Research article Special Issues

Stochastic dynamics of the fractal-fractional Ebola epidemic model combining a fear and environmental spreading mechanism

  • Received: 11 August 2022 Revised: 08 October 2022 Accepted: 11 October 2022 Published: 24 November 2022
  • MSC : 46S40, 47H10, 54H25

  • Recent Ebola virus disease infections have been limited to human-to-human contact as well as the intricate linkages between the habitat, people and socioeconomic variables. The mechanisms of infection propagation can also occur as a consequence of variations in individual actions brought on by dread. This work studies the evolution of the Ebola virus disease by combining fear and environmental spread using a compartmental framework considering stochastic manipulation and a newly defined non-local fractal-fractional (F-F) derivative depending on the generalized Mittag-Leffler kernel. To determine the incidence of infection and person-to-person dissemination, we developed a fear-dependent interaction rate function. We begin by outlining several fundamental characteristics of the system, such as its fundamental reproducing value and equilibrium. Moreover, we examine the existence-uniqueness of non-negative solutions for the given randomized process. The ergodicity and stationary distribution of the infection are then demonstrated, along with the basic criteria for its eradication. Additionally, it has been studied how the suggested framework behaves under the F-F complexities of the Atangana-Baleanu derivative of fractional-order $ \rho $ and fractal-dimension $ \tau $. The developed scheme has also undergone phenomenological research in addition to the combination of nonlinear characterization by using the fixed point concept. The projected findings are demonstrated through numerical simulations. This research is anticipated to substantially increase the scientific underpinnings for understanding the patterns of infectious illnesses across the globe.

    Citation: Saima Rashid, Fahd Jarad. Stochastic dynamics of the fractal-fractional Ebola epidemic model combining a fear and environmental spreading mechanism[J]. AIMS Mathematics, 2023, 8(2): 3634-3675. doi: 10.3934/math.2023183

    Related Papers:

  • Recent Ebola virus disease infections have been limited to human-to-human contact as well as the intricate linkages between the habitat, people and socioeconomic variables. The mechanisms of infection propagation can also occur as a consequence of variations in individual actions brought on by dread. This work studies the evolution of the Ebola virus disease by combining fear and environmental spread using a compartmental framework considering stochastic manipulation and a newly defined non-local fractal-fractional (F-F) derivative depending on the generalized Mittag-Leffler kernel. To determine the incidence of infection and person-to-person dissemination, we developed a fear-dependent interaction rate function. We begin by outlining several fundamental characteristics of the system, such as its fundamental reproducing value and equilibrium. Moreover, we examine the existence-uniqueness of non-negative solutions for the given randomized process. The ergodicity and stationary distribution of the infection are then demonstrated, along with the basic criteria for its eradication. Additionally, it has been studied how the suggested framework behaves under the F-F complexities of the Atangana-Baleanu derivative of fractional-order $ \rho $ and fractal-dimension $ \tau $. The developed scheme has also undergone phenomenological research in addition to the combination of nonlinear characterization by using the fixed point concept. The projected findings are demonstrated through numerical simulations. This research is anticipated to substantially increase the scientific underpinnings for understanding the patterns of infectious illnesses across the globe.



    加载中


    [1] G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore, J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Bio., 229 (2004), 119–126. https://doi.org/10.1016/j.jtbi.2004.03.006 doi: 10.1016/j.jtbi.2004.03.006
    [2] J. J. Muyembe-Tamfum, S. Mulangu, J. Masumu, J. M. Kayembe, A. Kemp, J. T. Paweska, Ebola virus outbreaks in Africa: past and present, Onderstepoort J. Vet. Res., 79 (2004), 451. https://doi.org/10.4102/ojvr.v79i2.451 doi: 10.4102/ojvr.v79i2.451
    [3] Z. Artstein, Limiting equations and stability of nonautenomous ordinary differential equations, In: The stability of dynamical systems, 1976, 57–76.
    [4] S. Robertson, B. Sc, Traces of Ebola can linger in semen for nine months, 2015. Available from: https://www.news-medical.net/news/20151015/Traces-of-Ebola-can-linger-in-semen-for-nine-months.aspx
    [5] J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron, A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135 (2007), 610–621. https://doi.org/10.1017/S0950268806007217 doi: 10.1017/S0950268806007217
    [6] J. A. Lewnard, M. L. Ndeffo-Mbah, J. A. Alfaro-Murillo, F. L. Altice, L. Bawo, T. G. Nyenswah, et al. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: A mathematical modeling analysis, Lancet. Infect. Dis., 14 (2014), 1189–1195. https://doi.org/10.1016/S1473-3099(14)70995-8 doi: 10.1016/S1473-3099(14)70995-8
    [7] M. V. Barbarossa, A. Dénes, G. Kiss, Y. Nakata, G. Röst, Z. Vizi, Transmission dynamics and final epidemic size of Ebola virus disease outbreaks with varying interventions, Plos One, 10 (2015), e0131398. https://doi.org/10.1371/journal.pone.0131398 doi: 10.1371/journal.pone.0131398
    [8] A. Khan, M. Naveed, M. Dur-e-Ahmad, M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone, Infect. Dis. Poverty, 4 (2015), 13. https://doi.org/10.1186/s40249-015-0043-3 doi: 10.1186/s40249-015-0043-3
    [9] Centers for disease control and prevention, 2014–2016 Ebola outbreak in west Africa. Available from: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html
    [10] M. L. Juga, F. Nyabadza, Modelling the Ebola virus disease dynamics in the presence of interfered interventions, Commun. Math. Bio. Neurosci., 2020 (2020), 16. https://doi.org/10.28919/cmbn/4506 doi: 10.28919/cmbn/4506
    [11] W. Ma, Y. Zhao, L. Guo, Y. Chen, Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model, ISA Trans., 124 (2022), 144–156. https://doi.org/10.1016/j.isatra.2022.01.008 doi: 10.1016/j.isatra.2022.01.008
    [12] N. Ma, W. Ma, Z. Li, Multi-Model selection and analysis for COVID-19, Fractal Fract., 5 (2021), 120. https://doi.org/10.3390/fractalfract5030120 doi: 10.3390/fractalfract5030120
    [13] Z. Mukandavire, A. Tripathi, C. Chiyaka, G. Musuka, F. Nyabadza, H. G. Mwambi, Modelling and analysis of the intrinsic dynamics of cholera, Differential Equations Dynam. Systems, 19 (2011), 253–265. http://dx.doi.org/10.1007/s12591-011-0087-1 doi: 10.1007/s12591-011-0087-1
    [14] World health organization, Ebola health outbreak 2018-2020-North Kivu/Ituri, 2020. Available from: https://www.who.int/emergencies/situations/Ebola-2019-drc-
    [15] B. Gomero, Latin Hypercube sampling and partial rank correlation coefficient analysis applied to an optimal control problem, University of Tennessee, 2012.
    [16] I. Podlubny, Fractional differential equations, San Diego: Academic press, 1999.
    [17] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [18] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [19] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [20] A. Atangana, S. Jain, A new numerical approximation of the fractal ordinary differential equation, Eur. Phys. J. Plus, 133 (2018), 37.
    [21] S. Rashid, R. Ashraf, F. Jarad, Strong interaction of Jafari decomposition method with nonlinear fractional-order partial differential equations arising in plasma via the singular and nonsingular kernels, AIMS Mathematics, 7 (2022), 7936–7963. https://doi.org/10.3934/math.2022444 doi: 10.3934/math.2022444
    [22] S. Rashid, F. Jarad, A. G. Ahmad, K. M. Abualnaja, New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms, Results Phys., 35 (2022), 105304. https://doi.org/10.1016/j.rinp.2022.105304 doi: 10.1016/j.rinp.2022.105304
    [23] J. L. Heeney, Ebola: hidden reservoirs, Nature, 527 (2015), 453–455. https://doi.org/10.1038/527453a
    [24] K. L. Cooke, Differential-difference equations, In: International symposium on nonlinear differential equations and nonlinear mechanics, Pittsburgh: Academic Press, 1963.
    [25] L. Arnold, Stochastic differential equations: theory and applications, New York: John Wiley and Sons, 1974. https://doi.org/10.1002/zamm.19770570413
    [26] A. Friedman, Stochastic differential equations and applications, New York: Dover Publications, 2013.
    [27] A. C. J. Luo, V. Afraimovich, Long-range interactions, stochasticity and fractional dynamics: dedicated to George M. Zaslavsky (1935―2008), Springer, 2010.
    [28] E. Appiah, G. Ladde, Linear hybrid deterministic dynamic modeling for time-to-event processes: state and parameter estimations, Int. J. Stat. Probab., 5 (2016). http://dx.doi.org/10.5539/ijsp.v5n6p32
    [29] R. J. Elliott, Stochastic calculus and applications, Berlin: Springer, 1982.
    [30] D. Wanduku, G. S. Ladde, A two-scale network dynamic model for human mobility process, Math. Biosci., 229 (2011), 1–15. http://dx.doi.org/10.1016/j.mbs.2010.11.003 doi: 10.1016/j.mbs.2010.11.003
    [31] G. S. Ladde, L. Wu, Development of nonlinear stochastic models by using stock price data and basic statistics, Neural Parallel Sci. Comput., 18 (2010), 269–282.
    [32] A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Difference Equ., 2021 (2021), 57. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2
    [33] B. S. T. Alkahtani, S. S. Alzaid, Stochastic mathematical model of Chikungunya spread with the global derivative, Results Phys., 20 (2021), 103680. https://doi.org/10.1016/j.rinp.2020.103680 doi: 10.1016/j.rinp.2020.103680
    [34] T. Cui, P. J. Liu, A. Din, Fractal–fractional and stochastic analysis of norovirus transmission epidemic model with vaccination efects, Sci. Rep., 11(2021), 24360. https://doi.org/10.1038/s41598-021-03732-8 doi: 10.1038/s41598-021-03732-8
    [35] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ashraf, F. Jarad, A comprehensive analysis of the stochastic fractal–fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [36] S. Qureshi, A. Yusuf, S. Aziz, Fractional numerical dynamics for the logistic population growth model under conformable Caputo: a case study with real observations, Phys. Scrpta, 96 (2021), 114002. http://dx.doi.org/10.1088/1402-4896/ac13e0 doi: 10.1088/1402-4896/ac13e0
    [37] S. Qureshi, M. M. Chang, A. A. Shaikh, Analysis of series RL and RC circuits with time-invariant source using truncated M, atangana beta and conformable derivatives, J. Ocean Eng. Sci., 6 (2021), 217–227. https://doi.org/10.1016/j.joes.2020.11.006 doi: 10.1016/j.joes.2020.11.006
    [38] O. A. Arqub, A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, J. King Saud. Uni. Sci., 25 (2013), 73–81. https://doi.org/10.1016/j.jksus.2012.01.003 doi: 10.1016/j.jksus.2012.01.003
    [39] H. J. Alsakaji, F. A. Rihan and A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800. https://doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
    [40] T. Khan, Z. S. Qian, R. Ullah, B. Al-Alwan, G. Zaman, Q. M. Al-Mdallal, et.al, The transmission dynamics of hepatitis B virus via the fractional-order epidemiological model, Complexity, 2021 (2021), 8752161. https://doi.org/10.1155/2021/8752161 doi: 10.1155/2021/8752161
    [41] J. M. Shen, Z. H. Yang, W. M. Qian, W. Zhang, Y. M. Chu, Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843–53. http://doi.org/10.7153/mia-2020-23-68 doi: 10.7153/mia-2020-23-68
    [42] S. Rashid, B. Kanwal, F. Jarad, S. K. Elagan, A peculiar application of the fractal-fractional derivative in the dynamics of a nonlinear scabies model, Result Phys., 38 (2022), 105634. https://doi.org/10.1016/j.rinp.2022.105634 doi: 10.1016/j.rinp.2022.105634
    [43] A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal–fractional operators, Chaos Solitons Fractals, 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020
    [44] S. Rashid, F. Jarad, A. G. Ahmad, A novel fractal-fractional order model for the understanding of an oscillatory and complex behavior of human liver with non-singular kernel, Results Phys., 35 (2022), 105292. https://doi.org/10.1016/j.rinp.2022.105292 doi: 10.1016/j.rinp.2022.105292
    [45] A. Dlamini, E. F. D. Goufo, M. Khumalo, On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system, AIMS Mathematics, 6 (2021), 12395–12421. https://doi.org/10.3934/math.2021717 doi: 10.3934/math.2021717
    [46] X. R. Mao, Stochastic differential equations and their applications, Woodhead Publishing, 1997.
    [47] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [48] C. Ji, D. Jiang, Treshold behavior of a stochastic SIR model, Appl. Math. Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [49] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–27. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [50] X. B. Zhang, X. D. Wang, H. F. Huo, Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Phys. A, 531 (2019), 121548. https://doi.org/10.1016/j.physa.2019.121548 doi: 10.1016/j.physa.2019.121548
    [51] R. Z. Khasminskii, Stochastic stability of diferential equations, Springer, 2012.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1801) PDF downloads(113) Cited by(4)

Article outline

Figures and Tables

Figures(17)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog