/10.3390/math7060549 doi: 10.3390/math7060549
    [24] D. Molodtsov, Soft set theory—First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [25] S. Alkhazaleh, A. R. Salleh, N. Hassan, Soft multisets theory, Appl. Math. Sci., 5 (2011), 3561–3573. https://doi.org/10.1155/2011/479756 doi: 10.1155/2011/479756
    [26] X. Yang, D. Yu, J. Yang, C. Wu, Generalization of soft set theory: from crisp to fuzzy case, Fuzzy Inf. Eng., 2007,345–354. https://doi.org/10.1007/978-3-540-71441-5_39 doi: 10.1007/978-3-540-71441-5_39
    [27] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [28] K. V. Babitha, J. Sunil, Soft set relations and functions, Comput. Math. Appl., 60 (2010), 1840–1849. https://doi.org/10.1016/j.camwa.2010.07.014 doi: 10.1016/j.camwa.2010.07.014
    [29] J. H. Park, O. H. Kim, Y. C. Kwun, Some properties of equivalence soft set relations, Comput. Math. Appl., 63 (2012), 1079–1088. https://doi.org/10.1016/j.camwa.2011.12.013 doi: 10.1016/j.camwa.2011.12.013
    [30] P. K. Maji, R. K. Biswas, A. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math., 2001.
    [31] M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Appl. Soft Comput., 11 (2011), 3329–3332. https://doi.org/10.1016/j.asoc.2011.01.003 doi: 10.1016/j.asoc.2011.01.003
    [32] F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math., 234 (2010), 10–20. https://doi.org/10.1016/j.cam.2009.11.055 doi: 10.1016/j.cam.2009.11.055
    [33] B. X. Yao, J. L. Liu, R. X. Yan, Fuzzy soft set and soft fuzzy set, 2008 Fourth International Conference on Natural Computation, 6 (2008), 252–255. https://doi.org/10.1109/ICNC.2008.137
    [34] M. J. Borah, T. J. Neog, D. K. Sut, Relations on fuzzy soft sets, J. Math. Comput. Sci., 2 (2012), 515–534.
    [35] D. K. Sut, An application of fuzzy soft relation in decision making problems, Int. J. Math. Tre. Technol., 3 (2012), 51–54.
    [36] J. Močkoř, P. Hurtík, Approximations of fuzzy soft sets by fuzzy soft relations with image processing application, Soft Comput., 25 (2021), 6915–6925. https://doi.org/10.1007/s00500-021-05769-3 doi: 10.1007/s00500-021-05769-3
    [37] P. Thirunavukarasu, R. Suresh, V. Ashokkumar, Theory of complex fuzzy soft set and its applications, Int. J. Innov. Res. Sci. Technol., 3 (2017), 13–18.
    [38] D. E. Tamir, N. D. Rishe, A. Kandel, Complex fuzzy sets and complex fuzzy logic an overview of theory and applications, Fifty Years Fuzzy Logic Applications, 2015,661–681. https://doi.org/10.1007/978-3-319-19683-1_31 doi: 10.1007/978-3-319-19683-1_31
    [39] Y. Al-Qudah, N. Hassan, Complex multi-fuzzy soft expert set and its application, Int. J. Math. Comput. Sci, 14 (2019), 149–176.
    [40] X. Yang, T. Y. Lin, J. Yang, Y. Li, D. Yu, Combination of interval-valued fuzzy set and soft set, Comput. Math. Appl., 58 (2009), 521–527. https://doi.org/10.1016/j.camwa.2009.04.019 doi: 10.1016/j.camwa.2009.04.019
    [41] B. K. Tripathy, T. R. Sooraj, R. K. Mohanty, A new approach to interval-valued fuzzy soft sets and its application in decision-making, Adv. Comput. Intell., 2017, 3–10. https://doi.org/10.1007/978-981-10-2525-9_1 doi: 10.1007/978-981-10-2525-9_1
    [42] G. Selvachandran, P. K. Singh, Interval-valued complex fuzzy soft set and its application, Int.J. Uncertain. Quan., 8 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020362 doi: 10.1615/Int.J.UncertaintyQuantification.2018020362
    [43] K. Valášková, T. Klieštik, M. Mišánková, The role of fuzzy logic in decision making process, In 2014 2nd international conference on management innovation and business innovation, 44 (2014), 143–148.
    [44] C. Pappis, E. Mamdani, A fuzzy controller for a traffic junction, IEEE T. Syst. Man Cy.-S., 1977,707–717. https://doi.org/10.1109/TSMC.1977.4309605 doi: 10.1109/TSMC.1977.4309605
    [45] D. TeodorovicȂ, Invited review: Fuzzy sets theory applications in traffic and transportation, Eur. J. Oper. Res., 74 (1994), 379–390. https://doi.org/10.1016/0377-2217(94)90218-6 doi: 10.1016/0377-2217(94)90218-6
    [46] G. Tang, Y. Yang, X. Gu, F. Chiclana, P. Liu, F. Wang, A new integrated multi-attribute decision-making approach for mobile medical app evaluation under q-rung orthopair fuzzy environment, Expert Syst. Appl., 200, (2022). 117034. https://doi.org/10.1016/j.eswa.2022.117034 doi: 10.1016/j.eswa.2022.117034
    [47] G. Tang, F. Chiclana, P. Liu, A decision-theoretic rough set model with q-rung orthopair fuzzy information and its application in stock investment evaluation, Appl. Soft Comput., 91 (2020). 106212. https://doi.org/10.1016/j.eswa.2022.117034 doi: 10.1016/j.eswa.2022.117034
    [48] G. Tang, J. Long, X. Gu, F. Chiclana, P. Liu, F. Wang, Interval type-2 fuzzy programming method for risky multicriteria decision-making with heterogeneous relationship, Inform. Sci., 584 (2022), 184–211. https://doi.org/10.1016/j.ins.2021.10.044 doi: 10.1016/j.ins.2021.10.044
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1327) PDF downloads(77) Cited by(6)

Article outline

Figures and Tables

Figures(3)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog