In order to evaluate the competitive advantages and dependability of two products in a competitive environment, comparative lifespan testing becomes essential. We examine the inference problems that occur when two product lines follow the Nadarajah-Haghighighi distribution in the setting of joint type-II censoring. In the present study, we derived the maximum likelihood estimates for the Nadarajah-Haghighi population parameters. Additionally, a Fisher information matrix was constructed based on these maximum likelihood estimations. Furthermore, Bayesian estimators and their corresponding posterior risks were calculated, considering both gamma and non-informative priors under symmetric and asymmetric loss functions. To assess the performance of the overall parameter estimators, we conducted a Monte Carlo simulation using numerical methods. Lastly, a real data analysis was carried out to validate the accuracy of the models and methods discussed.
Citation: Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr. Reliability analysis for two populations Nadarajah-Haghighi distribution under Joint progressive type-II censoring[J]. AIMS Mathematics, 2024, 9(4): 10333-10352. doi: 10.3934/math.2024505
In order to evaluate the competitive advantages and dependability of two products in a competitive environment, comparative lifespan testing becomes essential. We examine the inference problems that occur when two product lines follow the Nadarajah-Haghighighi distribution in the setting of joint type-II censoring. In the present study, we derived the maximum likelihood estimates for the Nadarajah-Haghighi population parameters. Additionally, a Fisher information matrix was constructed based on these maximum likelihood estimations. Furthermore, Bayesian estimators and their corresponding posterior risks were calculated, considering both gamma and non-informative priors under symmetric and asymmetric loss functions. To assess the performance of the overall parameter estimators, we conducted a Monte Carlo simulation using numerical methods. Lastly, a real data analysis was carried out to validate the accuracy of the models and methods discussed.
[1] | Y. Abdel-Aty, M. Kayid, G. Alomani, Generalized Bayes estimation based on a Joint type-II censored sample from K-Exponential populations, Mathematics, 11 (2023), 2190. https://doi.org/10.3390/math11092190 doi: 10.3390/math11092190 |
[2] | N. Alotaibi, A. S. Al-Moisheer, I. Elbatal, M. Shrahili, M. Elgarhy, E. M. Almetwally, Half logistic inverted Nadarajah-Haghighi distribution under ranked set sampling with applications, Mathematics, 11 (2023), 1693. https://doi.org/10.3390/math11071693 doi: 10.3390/math11071693 |
[3] | K. Andrzejczak, L. Bukowski, A method for estimating the probability distribution of the lifetime for new technical equipment based on expert judgement, Eksploat. Niezawodn., 23 (2021), 757–769. https://doi.org/10.17531/ein.2021.4.18 doi: 10.17531/ein.2021.4.18 |
[4] | S. Asadi, H. Panahi, S. Anwar, S. A. Lone, Reliability estimation of Burr type III distribution under improved adaptive progressive censoring with application to surface coating, Eksploat. Niezawodn., 25 (2023), https://doi.org/10.17531/ein/163054 |
[5] | S. K. Ashour, A. A. El-Sheikh, A. Elshahhat, Inferences and optimal censoring schemes for progressively first-failure censored Nadarajah-Haghighi distribution, Sankhya A, 2020, 1–39. |
[6] | R. Azimi, M. Esmailian, A new generalization of Nadarajah-Haghighi distribution with application to cancer and COVID-19 deaths data, Math. Slovaca, 73 (2023), 221–244. https://doi.org/10.1515/ms-2023-0020 doi: 10.1515/ms-2023-0020 |
[7] | B. Long, Z. F. Jiang, Estimation and prediction for two-parameter Pareto distribution based on progressively double type-II hybrid censored data, AIMS Math., 8 (2023), 15332–15351. https://doi.org/10.3934/math.2023784 doi: 10.3934/math.2023784 |
[8] | H. S. Migdadi, N. M. Al-Olaimat, M. Mohiuddin, O. Meqdadi, Statistical inference for the Power Rayleigh distribution based on adaptive progressive type-II censored data, AIMS Math., 8 (2023), 22553–22576. https://doi.org/10.3934/math.20231149 doi: 10.3934/math.20231149 |
[9] | M. S. Eliwa, E. A. Ahmed, Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms, AIMS Math., 8 (2023), 29–60. https://doi.org/10.3934/math.2023002 doi: 10.3934/math.2023002 |
[10] | H. P. Ren, X. Hu, Estimation for inverse Weibull distribution under progressive type-II censoring scheme, AIMS Math., 8 (2023), 22808–22829. https://doi.org/10.3934/math.20231162 doi: 10.3934/math.20231162 |
[11] | A. Elshahhat, V. K. Sharma, H. S. Mohammed, Statistical analysis of progressively first-failure-censored data via beta-binomial removals, AIMS Math., 8 (2023), 22419–22446. https://doi.org/ 10.3934/math.20231144 doi: 10.3934/math.20231144 |
[12] | X. Hu, H. P. Ren, Statistical inference of the stress-strength reliability for inverse Weibull distribution under an adaptive progressive type-II censored sample, AIMS Math., 8 (2023), 28465–28487. https://doi.org/10.3934/math.20231457 doi: 10.3934/math.20231457 |
[13] | N. Balakrishnan, M. Burkschat, E. Cramer, G. Hofmann, Fisher information based progressive censoring plans, Comput. Stat. Data Anal., 53 (2008), 366–380. https://doi.org/10.1016/j.csda.2008.07.038 doi: 10.1016/j.csda.2008.07.038 |
[14] | N. Balakrishnan, E. Cramer, The art of progressive censoring: Applications to reliability and quality, Springer: New York, NY, USA, 2014. |
[15] | N. Balakrishnan, S. Feng, L. Kin-yat, Exact likelihood inference for k exponential populations under joint progressive type-II censoring, Commun. Stat.-Simul. C., 44 (2015), 902–923. https://doi.org/10.1080/03610918.2013.795594 doi: 10.1080/03610918.2013.795594 |
[16] | N. Celik, C. T. Guloksuz, A new lifetime distribution, Eksploat. Niezawodn., 19 (2017), 634–639, https://doi.org/10.17531/ein.2017.4.18 |
[17] | K. C. Chiou, K. S. Chen, Lifetime performance evaluation model based on quick response thinking, Eksploat. Niezawodn., 24 (2022), 1–6. http://doi.org/10.17531/ein.2022.1.1 doi: 10.17531/ein.2022.1.1 |
[18] | M. Doostparast, M. V. Ahmadi, J. Ahmadi, Bayes estimation based on joint progressive type-II censored data under LINEX loss function, Commun. Stat.-Simul. C., 42 (2013), 1865–1886. |
[19] | A. Elshahhat, R. Alotaibi, M. Nassar, Inferences for Nadarajah-Haghighi Parameters via type-II adaptive progressive hybrid censoring with applications, Mathematics, 10 (2022), 3775. https://doi.org/10.3390/math10203775 doi: 10.3390/math10203775 |
[20] | L. A. Ferreira, J. L. Silva, Parameter estimation for Weibull distribution with right censored data using EM algorithm, Eksploat. Niezawodn., 19 (2017), 310–315. https://doi.org/10.17531/ein.2017.2.20 doi: 10.17531/ein.2017.2.20 |
[21] | R. Goel, H. Krishna, Likelihood and Bayesian inference for k Lindley populations under joint type-II censoring scheme, Commun. Stat.-Simul. C., 52 (2021), 3475–3490. https://doi.org/10.1080/03610918.2021.1937648 doi: 10.1080/03610918.2021.1937648 |
[22] | R. Goel, H. Krishna, Statistical inference for two Lindley populations under balanced joint progressive type-II censoring scheme, Comput. Stat., 37 (2021), 263–286. https://doi.org/10.1007/s00180-021-01122-2 doi: 10.1007/s00180-021-01122-2 |
[23] | W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97 doi: 10.1093/biomet/57.1.97 |
[24] | H. Krishna, R. Goel, Inferences for two Lindley populations based on joint progressive type-II censored data, Commun. Stat.-Simul. C., 51 (2020), 4919–4936. https://doi.org/10.1080/03610918.2020.1751851 doi: 10.1080/03610918.2020.1751851 |
[25] | N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114 |
[26] | S. Mondal, D. Kundu, Point and interval estimation of Weibull parameters based on joint progressively censored data, Sankhya B, 81 (2019), 1–25. |
[27] | S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543–558. https://doi.org/10.1080/02331881003678678 doi: 10.1080/02331881003678678 |
[28] | H. Panahi, S. A. Lone, Estimation procedures for partially accelerated life test model based on unified hybrid censored sample from the Gompertz distribution, Eksploat. Niezawodn., 24 (2022), 427–436. http://doi.org/10.17531/ein.2022.3.4 doi: 10.17531/ein.2022.3.4 |
[29] | R. Pandey, P. Srivastava, Bayesian inference for two log-logistic populations under joint progressive type II censoring schemes, Int. J. Syst. Assur. Eng. Manag., 13 (2022), 2981–2991. https://doi.org/10.1007/s13198-022-01769-0 doi: 10.1007/s13198-022-01769-0 |
[30] | F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics, 15 (1963), 375–383. |
[31] | Y. Qiao, W. Gui, Statistical inference of weighted exponential distribution under Joint progressive type-II censoring, Symmetry, 14 (2022), 2031. https://doi.org/10.3390/sym14102031 doi: 10.3390/sym14102031 |
[32] | A. Rasouli, N. Balakrishnan, Exact likelihood inference for two exponential populations under joint progressive type-II censoring, Commun. Stat.-Theor. M., 39 (2010), 2172–2191. https://doi.org/10.1080/03610920903009418 doi: 10.1080/03610920903009418 |
[33] | M. A. Selim, Estimation and prediction for Nadarajah-Haghighi distribution based on record values, Pak. J. Stat., 34 (2018), 77–90. |
[34] | Y. Yan, J. Zhou, Y. Yin, H. Nie, X. Wei, T. Liang, Reliability estimation of retraction mechanism kinematic accuracy under small sample, Eksploat. Niezawodn., 2023. https://doi.org/10.17531/ein/174777 |