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Abstract: In order to evaluate the competitive advantages and dependability of two products in a
competitive environment, comparative lifespan testing becomes essential. We examine the inference
problems that occur when two product lines follow the Nadarajah-Haghighighi distribution in the
setting of joint type-II censoring. In the present study, we derived the maximum likelihood estimates
for the Nadarajah-Haghighi population parameters. Additionally, a Fisher information matrix was
constructed based on these maximum likelihood estimations. Furthermore, Bayesian estimators and
their corresponding posterior risks were calculated, considering both gamma and non-informative
priors under symmetric and asymmetric loss functions. To assess the performance of the overall
parameter estimators, we conducted a Monte Carlo simulation using numerical methods. Lastly, a
real data analysis was carried out to validate the accuracy of the models and methods discussed.

Keywords: Nadarajah-Haghighighi distributions; Bayesian estimation; Joint progressive censoring
scheme; MCMC method
Mathematics Subject Classification: 62N05, 62F10

1. Introduction

1.1. Joint progressive type-II censoring scheme

Applying censoring techniques to a single population entails specific limitations. While progressive
type-II censoring permits the exclusion of specific data, obtaining a sufficient number of observations
remains a costly endeavor. Moreover, if our emphasis is on understanding the interactions and
interdependencies among populations, experiments conducted solely on a single population may not

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024505


10334

provide conclusive evidence.
The joint progressive type-II censoring scheme (JPT-II-CS) provides notable benefits for comparing

the lifespan distributions of products produced by different units within the same facility. JPT-II-CS
has attracted considerable attention in the research community, with numerous authors exploring JPT-
II-CS and related inference methods in the literature. For instance, Rasouli and Balakrishnan [32],
Doostparast et al. [18], Balakrishnan et al. [15], Mondal and Kundu [26], Krishna and Goel [24], Goel
and Krishna [21], and Goel and Krishna [22] have contributed to this body of work.

Recently, a multitude of researchers have investigated a range of strategies and different lifetime
models in various applications. For more detailed information, please consult the publications by
Pandey and Srivastava [29], Qiao and Gui [31], Abdel-Aty et al. [1], Ferreira and Silva [20], Celik and
Guloksuz [16], Chiou and Chen [17], Panahi and Lone [28], Yan et al. [34], Asadi et al. [4, 7–12].

Within the JPT-II-CS framework, two samples, one from Population-A (Pop-A) and the other from
Population-B (Pop-B), each comprising m and n units, are amalgamated for a life-testing experiment.
Let k be the total number of observed failures in this experiment. Moreover, let R1,R2, ...,Rk signify
the number of units removed, such that

∑k
i=1(Ri + 1) = m + n, where Ri = S i + Ti, and Ri is the sum

of units removed from Pop-A (S i) and Pop-B (Ti) at the i-th stage. Considering the joint sample upon
the first failure event denoted as W1, R1 = S 1 + T1 units are randomly chosen from the remaining pool
of m + n − 1 surviving units. Here S 1 and T1 represent the units removed from Population (A) and
Population (B) respectively. In a similar fashion, at the second stage, R2 = S 2 + T2 units are randomly
selected from the remaining pool of m + n − 2 − R1 surviving units and so forth. Finally, at the k-th
failure, all the remaining Rk = n + m− k−

∑k
i=1 Ri surviving units are removed. It is crucial to highlight

that when R1 = R2 = ... = Rk = 0, it implies that S i = Ti = 0 for all i = 1, 2, ..., k, simplifying the
JPT-II-CS to the scenario of complete samples. Furthermore, if R1 = R2 = ... = Rk−1 = 0, resulting in
Rk = n+m−k, then the censoring scheme transforms back to a conventional Type-II censoring scheme
for two distinct samples.

In the context of the JPT-II-CS framework, the observed data comprises (W,Z, S ), where W is
depicted as (W1,W2, ...,Wk), where k is a specified integer such that 1 6 k < m + n. Z is denoted as
(Z1,Z2, ...,Zk), where

Zi =

1 if Wi drawn from the X-sample,
0 if Wi drawn from the Y-sample .

Moreover, S is depicted as (S 1, S 2, ..., S k). We employ k1 to indicate the number of failed units from
Pop-A, and k2 to signify the count of failed units from Pop-B, where k1 =

∑k
i=1 Zi and k2 = k −

∑k
i=1 Zi,

respectively.

1.2. Nadarajah-Haghighi distribution

The exponential distribution is renowned for its constant failure rate and memoryless property.
However, when exploring phenomena in lifetime and reliability studies, opting for the exponential
model may not be conducive, as it lacks the ability to exhibit both monotone (increasing and
decreasing) and non-monotone (bathtub and upside-down bathtub) failure rate behaviors. To address
this limitation and provide flexibility, alternative generalizations of the exponential distribution have
been proposed, such as the Nadarajah–Haghighi distribution (NHD). Introduced by Nadarajah and
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Haghighi [27], this distribution serves as a widespread statistical extension of the conventional
exponential distribution and has been recently named the NHD, abbreviating the authors’ names. The
cumulative distribution function (CDF) of the NHD is expressed as follows (see Figure 1):

F(x) = 1 − e
[
1−
(

1+αx
)γ]
, x > 0, α, γ > 0. (1.1)

Additionally, its corresponding probability density function (PDF) is given by:

f (x) = αγ
(
1 + αx

)γ−1e
[
1−
(

1+αx
)γ]
, x > 0, α, γ > 0. (1.2)

In this context, γ and α denote the shape and scale parameters, respectively. By setting γ = 1
for the variable in Eq (1.1), the inverted exponential distribution is presented as a particular case.
Nadarajah and Haghighi [27] demonstrated that the density of the NHD may exhibit a decreasing
trend. Furthermore, its shapes, both unimodal and the hazard rate function, can resemble the
increasing, decreasing, or constant patterns observed in gamma, Weibull, and generalized-exponential
distributions.

˜
Figure 1. PDF and CDF of the NHD for different values of parameters.

Several researchers have delved into the estimation challenges associated with the NHD. For
instance, Selim [33] investigated the estimation and prediction of the NHD based on record values.
Inferences and ideal censoring techniques for the progressively first-failure censored NHD were
covered by Ashour et al. [5]. Elshahhat et al. [19] used type-II adaptive progressive hybrid censoring
with applications to investigate inferences for Nadarajah-Haghighighi parameters. The half logistic
inverted NHD was studied by Alotaibi et al. [2] under ranked set Sampling with applications. With
applications to COVID-19 mortality data and cancer data, Azimi and Esmailian [6] examined a novel
generalisation of the NHD.

In this publication, we tackle the challenges associated with estimating the NHD. We present both
Bayesian and maximum likelihood estimators (MLEs) for the NHD using the JPT-II-CS, accompanied
by their corresponding confidence intervals. We derive Bayes estimators for the squared error (SE)
and linear exponential (LINEX) loss functions, assuming independent gamma priors. Monte Carlo
simulations are conducted to assess the performance of various estimators, evaluating them based on
mean squared error (MSE) and average values. Additionally, we scrutinize the average confidence
lengths of the 95% two-sided interval estimations to gauge their effectiveness. Finally, we illustrate the
practical application of our approach using real-world datasets.

The following outlines the order of the remaining sections in the paper following this introduction:
Section 2 examines the concept of sampling significance. Section 3 explains the process of
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obtaining maximum probability estimates for the unknown parameters. The construction of the Fisher
information matrix (FIM) using MLEs is done in Section 4. In Section 5, Bayes estimation is performed
with various loss functions using gamma and non-informative priors. Section 6 presents a Monte Carlo
simulation analysis along with the results, serving as model validation. Two real data analyses to
demonstrate each of the suggested methodologies are carried out in Section 7. Section 8 provides a
concise summary of the main points.

2. Model description

In a particular context, we possess independent and identically distributed (iid) lifetimes, denoted
as X1, X2, ..., Xm, originating from Pop-A. These lifetimes adhere to a NHD characterized by the CDF
F(x) and the PDF f(x). In the same vein, we possess Y1,Y2, ...,Yn as iid lifetimes from Pop-B, also
adhering to a NHD defined by the CDF G(y) and the PDF g(y). Given a JPT-II-CS (m, n); R1,R2, ...,Rk,
we can define B = (W,Z, S ) as the JPT-II-CS of size k obtained from Pop-A and Pop-B. It comprises
(w1, z1, s1), (w2, z2, s2), ..., (wk, zk, sk). The likelihood function based on the observed JPT-II-CS can be
expressed as follows:

L(α1, α2, γ1, γ2|data) = C
r∏

i=1

[
[ f (wi)]zi[g(wi)]1−zi

]
[F̄(wi)]si[Ḡ(wi)]ti , (2.1)

where w1 ≤ w2 ≤ . . . ≤ wk, F̄ = 1 − F, Ḡ = 1 −G,
∑k

i=1 si +
∑k

i=1 ti =
∑k

i=1 Ri and C = B1B2 with

B1 =

k∏
j=1

{(
m −

j−1∑
i=1

zi −

j−1∑
i=1

si

)
z j +

(
n −

j−1∑
i=1

(1 − zi) −
j−1∑
i=1

(Ri − si)
)
(1 − z j)

}
,

B2 =

k∏
j=1


(

m −
∑ j−1

i=1 zi −
∑ j−1

i=1 si

si

) (
n −

∑ j−1
i=1 (1 − zi) −

∑ j−1
i=1 (Ri − si)

ti

)
(

m + n − j −
∑ j−1

i=1 Ri

Ri

)
 .

3. Maximum likelihood estimation

MLE stands as a powerful statistical method widely employed in the field of data analysis and
parameter estimation. In this manuscript, we employ MLE to estimate the parameters of the NHD. The
main principle of MLE is to find the parameter values that maximize the likelihood function, which
quantifies the probability of observing the given data under a specific set of parameter values. By
maximizing the likelihood, we aim to identify the parameter values that make the observed data most
plausible. The MLE estimates are obtained by solving an optimization problem, either analytically
or numerically, to find the parameter values that maximize the likelihood function. These estimates
are known to possess desirable properties, such as efficiency and consistency, which means that they
converge to the true parameter values as the sample size increases. MLE is a versatile and widely
applicable method that plays a crucial role in statistical inference and parameter estimation.
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The following outcome is obtained by applying the CDF and PDF from Eqs (1.1) and (1.2) to the
likelihood equation given in (2.1):

L(α1, α2, γ1, γ2|data) =αk1
1 γ

k1
1 α

k2
2 γ

k2
2 e(γ1−1)

∑k
i=1 zi ln(1+α1wi)e

∑k
i=1 zi[1−(1+α1wi)γ1 ]

× e(γ2−1)
∑k

i=1(1−zi) ln(1+α2wi)e
∑k

i=1(1−zi)[1−(1+α2wi)γ2 ]

× e
∑k

i=1 si[1−(1+α1wi)γ1 ]e
∑k

i=1 ti[1−(1+α2wi)γ2 ].

(3.1)

Given that the log-likelihood function exhibits the same monotonic behavior as the likelihood function,
it is expressed as follows:

`(α1, α2, γ1, γ2|data) =k1 lnα1 + k1 ln γ1 + k2 lnα2 + k2 ln γ2 + (γ1 − 1)
k∑

i=1

zi ln(1 + α1wi)

+

k∑
i=1

zi[1 − (1 + α1wi)γ1] + (γ2 − 1)
k∑

i=1

(1 − zi) ln(1 + α2wi)

+

k∑
i=1

(1 − zi)[1 − (1 + α2wi)γ2] +

k∑
i=1

si[1 − (1 + α1wi)γ1]

+

k∑
i=1

ti[1 − (1 + α2wi)γ2].

(3.2)

By partially differentiating Eq (3.2) with respect to α1, α2, γ1 and γ2 and setting the derivatives equal
to zero, the resulting equations are as follows.

k1

α1
+ (γ1 − 1)

k∑
i=1

ziwi

(1 + α1wi)
−

k∑
i=1

ziwiγ1(1 + α1wi)γ1−1 −

k∑
i=1

siwiγ1(1 + α1wi)γ1−1 = 0, (3.3)

k2

α2
+ (γ2 − 1)

k∑
i=1

(1 − zi)wi

(1 + α2wi)
−

k∑
i=1

(1 − zi)wiγ2(1 + α2wi)γ2−1 −

k∑
i=1

tiwiγ2(1 + α2wi)γ2−1 = 0, (3.4)

k1

γ1
+

k∑
i=1

zi ln(1 + α1wi) −
k∑

i=1

zi(1 + α1wi)γ1 ln(1 + α1wi) −
k∑

i=1

si(1 + α1wi)γ1 ln(1 + α1wi) = 0, (3.5)

k2

γ2
+

k∑
i=1

(1−zi) ln(1+α2wi)−
k∑

i=1

(1−zi)(1+α2wi)γ2 ln(1+α2wi)−
k∑

i=1

ti(1+α2wi)γ2 ln(1+α2wi) = 0. (3.6)

It’s evident, as indicated in Eqs (3.3)–(3.6), that explicit expressions for the MLEs α1, α2, γ1, and γ2

are not available. Hence, we recommend using numerical iterative methods, like the Newton-Raphson
procedure, to derive the values of α1, α2, γ1, and γ2.
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4. Fisher information matrix

We investigate approximate confidence intervals in this context for the unknown parameters
(α1, α2, γ1, γ2), using large sample approximations of the MLEs, which are often known as asymptotic
theory. We do this by using the observed FIM to calculate the MLEs’ asymptotic variance for the
unknown parameters. Next, the observed FIM is represented as:

I−1(α1, α2, γ1, γ2) =


− ∂2`
∂α2

1
− ∂2`
∂α1∂α2

− ∂2`
∂α1∂γ1

− ∂2`
∂α1∂γ1

− ∂2`
∂α2∂α1

− ∂2`
∂α2

2
− ∂2`
∂α2∂γ1

− ∂2`
∂α2∂γ2

− ∂2`
∂γ1∂α1

− ∂2`
∂γ1∂α2

− ∂2`
∂γ2

1
− ∂2`
∂γ1∂γ2

− ∂2`
∂γ2∂α1

− ∂2`
∂γ2∂α2

− ∂2`
∂γ2∂γ1

− ∂2`
∂γ2

2



−1

, (4.1)

I−1(α1, α2, γ1, γ2) =


v̂ar(α̂1) cov(α̂1, α̂2) cov(α̂1, γ̂1) cov(α̂1, γ̂2)

cov(α̂2, α̂1) v̂ar(α̂2) cov(α̂2, γ̂1) cov(α̂2, γ̂2)
cov(γ̂1, α̂1) cov(γ̂1, α̂2) v̂ar(γ̂1) cov(γ̂1, γ̂2)
cov(γ̂2, α̂1) cov(γ̂2, α̂2) cov(γ̂2, γ̂1) v̂ar(γ̂2)

 . (4.2)

Derived from the log-likelihood function in (3.2), the following is evident:

−k1

α2
1

+(γ1 − 1)
k∑

i=1

−2ziw2
i (1 + α1wi)

(1 + α1wi)2 −

k∑
i=1

ziw2
i γ1(γ1 − 1)(1 + α1wi)γ1−2

−

k∑
i=1

siw2
i γ1(γ1 − 1)(1 + α1wi)γ1−2 = 0,

(4.3)

−k2

α2
2

+ (γ2 − 1)
k∑

i=1

−2(1 − zi)w2
i (1 + α2wi)

(1 + α2wi)2 −

k∑
i=1

(1 − zi)w2
i γ2(γ2 − 1)(1 + α2wi)γ2−2

−

k∑
i=1

tiw2
i γ2(γ2 − 1)(1 + α2wi)γ2−2 = 0,

(4.4)

−k1

γ2
1

−

k∑
i=1

zi(1 + α1wi)α1[ln(1 + α1wi)]2 −

k∑
i=1

si(1 + α1wi)γ1[ln(1 + α1wi)]2 = 0, (4.5)

−k2

γ2
2

−

k∑
i=1

(1 − zi)(1 + α2wi)α2[ln(1 + α2wi)]2 −

k∑
i=1

ti(1 + α2wi)γ2[ln(1 + α2wi)]2 = 0. (4.6)

Calculating the asymptotic confidence intervals (ACIs) for the parameters α1, α2, γ1, and γ2 is feasible
by leveraging the asymptotic normality of the maximum likelihood estimators (MLEs). This enables
us to estimate the (1 − µ)100% ACIs for α1, α2, γ1, and γ2 in an approximate manner(

α̂1 ± Zµ/2
√

v̂ar(α̂1)
)
,

(
α̂2 ± Zµ/2

√
v̂ar(α̂2)

)
,

(
γ̂1 ± Zµ/2

√
v̂ar(γ̂1)

)
and

(
γ̂2 ± Zµ/2

√
v̂ar(γ̂2)

)
. (4.7)

Here, Zµ/2 represents the upper µ/2th percentile of the standard normal distribution.
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5. Bayesian inference

In the field of reliability analysis, there are instances where classical estimation using the MLE
approach may encounter challenges, particularly when the available data lacks sufficient sampling
details. To address this issue, incorporating prior information in conjunction with Bayesian analysis
proves beneficial. This section focuses on the Bayesian approach for estimating unknown parameters
and deriving the corresponding credible intervals (CRIs).

5.1. Prior distribution

In Bayesian statistical inference, the role of the prior distribution is pivotal as it represents our
existing knowledge or beliefs regarding the parameters, facilitating a more accurate estimation of the
posterior distribution. The selection of an appropriate prior distribution is crucial as it can influence
the ultimate results of the inference. The gamma distribution, recognized for its flexibility and
favorable properties, is a frequently chosen continuous probability distribution for Bayesian parameter
priors. The parameters of the gamma distribution can be adjusted to accommodate diverse prior
beliefs. Additionally, the gamma distribution exhibits conjugacy, signifying that when employed as
a prior distribution, its product with the likelihood function remains a gamma distribution, simplifying
posterior distribution calculations.

The choice of hyperparameter values, like any other parameter selection in Bayesian analysis,
depends on various factors including prior knowledge, the characteristics of the data, and modeling
considerations. Without specific details about the context of your simulation, I can provide some
general considerations:

• Prior Knowledge: If you have prior information about the hyperparameters, such as from previous
studies or domain expertise, you might set them based on that knowledge. The values could reflect
your beliefs about the likely range or distribution of the true hyperparameters.
• Empirical Bayes: If you don’t have strong prior knowledge, you might consider using an

empirical Bayes approach. This involves estimating the hyperparameters from the data itself.
In such cases, the hyperparameters are determined based on the observed data distribution.
• Conjugate Priors: If you choose hyperparameters that make your prior distribution conjugate to

the likelihood, it can simplify computations. However, this choice might not always reflect your
beliefs about the parameters.
• Non-Informative Priors: A common choice for hyperparameters, especially in the absence of

strong prior information, is to set them to values that make the prior distribution non-informative
or weakly informative. For instance, setting hyperparameters to achieve a flat or diffuse prior.

In this study, we assert that ci and di are both greater than 0, where i takes values 1, 2, 3, and 4. This
results in the following relationships:

π1(α1) ∝ αc1−1
1 e−d1α1 , α1 > 0, c1, d1 > 0,

π2(α2) ∝ αc2−1
2 e−d2α2 , α2 > 0, c2, d2 > 0,

π3(γ1) ∝ γc3−1
1 e−d3γ1 , γ1 > 0, c3, d3 > 0.

π4(γ2) ∝ γc4−1
2 e−d4γ2 , γ2 > 0, c4, d4 > 0.
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In this scenario, ci and di where i = 1, 2, 3, 4, are introduced to integrate prior information concerning
the unidentified parameters. Consequently, the joint prior density function for α1, α2, γ1, and γ2 is
structured as follows:

π(α1, α2, γ1, γ2) ∝αc1−1
1 αc2−1

2 γc3−1
1 γc4−1

2 e−d1α1−d2α2−d3γ1−d4γ2 . (5.1)

5.2. Posterior distribution

The posterior distribution is a fundamental concept in Bayesian statistics, playing a crucial role
in the inference process. It represents the updated belief or knowledge about a parameter or set of
parameters after taking into account both prior information and observed data. In Bayesian analysis,
the posterior distribution is obtained by combining the prior distribution, which encapsulates our initial
beliefs, with the likelihood function, which quantifies the probability of observing the data given
the parameter values. The posterior distribution provides a comprehensive summary of uncertainty,
allowing us to estimate parameters, make predictions, and conduct various analyses. It serves as a
bridge between prior knowledge and observed evidence, enabling us to make informed decisions and
update our understanding of the underlying phenomenon.

By merging Eqs (3.1) and (5.1), it becomes viable to represent the joint posterior density function
for α1, α2, γ1 and γ2 as following

π∗(α1, α2, γ1, γ2|data) =
π(α1, α2, γ1, γ2)L(α1, α2, γ1, γ2|data)∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
0
π(α1, α2, γ1, γ2)L(α1, α2, γ1, γ2|data)dα1dα2dγ1dγ2

. (5.2)

The joint posterior density function for α1, α2, γ1 and γ2 can be formulated as:

π∗(α1, α2, γ1, γ2|data) ∝ αk1+c1−1
1 γk1+c2−1

1 αk2+c3−1
2 γk2+c4−1

2 e(γ1−1)
∑k

i=1 zi ln(1+α1wi)

× e
∑k

i=1 zi[1−(1+α1wi)]γ1 e(γ2−1)
∑k

i=1(1−zi) ln(1+α2wi)e
∑k

i=1(1−zi)[1−(1+α2wi)]γ2

× e
∑k

i=1 si[1−(1+α1wi)]γ1 e
∑k

i=1 ti[1−(1+α2wi)]γ2 e−d1α1−d2α2−d3γ1−d4γ2 .

(5.3)

Evidently, owing to the nonlinear form of (5.3), there is no closed-form solution for the Bayes
estimators of α1, α2, γ1, or γ2 when employing the SE and LINEX loss functions. Consequently,
we recommend employing the Markov Chain Monte Carlo (MCMC) approach to acquire the Bayes
estimates and establish the corresponding CRIs.

5.3. MCMC approach

To generate samples using the MCMC approach, we must first determine the conditional posterior
distributions of the unknown NHD parameters α1, α2, γ1 and γ2. The conditions are given by

π∗1(α1|α2, γ1, γ2) ∝ αk1+c1−1
1 e−d1α1−

∑k
i=1 zi ln(1+α1wi)e

∑k
i=1 zi[1−(1+α1wi)]γ1

× e
∑k

i=1 si[1−(1+α1wi)]γ1
,

(5.4)

π∗2(α2|α1, γ1, γ2) ∝ αk2+c2−1
2 e−d2α2−

∑k
i=1(1−zi) ln(1+α2wi)e

∑k
i=1(1−zi)[1−(1+α2wi)]γ2

× e
∑k

i=1 ti[1−(1+α2wi)]γ2
,

(5.5)
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π∗3(γ1|α1, α2, γ2) ∝ γk1+c3−1
1 e−γ1

[
d3+

∑k
i=1 zi ln(1+α1wi)

]
, (5.6)

π∗4(γ2|α1, α2, γ1) ∝ γk2+c4−1
2 e−γ2

[
d4+

∑k
i=1(1−zi) ln(1+α2wi)

]
. (5.7)

From Eqs (5.6) and (5.7), it’s apparent that the posterior densities of γ1 and γ2 follow the gamma
distribution, given that

π∗3(γ1|α1, α2, γ2) ∼ Gamma
(
k1 + c3, d3 +

k∑
i=1

zi ln(1 + α1wi)
)
, (5.8)

and

π∗4(γ2|α1, α2, γ1) ∼ Gamma
(
k2 + c4, d4 +

k∑
i=1

(1 − zi) ln(1 + α2wi)
)
. (5.9)

It’s evident that gamma densities can be used to generate random samples of γ1 and γ2. However,
it’s not feasible to algebraically simplify the density functions of π∗1(α1|α2, γ1, γ2) and π∗2(α2|α1, γ1, γ2)
to well-known distributions. Therefore, obtaining samples directly through conventional procedures
is not practical. Hence, we turn to the Markov Chain Monte Carlo (MCMC) approach and generate a
sample using Gibbs sampling with the Metropolis-Hastings (M-H) algorithm (see Metropolis et al. [25]
and Hastings [23]), employing a standard proposal, as described below.

• Step 1. Begin by employing the initial values
(
α(0)

1 , α(0)
2 , γ(0)

1 , γ(0)
2

)
.

• Step 2. Set j = 1.
• Step 3. Generate γ( j)

1 from Gamma
(
k1 + c3, d3 +

∑k
i=1 zi ln(1 + α1wi)

)
.

• Step 4. Generate γ( j)
2 from Gamma

(
k2 + c4, d4 +

∑k
i=1(1 − zi) ln(1 + α2wi)

)
.

• Step 5. Equations (5.4) and (5.5) can be employed to generate α( j)
1 and α( j)

2 using the Metropolis-
Hastings (M-H) algorithm. The recommended normal distributions to use are N(α( j−1)

1 , var(α1))
and N(α( j−1)

2 , var(α2)). In this instance, the major diagonal of the inverted FIM can be utilized to
calculate var(α1) and var(α2).
(I) Produce proposed values α∗1 and α∗2 from the corresponding normal distributions.
(II) Determine the acceptance probabilities using the following procedure:

r1 = min
[
1,

π∗1(α∗1|α
( j−1)
2 , γ

j
1, γ

j
2, data)

π∗1(α( j−1)
1 |α

( j−1)
2 , γ

j
1, γ

j
2, data

]
,

r2 = min
[
1,

π∗2(α∗2|α
j
1, γ

j
1, γ

j
2, data)

π∗2(α( j−1)
2 |α

j
1, γ

j
1, γ

j
2, data)

]
.

(III) Produce a random value u from a uniform distribution within the range of (0, 1).
(IV) If u ≤ r1, approve the proposal and assign α( j)

1 as α∗1; otherwise, maintain α( j)
1 as α( j−1)

1 .
(V) If u ≤ r2, approve the proposal and assign α( j)

2 as α∗2; otherwise, maintain α( j)
2 as α( j−1)

2 .
• Step 7. Set j = j + 1.
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• Step 8. Repeat 2–7, for V times. Therefore, the estimated posterior means of (α1, α2, γ1, γ2)
represented by λ under the squared error loss function, can be determined as:

λ̂BS = E[λ|x] =
1

V − N

V∑
i=N+1

λ( j). (5.10)

Lastly, calculate the Bayesian estimates of λ utilizing the LINEX loss function:

λ̂BL = −
1
a

ln
[

1
V − N

V∑
i=N+1

e−aλ( j)

]
. (5.11)

Here, N denotes the burn-in period.

6. Numerical study

This section’s goal is to assess the potency of the various estimation techniques covered in earlier
sections. We demonstrate this by examining an actual dataset and conducting a simulated experiment
to evaluate the statistical performance of the estimators under the JPT-II-CS. The computations were
carried out using Mathematica ver. 10 software.

6.1. Simulation study

In this section, we conduct simulation studies to assess the performance of the estimation methods
developed in the preceding sections. We explore various sample sizes for the two populations,
including (m, n) = (10, 20), (20, 30), (40, 50), and different numbers of failures for each sample
size, such as (15, 20, 30), (35, 40, 50), (60, 70, 90), respectively. The parameter values for the two
populations are set as (α1, α2, γ1, γ2) = (1.5, 1.3, 0.4, 0.3).

We computed MLEs along with 95% CIs for the parameters (α1, α2, γ1, γ2) across all specified
scenarios. This process was repeated 1000 times, and we calculated the mean values of MLEs and their
respective lengths. The results are presented in Tables 1–4. Additionally, we employed informative
gamma priors for for α1, α2, γ1, and γ2 in the context of Bayesian estimation under SE and LINEX
loss functions. The hyperparameters were set as ci = 0.8 and di = 2.5, where i = 1, 2, 3, 4, with
a = 3 denoting overestimation and a = −3 representing underestimation. We employed the(MCMC
approach with 11, 000 samples to derive Bayesian estimates for α1, α2, γ1, and γ2, along with 95%
CRIs, through 1000 simulations. The initial 1000 values were excluded due to “burn-in”. MSE was
utilized to evaluate the performance of the generated estimators for α1, α2, γ1, and γ2. Following
1000 repetitions of this process, we computed the mean values of MLEs and their respective lengths.
Tables 1–4 present the results.
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Table 1. Average value, length and corresponding MSE (in parentheses) of estimates for the
parameter α1.

(m, n) r Scheme Non-Bayesian Bayesian
MLE Length SE LINEX Length

a = −3 a = 3

(10, 20) 15 (0(14), 15) 1.0089 7.7486 1.3852 1.3856 1.3849 0.0611
(0.2412 ) (0.0132 ) (0.0131 ) ( 0.0130)

15 (15, 0(14)) 1.9192 9.5216 2.5732 2.5736 2.5728 0.0604
(0.1757) (1.1517) (1.1526) (1.1509)

20 (0(19), 10) 1.4528 8.1424 1.8099 1.8104 1.8095 0.0633
(0.0992) (0.0961) (0.0963) (0.0958)

20 (10, 0(19)) 2.0877 9.2575 1.8322 1.8343 1.8302 0.1077
(0.3454) (0.1104) (0.1118) (0.1090)

25 (0(7), 2, 0(4), 1, 0(3), 2, 0(8)) 1.6978 6.5167 2.3954 2.3955 2.3952 0.0363
(0.0391) (0.0175) (0.0191) (0.0144)

30 (0(30)) 0.9524 4.0016 1.5637 1.5639 1.5635 0.0398
(0.2999) (0.0041) (0.0041) (0.0040)

(20, 30) 35 (0(34), 15) 1.4461 5.6789 1.7213 1.7214 1.7213 0.0272
(0.0029) (0.0490) (0.0490) (0.0490)

35 (15, 0(34)) 1.2765 3.9130 1.8908 1.8909 1.8908 0.0223
(0.1500) (0.0527) (0.0527) (0.0527)

40 (0(39), 10) 1.9292 5.5891 1.2361 1.2366 1.2356 0.0540
(0.1843) (0.0697) (0.0685) (0.0672)

40 (10, 0(39)) 1.9814 5.9534 1.8851 1.8855 1.8847 0.0601
(0.2318) (0.1483) (0.1486) (0.1480)

45 (0(5), 3, 0(33), 2, 0(5)) 1.3855 4.2144 0.7017 0.7025 0.7008 0.0709
(0.2131) (0.0637) (0.0534) (0.0544)

50 (0(50)) 1.7681 4.4709 1.8890 1.8890 1.8890 0.0261
(0.0719) (0.0513) (0.0514) (0.0512)

(40, 50) 60 (0(59), 30) 2.0131 6.0591 2.8808 2.8806 2.8802 0.0311
(0.2633) (0.0684) (0.0688) (0.0679)

60 (30, 0(59)) 0.8016 2.2477 0.5408 0.5407 0.5405 0.0130
(0.4878) (0.0400) (0.0321) (0.201)

70 (0(69), 20) 0.8469 1.9784 0.6599 0.6599 0.6598 0.0164
(0.4265) (0.1058) (0.1057) (0.1052)

70 (20, 0(69)) 1.0524 2.3534 1.2987 1.2987 1.2986 0.0140
(0.2003) (0.0405) (0.0402) (0.0401)

80 (4, 0(8), 3, 0(60), 3, 0(9)) 2.4501 5.8484 4.4654 4.4656 4.4651 0.0423
(0.9027) (0.7933) (0.7922) (0.7824)

90 (0(90)) 1.8013 3.3309 1.6733 1.6734 1.6731 0.0265
(0.0908) (0.0765) (0.0768) (0.0763)
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Table 2. Average value, length and corresponding MSE (in parentheses) of estimates for the
parameter α2.

(m, n) r Scheme Non-Bayesian Bayesian
MLE Length SE LINEX Length

a = −3 a = 3

(10, 20) 15 (0(14), 15) 0.9247 7.4446 1.3417 1.3422 1.3413 0.0636
( 0.1409) ( 0.0017) ( 0.0018) (0.0017 )

15 (15, 0(14)) 0.1539 0.9332 0.1811 0.1811 0.1811 0.0097
(0.3134) (0.2519) (0.2519) (0.2519)

20 (0(19), 10) 0.6347 3.2751 0.5126 0.5127 0.5126 0.0150
(0.4426) (0.6200) (0.6210) (0.6120)

20 (10, 0(19)) 2.6140 8.4100 2.8049 2.8055 2.8043 0.0712
(0.7267) (0.2647) (0.2664) (0.2629)

25 (0(7), 2, 0(4), 1, 0(3), 2, 0(8)) 0.6021 2.473 0.8028 0.8029 0.8028 0.0268
(0.4871) (0.2472) (0.2471) (0.2470)

30 (0(30)) 1.7301 5.7329 2.7105 2.7107 2.7103 0.0599
(0.1850) (0.1795) (0.1702 ) (0.1601)

(20, 30) 35 (0(34), 15) 0.3714 1.8375 1.3453 1.3453 1.3453 0.0082
(0.1623) (0.0021) (0.0021) (0.0021)

35 (15, 0(34)) 1.8284 5.0672 1.4205 1.4208 1.4202 0.0544
(0.2792) (0.0145) (0.0146) (0.0144)

40 (0(39), 10) 2.0993 5.2002 0.9454 0.9455 0.9453 0.0287
(0.6390) (0.1257) (0.1250) (0.1248)

40 (10, 0(39)) 2.5850 8.5699 2.4874 2.4876 2.4872 0.0414
(0.6512 ) (0.4099) (0.4095) (0.4090)

45 (0(5), 3, 0(33), 2, 0(5)) 2.649 7.6263 1.4086 1.4088 1.4083 0.0468
(0.8198) (0.0118) (0.0118) (0.0117)

50 (0(50)) 2.1930 5.6644 1.8755 1.8482 1.8655 0.0350
(0.7975) (0.3469) (0.3471) (0.3468)

(40, 50) 60 (0(59), 30) 1.0377 3.2544 1.5236 1.5236 1.5236 0.0207
(0.0688) (0.0500 ) (0.0500 ) (0.0500)

60 (30, 0(59)) 2.1438 4.4834 2.4051 2.4052 2.4050 0.0370
(0.7120) (0.2213) (0.2217) (0.2210)

70 (0(69), 20) 0.969 2.4503 1.7391 1.7391 1.7391 0.0141
(0.1096) (0.0928) (0.0924) (0.0920)

70 (20, 0(69)) 1.5667 3.193 1.7013 1.7012 1.7010 0.0154
(0.0712) (0.0161) (0.0162) (0.0158)

80 (4, 0(8), 3, 0(60), 3, 0(9)) 1.3662 2.709 1.6230 1.6222 1.6220 0.0167
(0.1244) (0.1043) (0.1041) (0.1032)

90 (0(90)) 1.4794 2.6736 0.8824 0.8820 0.8811 0.0112
(0.0322) (0.0174) (0.0171) (0.0160)
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Table 3. Average value, length and corresponding MSE (in parentheses) of estimates for the
parameter γ1.

(m, n) r Scheme Non-Bayesian Bayesian
MLE Length SE LINEX Length

a = −3 a = 3

(10, 20) 15 (0(14), 15) 0.4500 2.0736 1.0201 1.2450 0.8765 1.3259
(0.0025) (0.0023) ( 0.0020) ( 0.0020)

15 (15, 0(14)) 0.3766 0.8338 0.5666 0.7000 0.4843 1.0085
(0.0201) (0.0270) (0.0278) (0.0268)

20 (0(19), 10) 0.3205 0.8781 0.3128 0.2280 0.2623 0.8047
(0.1963) (0.1108) (0.1832) (0.0688)

20 (10, 0(19)) 0.4035 0.7331 0.6691 0.7739 0.5954 0.9246
(0.0854) (0.0724) (0.0724) (0.0382)

25 (0(7), 2, 0(4), 1, 0(3), 2, 0(8)) 0.5471 1.0630 0.8072 0.9125 0.7279 0.9644
(0.0216) (0.0165) (0.0127) (0.0107)

30 (0(30)) 0.6514 1.3684 0.745 0.8343 0.6765 0.8887
(0.1632) (0.1191) (0.1286) (0.0765)

(20, 30) 35 (0(34), 15) 0.7796 0.7379 0.7796 0.8391 0.7307 0.7379
(0.1291) (0.1241) (0.1028) (0.1094)

35 (15, 0(34)) 0.4192 0.5150 0.5787 0.6148 0.5477 0.5777
(0.1010) (0.0320 ) (0.0461 ) ( 0.0461)

40 (0(39), 10) 0.2902 0.3452 0.8947 0.9753 0.8295 0.8497
(0.2144) (0.0125) (0.0122) (0.0121)

40 (10, 0(39)) 0.4189 0.4923 0.4864 0.4291 0.4499 0.2145
(0.0930) (0.0820) (0.0724) (0.0620)

45 (0(5), 3, 0(33), 2, 0(5)) 0.3938 0.5113 0.4844 0.4782 0.4653 0.3813
(0.434) (0.0354) (0.0352) (0.0344)

50 (0(50)) 0.3731 0.3433 0.4990 0.4265 0.4744 0.3129
(0.0898) (0.0396) (0.0394) (0.0390)

(40, 50) 60 (0(59), 30) 0.2999 0.4200 0.5524 0.4799 0.5277 0.3152
(0.0954) (0.0779) (0.0462) (0.0563)

60 (30, 0(59)) 0.6208 0.8487 0.5244 0.5301 0.5030 0.4250
(0.0488) (0.0244) (0.0223) (0.0222)

70 (0(69), 20) 0.4048 0.4479 0.3692 0.3196 0.3245 0.1888
(0.4478) (0.1177) (0.3900) (0.3548)

70 (20, 0(69)) 0.6135 0.6612 0.6751 0.6168 0.6376 0.4304
(0.0456) (0.0258) (0.0671) (0.0915)

80 (4, 0(8), 3, 0(60), 3, 0(9)) 0.3866 0.3552 0.5170 0.5274 0.5070 0.3215
(0.0212) (0.0137) (0.0162) (0.0115)

90 (0(90)) 0.3746 0.2523 0.4336 0.4443 0.4234 0.2224
(0.1064) (0.0178) (0.0208) (0.0152)
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Table 4. Average value, length and corresponding MSE (in parentheses) of estimates for the
parameter γ2.

(m, n) r Scheme Non-Bayesian Bayesian
MLE Length SE LINEX Length

a = −3 a = 3

(10, 20) 15 (0(14), 15) 0.4110 2.0336 1.0052 1.2843 0.8484 1.4092
(0.0123) (0.0119 ) (0.0112 ) ( 0.0101)

15 (15, 0(14)) 0.8193 2.8032 1.0506 1.2216 0.9307 1.2030
(0.2696) (0.3634) (0.4493) (0.3978)

20 (0(19), 10) 0.5335 1.5963 1.3381 1.6395 1.1490 1.5159
(0.0545) (0.0777) (0.7941) (0.7208)

20 (10, 0(19)) 0.2255 0.2141 0.3820 0.3992 0.3666 0.4006
(0.0085) (0.0067) (0.0078) (0.0044)

25 (0(7), 2, 0(4), 1, 0(3), 2, 0(8)) 0.4095 0.6813 0.6038 0.6416 0.5715 0.5963
(0.0120) (0.0092) (0.0081) (0.0073)

30 (0(30)) 0.2772 0.2753 0.3940 0.4056 0.3833 0.3367
(0.0188) ( 0.0088) (0.0075) (0.0069 )

(20, 30) 35 (0(34), 15) 0.7089 2.2453 0.8012 0.8529 0.7567 0.6981
(0.1672) (0.1512) (0.1057) (0.1086)

35 (15, 0(34)) 0.2850 0.2466 0.5229 0.5426 0.5049 0.4333
(0.1491) (0.0497) (0.0589) (0.0420)

40 (0(39), 10) 0.3109 0.3064 0.3965 0.3623 0.3410 0.2909
(0.5851) (0.4866) (0.4851) (0.4840)

40 (10, 0(39)) 0.3604 0.2478 0.3265 0.3382 0.3156 0.2302
(0.1458 ) (0.0160) (0.0191) (0.0134)

45 (0(5), 3, 0(33), 2, 0(5)) 0.6419 0.6039 0.5232 0.5379 0.5095 0.3788
(0.3430) (0.0498) (0.0566) (0.0439)

50 (0(50)) 0.2571 0.1927 0.2427 0.2527 0.2332 0.1163
(0.1144 ) (0.0204) (0.0233) (0.0177)

(40, 50) 60 (0(59), 30) 0.4642 0.7702 0.9308 0.9680 0.8969 0.6030
(0.0270) (0.0179) (0.0171) (0.0165)

60 (30, 0(59)) 0.2766 0.2781 0.2510 0.2591 0.2430 0.1898
(0.1222) (0.0228) (0.0254) (0.0204)

70 (0(69), 20) 0.3746 0.4258 0.3499 0.3682 0.3329 0.2235
(0.4441) (0.1225) (0.1356) (0.1108)

70 (20, 0(69)) 0.2747 0.1723 0.4435 0.4506 0.4368 0.2654
(0.1324 ) (0.0206) (0.0227) (0.0187)

80 (4, 0(8), 3, 0(60), 3, 0(9)) 0.6604 0.5647 0.5858 0.5983 0.5741 0.3527
(0.1204) (0.0817) (0.0890) (0.0751)

90 (0(90)) 0.2699 0.1466 0.2436 0.2524 0.2351 0.1170
(0.1100) (0.0593) (0.0637) (0.0553)
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Based on the aforementioned data, several conclusions can be drawn:

(1) Tables 1 to 4 reveal that, in most cases, Bayesian estimates outperform MLEs in terms of MSEs.

(2) Examining Tables 1 to 4, it becomes apparent that CRIs exhibit the shortest average length of
intervals compared to the average length of CIs, indicating the superiority of Bayesian estimators
over MLEs.

(3) Notably, Bayesian estimation using the LINEX loss function at a = 3 surpasses Bayesian
estimators using the LINEX loss function at a = −3 and the SE loss function in terms of MSEs.

(4) The results indicate that both MLEs and Bayesian estimators yield favorable outcomes for two
sample lines, whether they have the same or different population numbers, suggesting the model’s
suitability for various sample situations.

6.2. Data analysis

The data represent the air-conditioning system failure times (in hours) for planes 7913 and 7914,
originally sourced from Proschan [30]. The assumption is made that the two datasets are independent,
and within each dataset, the failure times are also considered independent. The data is provided below.
Data 1. (Plane 7913): 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97, 106, 111,
141, 142, 163, 191, 206, 216.
Data 2. (Plane 7914): 3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97, 102, 139,
188, 197, 210.

Table 5 displays the outcomes of the Kolmogorov-Smirnov (K-S) test, employed to assess the data’s
adherence to the NHD.

Table 5. K-S test and P-value.

Data set Size (n) K-S (Calculated) K-S (5% Significance) P-value
I 27 0.1011 0.2544 0.9192
II 24 0.0870 0.2693 0.9858

Taking into account the details in Table 5, it is apparent that the computed K-S values for the data
are lower than the corresponding values expected at a significance level of 5%. Additionally, we have
noted notably high P-values. Consequently, we can reasonably conclude that the NHD serves as a
well-fitted model for the data. Moreover, we have generated empirical S (x) and fitted S (x) for each
dataset, as depicted in Figures 2 and 3, respectively. These plots provide additional confirmation that
the NHD model offers a superior fit to the data.
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Figure 2. Plots of fitted functions of the NHD for data set I.

Figure 3. Plots of fitted functions of the NHD for data set II.

We generated a JPT-IISC sample from the aforementioned datasets using the following censoring
scheme. For the first sample, set m = 27, and for the second sample, set n = 24, implementing
JPT-IISC with r = 20. The censoring vectors are defined as:

S = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16),
R = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31),
T = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15).

Here are the generated datasets:

w = (1, 3, 4, 5, 5, 11, 13, 14, 15, 16, 18, 18, 18, 22, 22, 23, 24, 30, 31, 36),
z = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0).

We obtained estimates for α1, α2, γ1, and γ2 using the MLE method, depending on the data type used
in this study. The corresponding results are displayed in Table 6, whereas Tables 7 and 8 present the
95% ACIs for α1, α2, γ1, and γ2. We utilized the MCMC method for Bayesian estimation conducting
20000 iterations to ensure convergence we excluded the initial 5000 iterations as ‘burn in’ We have
selected hyperparameters ci and di as 0.0001, approaching values near zero for the prior distributions.
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Bayesian estimates for α1, α2, γ1, and γ2 were derived using both the SE loss and LINEX loss functions,
with the corresponding results detailed in Table 6. Additionally, the 95% CRIs for α1, α2, γ1, and γ2

are provided in Tables 7 and 8.

Table 6. Different point estimates of (α1, α2, γ1, γ2).

Parameters MLE MCMC
SE LINEX

a = −3.0 a = 10−4 a = 3.0
α1 0.0211 0.0612 0.0612 0.0612 0.0612
α2 0.0112 0.0406 0.0406 0.0406 0.0406
γ1 0.6548 1.5915 2.2824 1.5915 1.2740
γ2 1.2882 2.0091 2.8235 2.0091 1.6094

Table 7. 95% CIs and CIRs for (α1, α2).

Method α1 α2

Lower Upper Length Lower Upper Length
CI -0.0801 0.1223 0.2024 -0.0392 0.0615 0.1008

CRI 0.0606 0.0621 0.0014 0.0401 0.0411 0.0010

Table 8. 95% CIs and CIRs for (γ1, γ2).

Method γ1 γ2

Lower Upper Length Lower Upper Length
CI -1.7852 3.0948 4.8801 -3.6776 6.2541 9.9317

CRI 0.7213 2.8120 2.0906 1.0133 3.3537 2.3404

7. Conclusions

In this paper, we explored statistical inference for two populations characterized by NHD. These
distributions feature distinct shape and scale parameters, and our analysis focused on a JPT-II-
CS. Assuming life distribution for both populations, we derived maximum likelihood estimates for
unknown parameters and performed Bayesian estimation under gamma and non-information priors.
Two loss functions, namely the SE and LINEX loss functions, were employed. To assess the
effectiveness of the proposed estimates, we conducted Monte Carlo simulation experiments, revealing
that Bayes estimates, along with their associated CRIs, outperform other estimators. Finally, we
presented a numerical example to illustrate the inferential results established in this study.
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