Research article

Estimation for inverse Weibull distribution under progressive type-Ⅱ censoring scheme

  • Received: 15 May 2023 Revised: 10 July 2023 Accepted: 11 July 2023 Published: 18 July 2023
  • MSC : 62F10, 62F15

  • This paper considers the statistical inferences of inverse Weibull distribution under progressive type-Ⅱ censored sample, which is a common distribution in reliability analysis. Two commonly used parameter estimation methods, maximum likelihood estimation and Bayesian estimation, are used in this paper, along with the inverse moment estimation. First, we derive the maximum likelihood estimators of parameters and propose Newtown-Raphson iteration method to solve these estimators. Assuming that shape and rate parameters are independent and follow gamma priors, we further obtain the Bayesian estimators by Lindley approximation. We also derive the inverse moment estimators and construct the generalized confidence intervals using the generalized pivotal quantity. To compare the estimation effects of these methods, we implement Monte Carlo simulation with the help of MATLAB. The simulation results show that the Bayesian estimation method outperforms the other two methods in terms of mean squared error. Finally, we verify the feasibility of these methods by analyzing a set of real data. The results indicate that the Bayesian estimation method provides more accurate estimates than the other two methods.

    Citation: Haiping Ren, Xue Hu. Estimation for inverse Weibull distribution under progressive type-Ⅱ censoring scheme[J]. AIMS Mathematics, 2023, 8(10): 22808-22829. doi: 10.3934/math.20231162

    Related Papers:

  • This paper considers the statistical inferences of inverse Weibull distribution under progressive type-Ⅱ censored sample, which is a common distribution in reliability analysis. Two commonly used parameter estimation methods, maximum likelihood estimation and Bayesian estimation, are used in this paper, along with the inverse moment estimation. First, we derive the maximum likelihood estimators of parameters and propose Newtown-Raphson iteration method to solve these estimators. Assuming that shape and rate parameters are independent and follow gamma priors, we further obtain the Bayesian estimators by Lindley approximation. We also derive the inverse moment estimators and construct the generalized confidence intervals using the generalized pivotal quantity. To compare the estimation effects of these methods, we implement Monte Carlo simulation with the help of MATLAB. The simulation results show that the Bayesian estimation method outperforms the other two methods in terms of mean squared error. Finally, we verify the feasibility of these methods by analyzing a set of real data. The results indicate that the Bayesian estimation method provides more accurate estimates than the other two methods.



    加载中


    [1] A. Z. Keller, A. R. R. Kanath, Alternative reliability models for mechanical systems, In: Proceeding of the Third International Conference on Reliability and Maintainability, 1982,411–415.
    [2] C. Abhijit, C. Anindya, Use of the Fréchet distribution for UPV measurements in concrete, NDT E. Int., 52 (2012), 122–128. http://doi.org/10.1016/j.ndteint.2012.07.003 doi: 10.1016/j.ndteint.2012.07.003
    [3] C. Elio, F. P. De, N. L. P. Di, M. Fabio, Inverse loglogistic distribution for Extreme Wind Speed modeling: Genesis, identification and Bayes estimation, AIMS Energy, 6 (2018), 926–948. http://doi.org/10.3934/energy.2018.6.926 doi: 10.3934/energy.2018.6.926
    [4] A. O. Langlands, S. J. Pocock, G. R. Kerr, S. M. Gore, Long-term survival of patients with breast cancer: a study of the curability of the disease, Brit. Med. J., 2 (1979), 1247–1251. http://doi.org/10.1136/bmj.2.6200.1247 doi: 10.1136/bmj.2.6200.1247
    [5] Q. X. Bi, W. H. Gui, Bayesian and classical estimation of stress-strength reliability for inverse Weibull lifetime models, Algorithms, 10 (2017), 71–87. http://doi.org/10.3390/a10020071 doi: 10.3390/a10020071
    [6] W. S. A. El Azm, R. Aldallal, H. M. Aljohani, S. G. Nassr, Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored, Math. Biosci. Eng., 19 (2022), 6252–6276. http://doi.org/10.3934/mbe.2022292 doi: 10.3934/mbe.2022292
    [7] M. Alslman, A. Helu, Estimation of the stress-strength reliability for the inverse Weibull distribution under adaptive type-Ⅱ progressive hybrid censoring, PloS One, 17 (2022), e0277514. http://doi.org/10.1371/journal.pone.0277514 doi: 10.1371/journal.pone.0277514
    [8] A. I. Shawky, K. Khan, Reliability estimation in multicomponent stress-strength based on inverse Weibull distribution, Processes, 10 (2022), 364–401. http://doi.org/10.3390/pr10020226 doi: 10.3390/pr10020364
    [9] D. Kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for Type-Ⅱ censored data, Comput. Stat. Data. Anal., 54 (2010), 1547–1558. http://doi.org/10.1016/j.csda.2010.01.003 doi: 10.1016/j.csda.2010.01.003
    [10] F. G. Akgul, K. Yu, B. Senoglu, Classical and Bayesian inferences in step-stress partially accelerated life tests for inverse Weibull distribution under type-Ⅰ censoring, Strength Mater, 52 (2020), 480–496. http://doi.org/10.1007/s11223-020-00200-y doi: 10.1007/s11223-020-00200-y
    [11] A. Helu, H. Samawi, The inverse Weibull distribution as a failure model under various loss functions and based on progressive first-failure censored data, Qual. Technol. Quant. Manag., 12 (2016), 517–535. http://doi.org/10.1080/16843703.2015.11673434 doi: 10.1080/16843703.2015.11673434
    [12] K. Lee, Bayes and maximum likelihood estimation of uncertainty measure of the inverse Weibull distribution under generalized adaptive progressive hybrid censoring, Mathematics, 10 (2022), 4782–4802. http://doi.org/10.3390/math10244782 doi: 10.3390/math10244782
    [13] B. Xu, D. H. Wang, R. T. Wang, Estimator of scale parameter in a subclass of the exponential family under symmetric entropy loss, Northeast. Math. J., 24 (2008), 447–457. http://doi.org/10.3969/j.issn.1674-5647.2008.05.008 doi: 10.3969/j.issn.1674-5647.2008.05.008
    [14] L. X. Song, Y. S. Chen, J. M. Xu, Bayesian estimation of Poisson distribution parameter under scale squared error loss function, J. Lanzhou Univ. Tech., 34 (2008), 152–154. http://doi.org/10.3969/j.issn.1673-5196.2008.05.035 doi: 10.3969/j.issn.1673-5196.2008.05.035
    [15] H. R. Varian, A Bayesian approach to real estate assessment, ZELLNER A, FEINBERG S E., In Studies in Bayesian Econometrics and Statics In honor of L J. Savage, 1975,195–208.
    [16] D. V. Lindley, Approximate Bayesian methods, Trab. de Estad. y de Investig. Oper., 31 (1980), 223–245. http://doi.org/10.1007/bf02888353 doi: 10.1007/BF02888353
    [17] B. X. Wang, Statistical inference for Weibull distribution, Chinese J. Appl. Prob. Stat., 8 (1992), 357–364.
    [18] W. Luo, L. Z. Xue, J. W. Yao, X. F. Yu, Inverse moment methods for sufficient forecasting using high-dimensional predictors, Biometrika, 109 (2022), 473–487. http://doi.org/10.1093/biomet/asab037 doi: 10.1093/biomet/asab037
    [19] W. Qin, X. Yuan, An ensemble of inverse moment estimators for sufficient dimension reduction, Comput. Stat. Data. Anal., 161 (2021), 107241–107256. http://doi.org/10.1016/j.csda.2021.107241 doi: 10.1016/j.csda.2021.107241
    [20] S. Gao, J. Yu, W. H. Gui, Pivotal inference for the inverted exponentiated Rayleigh distribution based on progressive type-Ⅱ censored data, Am. J. Math. Manag. Sci., 39 (2020), 315–328. http://doi.org/10.1080/01966324.2020.1762142 doi: 10.1080/01966324.2020.1762142
    [21] N. Balakrishnan, R. A. Sandhu, A simple simulational algorithm for generating progressive Type-Ⅱ censored samples, Am. Stat., 49 (1995), 229–230. http://doi.org/10.2307/2684646 doi: 10.2307/2684646
    [22] R. Dumonceaux, C. E. Antle, Discrimination between the log-normal and the Weibull distributions, Technometrics, 15 (1973), 923–926. http://doi.org/10.2307/1267401 doi: 10.1080/00401706.1973.10489124
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1273) PDF downloads(93) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog