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Abstract: This paper considers the statistical inferences of inverse Weibull distribution under progressive 

type-Ⅱ censored sample, which is a common distribution in reliability analysis. Two commonly used 

parameter estimation methods, maximum likelihood estimation and Bayesian estimation, are used in this 

paper, along with the inverse moment estimation. First, we derive the maximum likelihood estimators of 

parameters and propose Newtown-Raphson iteration method to solve these estimators. Assuming that 

shape and rate parameters are independent and follow gamma priors, we further obtain the Bayesian 

estimators by Lindley approximation. We also derive the inverse moment estimators and construct the 

generalized confidence intervals using the generalized pivotal quantity. To compare the estimation effects 

of these methods, we implement Monte Carlo simulation with the help of MATLAB. The simulation results 

show that the Bayesian estimation method outperforms the other two methods in terms of mean squared 

error. Finally, we verify the feasibility of these methods by analyzing a set of real data. The results indicate 

that the Bayesian estimation method provides more accurate estimates than the other two methods. 
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1. Introduction 

Kaller and Kamath [1] proposed two-parameter inverse Weibull distribution (IWD) to simulate 
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the degradation of mechanical components of diesel engines. After that, IWD is considered an 

appropriate model to analyze lifetime data. For example, Abhijit and Anindya [2] found that IWD is 

superior to the normal distribution when using ultrasonic pulse velocity to measure concrete structures. 

Elio et al. [3] proposed a new model generated by appropriate mixing of IWD for modeling under 

extreme wind speed conditions. Langlands et al. [4] observed that breast cancer mortality data can be 

modeled and analyzed by IWD. Beyond that, IWD is widely used in reliability research. For example, 

Bi and Gui [5] considered the estimation of stress-strength reliability of IWD. They proposed an 

approximate maximum likelihood estimation for point and confidence interval estimations. Bayesian 

estimator and highest posterior density (HPD) confidence interval were derived using Gibbs sampling. 

Based on adaptive type-I progressive hybrid censored scheme, Azm et al. [6] studied the estimation of 

unknown parameters of IWD when the data were competing risks data. The maximum likelihood 

estimation and Bayesian estimation were discussed. The asymptotic confidence intervals, the bootstrap 

confidence intervals and the HPD confidence intervals were derived. Then, two sets of real data were 

studied to illustrate maximum likelihood estimation and Bayesian estimation. Alslman and Helu [7] 

assumed that the two components were independent and identically distributed and considered the 

estimation of stress-strength reliability for IWD. Its estimators were derived by maximum likelihood 

estimation and maximum product of spacing method and compared using computer simulation. 

Shawky and Khan [8] assumed that stress and strength both followed IWD, and they focused on the 

multi-component stress-strength model. The estimation of reliability was obtained by maximum 

likelihood estimation. Monte Carlo simulation results indicate that the proposed estimating methods 

are effective. 

The probability density function (PDF), the cumulative distribution function (CDF) and the 

reliability function of IWD are respectively given by 

 
1( ; , ) tf t t e

   
−− − −= , 0,  0 ,   0t      (1.1) 

 ( ; , ) tF t e
 

−−= , 0,  0 ,   0t      (1.2) 

and 

 ( ) 1 tR t e
 −−= − . (1.3) 

Here,   is rate parameter and   is shape parameter. For convenience, the PDF (1.1) of IWD will 

be denoted by IW( , )  . 

The assessment of product reliability often relies on the collection of life data, which can be 

obtained through a life test. This test involves observing whether a group of test samples fail during 

the test and recording their corresponding failure time. If the life test continues until all the test samples 

fail, the failure time can be recorded for all the samples, resulting in complete data. However, if the 

test stops before all the test samples fail, the data collected are called censored data. With the 

continuous advancement of science and technology, products are becoming more reliable and have 

longer lifespans. Collecting complete data in a life test can be expensive, making reliability analysis 

based on censored data a popular research topic among scholars. A progressive type-Ⅱ censored sample 

can be expressed as follows: consider an experiment where n  units are subjected to a life test at time 

zero, and the experimenter decides beforehand the number of failures to be observed, denoted by r . 

Upon observing the first failure time 1T , 1Q  out of the remaining 1n−  surviving units are randomly 

selected and removed. At the second observed failure time 2T , 2Q  out of the remaining 12n Q− −
 

surviving units are randomly selected and removed. This process continues until the r-th failure is 
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observed at time rT , and the remaining 
1 2 1...r rQ n r Q Q Q −= − − − − −  surviving units are all removed. 

The sample 
1 2( , ,..., )rT T T T=  is referred to as a progressively type-II censored sample of size r  from 

a sample of size n  with censoring scheme 
1 2( , ,..., )rQ Q Q Q= . 

IWD is one of the commonly used lifetime distributions in reliability estimation [5–8]. Most of 

the estimation methods are maximum likelihood estimation and Bayesian estimation, and there is a 

lack of research on inverse moment estimation. Therefore, this paper aims to provide three methods to 

compute the point estimations and construct generalized confidence intervals of unknown parameters. 

The rest of this paper is arranged as follows: In Section 2, the maximum likelihood estimators 

(MLEs) are obtained by Newtown-Raphson method. The Lindley approximation is proposed to derive 

the Bayesian estimators (BEs) in Section 3. The inverse moment estimators (IMEs) and the 

construction of the generalized confidence intervals (GCIs) are discussed in Section 4. In Section 5, 

Monte Carlo simulation is conducted to evaluate the effect of these methods. Section 6 gives a set of 

real data as a demonstration. Finally, Section 7 gives the conclusions of this paper. 

2. Maximum likelihood estimation 

In this section, we will discuss the MLEs of  ,   and ( )R t . Due to the nonlinear nature of the 

likelihood equations, the Newton-Raphson method is considered to solve likelihood equations 

numerically. 

Let 1 2( , ,..., )rT T T T=
 
be the collected progressive type-II sample under the censoring scheme

1 2( , ,..., )rQ Q Q Q= . Denote 1 2( , ,..., )rt t t t=  as the observation of T . We can easily get the likelihood 

function ( , ; )l t   as follows: 

 1

1

( , ; ) (1 )i i i

r
t t Qr r

i

i

l t t e e
     

− −− −− −

=

= − , (2.1) 

where 1 1 2 1 2 1( 1)( 2)...( ... 1)rn n Q n Q Q n Q Q Q r −= − − − − − − − − − − + . 

Then the log-likelihood function ( , ; )L t  is 

 
1

( , ; ) ln ( , ; ) ln ln [( 1) ln ln(1 )]i

r
t

i i i

i

L t l t r t t Q e
       

−−−

=

= = + − + + − − . (2.2) 

Thus, the partial derivatives of ( , ; )L t   with respect to   and   are respectively given by 

 
1

exp( )( , ; )
[ ]

1 exp( )

r
i i i

i

i i

Q t tL t r
t

t

 




 

  

− −
−

−
=

−
= − −

 − −
 , (2.3) 

 
1

exp( ) ln( , ; )
[ln ln ]

1 exp( )

r
i i i i

i i i

i i

Q t t tL t r
t t t

t

 




 
 

  

− −
−

−
=

−
= − − +

 − −
 . (2.4) 

Denote the MLEs of   and   as ˆ
ML  and ˆ

ML  respectively, and they are the solutions of 

likelihood equations (2.5). According to the invariance of the maximum likelihood estimation, the 

MLE ˆ ( )MLR t  is obtained by replacing the parameters with ˆ
ML  and ˆ

ML . Since (2.3) and (2.4) are 

non-linear, the Newtown-Raphson method is considered to solve likelihood equations numerically. 

The elements of the Jacobi matrix are given from (2.6) to (2.9). 
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Define 

 

( , ; )

( )
( , ; )

L t

L t

 




 



 
 
 =
 
  

H  
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2 2

2
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2

( , ; ) ( , ; )

( )
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  =
  
 

   

H , 

where ( , )  = . The steps involved in Newton-Raphson iteration method for obtaining the MLEs of 

  and   are given below. 

Step 1. Pick an arbitrary starting estimate 0 , and desired precision 510 −= . 

Step 2. Update 0   as 1

0 0 0[ ( )] ( )new   −= − H H  , where 1

0[ ( )] −H   is the inverse matrix of 

0( )H . 

Step 3. If 0| |new  −  , then ˆ
ML new = . 

Step 4. If 0| |new  −  , set 0 new =  and return to Step 2. 

Step 5. Repeat from Step 2 to Step 4 until the condition in Step 3 is achieved. 

3. Bayesian estimation 

Statistical inference requires three kinds of information: overall information, sample information 

and prior information. The statistical inference based on the first two kinds of information is called 

classical statistics, and the statistical inference based on comprehensive consideration of the three kinds 

of information is called Bayes statistics. Prior information already exists before sampling, which 

mostly comes from experience and historical data. The distribution obtained by processing prior 
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information is called a prior distribution. We all know that a random variable can be described by a 

certain distribution. Bayesian scholars believe that an unknown parameter can be regarded as a random 

variable. In other words, an unknown parameter can also be described by a certain distribution, that is, 

a prior distribution. Kundu and Howlader [9] considered the estimation of parameters of IWD using 

the Bayesian approach under the squared error loss function when the sample is a type-II censoring 

sample. Akgul et al. [10] discussed Bayes estimation of the step-stress partially accelerated life test 

model with type-I censored sample for the IWD. The point estimators were obtained using the Lindley 

approximation and Tierney–Kadane approximation. The credible intervals were constructed using the 

Gibbs sampling method. Helu and Samawi [11] considered the Bayesian inferences based on IWD 

based on progressive first-failure censored data. The point estimators were derived under three loss 

functions. Additionally, the estimators were calculated by Lindley approximation. Based on 

generalized adaptive progressively hybrid censored sample, Lee [12] considered the estimation of 

uncertainty measure for IWD. For the BE and HPD confidence interval, the Tierney-Kadane 

approximation and importance sampling technique were proposed. 

In this section, the BEs of  ,   and ( )R t  are derived under the symmetric entropy (SE) loss 

function, scale squared error (SSE) loss function and LINEX loss function. Since there is a complex 

ratio of two integrals in BEs, Lindley approximation is proposed to solve this problem. 

(i) The SE loss function is defined as (Xu et al. [13]): 

 1

ˆ
ˆ( , ) 2

ˆ
S

 
 


= + − . (3.1) 

(ii) The SSE loss function is defined as (Song et al. [14]): 

 

2

2

ˆ( )ˆ( , )
d

S
 

 


−
= . (3.2) 

(iii) The LINEX loss function is defined as (Varian [15]): 

 
ˆ( )

3
ˆ ˆ( , ) ( ) 1 ,  0aS e a a    −= − − −  , (3.3) 

where ̂  is the estimator of unknown parameter   and d  is a nonnegative integer. 

As an important part of Bayesian estimation, the selection of prior distribution will directly affect 

the final Bayesian estimation. It usually follows two rules making full use of prior information, such 

as empirical and historical data and being convenient for computational use. The most widely used 

prior distributions are mainly non-informative prior distribution, conjugate prior distribution and 

hierarchical prior distribution. The gamma prior belongs to the conjugate prior, which makes the 

computation process of estimation results easier. 

Assume the prior distributions of   and   are gamma prior.   follows 1 1Gamma( , )a b  and 

  follows 2 2Gamma( , )a b . 

 1 11

1 1( )      0,  0b ae a b   − −   . (3.4) 

 2 21

2 2( )      0,  0b ae a b   − −   . (3.5) 

Based on (3.4) and (3.5), the joint prior distribution is 

 1 2 1 21 1( , ) b b a ae      − − − − . (3.6) 
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Using (2.1) and (3.6), the posterior distribution is 

 1 2 1 21 1 1

1

( , | ) (1 )i i i

r
t t Qr b r b a a

i

i

T K e t e e
        

− −− −+ − + − − − − −

=

= − , (3.7) 

where 1 2 1 21 1 1 1

0 0
1

[ (1 ) ]i i i

r
t t Qr b r b a a

i

i

K e t e e d d
       

− −+ +
− −+ − + − − − − − −

=

= −  . 

Based on (3.7), the margin posterior distribution of   is 

 1 1 2 21 1 1

0
1

( | ) [ (1 ) ]i i i

r
t t Qr b a r b a

i

i

T K e e t e e d
        

− −+
− −+ − − + − − − −

=

= − . (3.8) 

The margin posterior distribution of   is 

 2 2 1 11 1 1

0
1

( | ) [ (1 ) ]i i i

r
t t Qr b a r b a

i

i

T K e e t e e d
        

− −+
− −+ − − + − − − −

=

= − . (3.9) 

Lindley [16] proposed an approximation algorithm to calculate the ratio of two integrals in the 

form: 

 
( , ; ) ( , )

( , ; ) ( , )

( , ) ( , )
( ) [ ( , ) | ]

( , )

L t J

L t J

W e d
I t E W T

e d

   

   

   
 

 

+

+
= =




. (3.10) 

Here is a continuous function in    and   , ( , ; )L t    as shown in (2.2) and ( , )J     is the 

logarithm of joint prior distribution (3.6). This ratio usually occurs in BE, which is why the Lindley 

approximation is often used to calculate the Bayesian estimator. 

The expression (3.10) can be approximated by (3.11) under regularity conditions or with a large 

sample size. Here A  , B   and C   are given by (3.12). L   denotes the third derivative of log-

likelihood function (2.2) for   , and L̂   
represents the value of L   at ˆ

ML =  . 
ij   is the 

element of inverse matrix of 
ijL−  ( , ,i j  = ), and ˆ

ij
 
represents the value of 

ij  at ˆ
ML =  and 

ˆ
ML = . Other terms are defined as the same as the above rules. The detailed expressions are presented 

in (3.13) to (3.18). 

 
1ˆˆ( ) ( , ) ( )
2

ML MLI t W A B C = + + +  (3.11) 

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( 2 ) ( 2 ) ( 2 ) ( 2 )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )( )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )( + )

A W W J W W J W W J W W J

B W W L L L L

C W W L L L L
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 (3.16) 

  ,   L L L L L L     = = = =  (3.17) 

 1 2
1 2

1 1
 ,   .

b b
J a J a 

 

− −
= − = −  (3.18) 

3.1. Bayesian estimation under SE loss function 

Lemma 1. Suppose that T  is a random sample. The BE ˆ
SE  of unknown parameter   under the 

SE loss function (3.1) for any prior distribution ( )   is 

 
1

2
1

( | )ˆ [ ]
( | )

SE

E T

E T




 −
= , (3.19) 

where ( | )E T  and 
1( | )E T −

 denote the posterior expectations of   and 1 − . 

Proof. Based on the SE loss function (3.1), the Bayesian risk of ˆ
SE  is 

 1
ˆ ˆ( ) ( ( ( , ) ))SE SER E E S T  = . 

To minimize ˆ( )SER  , only need to minimize 1
ˆ( ( , ) )SEE S T  . Denote 1 1

ˆ ˆ( ) ( ( , ) )SE SEh E S T  =  for 

convenience. 

Because 

 1 1

1
ˆ ˆ ˆ( ) ( ) ( ) 2SE SE SEh E T E T    − −= + − , 

and the derivative is 

 2 1

1
ˆ ˆ( ) ( ) ( )SE SEh E T E T   − − = − + . 

The BE ˆ
SE  can be obtained by solving the equation 1

ˆ( ) 0SEh  = . 

According to Lemma 1, the BEs ˆ
SE , ˆ

SE  and ˆ ( )SER t  under the SE loss function can be written as: 

 
1

2
1

( | )
ˆ [ ]

( | )
SE

E T

E T




 −
= , (3.20) 
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( | )

SE

E T

E T




−
= , (3.21) 
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and 

 
1

2
1

( ( ) | )ˆ ( ) [ ]
( ( ) | )

SE

E R t T
R t

E R t T−
= . (3.22) 

From the marginal posterior distribution (3.8), the BE (3.20) may be written as 
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=
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−

=
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From the marginal posterior distribution (3.9), the BE (3.21) may be written as 
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. (3.24) 

From the posterior distribution (3.7), the BE (3.22) may be written as 
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− 

. (3.25) 

It is obvious that (3.23)–(3.25) cannot be evaluated explicitly. Thus, the Lindley approximation 

is used to approximate them. 

(i) When ( , )W   = , there are 

 1 ,   0W W W W W W     = = = = = = . (3.26) 

Submitting ( , )W   =   and (3.26) in the expression (3.11), the posterior expectation ( | )E T  

may be written as 

 

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) [ ( )
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( + )]

MLE T J J L L L L

L L L L

            

        

        

    

= + + + + + +

+ + +

. (3.27) 

(ii) When 
1( , )W   −= , there are 

 
2 3

1 2
 ,    ,   0W W W W W W     

 
= − = = = = = . (3.28) 
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Submitting 
1( , )W   −=  and (3.28) in the expression (3.11), the posterior expectation 

1( | )E T−
 

may be written as 

 
1 2

1 3 2 2

1 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) [ ( ) ( +
2
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− −
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. (3.29) 

The BE ˆ
SE  of rate parameter   under the SE loss function can be obtained by submitting (3.27) 

and (3.29) in the expression (3.20). 

Using Lindley approximation, the BEs ˆ
SE and ˆ ( )SER t  under SE loss function are obtained as 

similar to the above steps. 

3.2. Bayesian estimation under SSE loss function 

Lemma2. Suppose that T  is a set of simple random samples. The BE ˆ
SSE  of unknown parameter 

  under the SSE loss function (3.2) for any prior distribution ( )   is 

 
1( | )ˆ

( | )

d

SSE d

E T

E T






−

−
= . (3.30) 

Proof. The Bayesian risk of ˆ
SSE based on SSE loss function (3.2) is 

 
2

ˆ ˆ( ) ( ( ( , ) ))SSE SSER E E S T  = . 

Denote 2 2
ˆ ˆ( ) ( ( , ) )SSE SSEh E S T  = , and 

 2 1 2

2
ˆ ˆ ˆ( ) ( | ) 2 ( | ) ( | )d d d

SSE SSE SSEh E T E T E T     − − −= − + . 

The derivative of 2
ˆ( )SSEh   is 

 1

2
ˆ ˆ( ) 2 ( | ) 2 ( | )d d

SSE SSEh E T E T   − − = − . 

Therefore, the BE ˆ
SSE

 
under the SSE loss function is derived by solving equation 2

ˆ( ) 0SSEh  = . 

According to Lemma 2, the BEs ˆ
SSE , ˆ

SSE
 
and ˆ ( )SSER t  under SSE loss function are presented 

in (3.31) and (3.33) respectively. 

 
1( | )

ˆ
( | )

d

SSE d

E T

E T






−

−
= , (3.31) 

 
1( | )ˆ

( | )

d

SSE d

E T

E T






−

−
= , (3.32) 

and 

 
1[ ( ) | ]ˆ ( )

[ ( ) | ]

d

SSE d

E R t T
R t

E R t T

−

−
= . (3.33) 

From the marginal posterior distribution (3.8), the BE (3.31) may be written as 
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1 2 1 2

1 2 1 2

1

0

0

1 1

0 0
1

1 1 1

0 0
1

( | )
ˆ

( | )

(1 )

(1 )

i i i

i i i

d

SSE
d

r
t t Qr b d r b a a

i

i

r
t t Qr b d r b a a

i

i

T d

T d

e t e e d d

e t e e d d

 

 

   

   

   


   

   

   

− −

− −

+
−

+
−

+ +
− −+ − + − − − − −

=

+ +
− −+ − − + − − − − −

=

=

−

=

−





 

 

. (3.34) 

From the marginal posterior distribution (3.9), the BE (3.32) can be written as 

 
2 1 1 2

2 1 1 2

1

0

0

1 1

0 0
1

1 1 1

0 0
1

( | )
ˆ

( | )

(1 )

(1 )

i i i

i i i

d

SSE
d

r
t t Qr b d r b a a

i

i

r
t t Qr b d r b a a

i

i

T d

T d

e t e e d d

e t e e d d

 

 

   

   

   


   

   

   

− −

− −

+
−

+
−

+ +
− −+ − + − − − − −

=

+ +
− −+ − − + − − − − −

=

=

−

=

−





 

 

. (3.35) 

From the posterior distribution (3.7), the BE (3.33) can be written as 

 
1 2 1 2

1 2 1 2

1

0 0

0 0

1 11 1

0 0
1

1 1 1

( ) ( , | )
ˆ ( )

( ) ( , | )

(1 ) (1 )

(1 ) (1

i i i

i i

d

SSE
d

r
t t Qr b r b a at d

i

i

t tr b r b a at d

i

R t T d d
R t

R t T d d

e e t e e d d

e e t e e

 

 

   

   

    

    

   

 

− −−

− −−

+ +
−

+ +
−

+ +
− −+ − + − − −− − − −

=

− −+ − + − − −− − − −

=

− −

=

− −

 

 

 

0 0
1

) i

r
Q

i

d d 
+ +

=

 

. (3.36) 

Then, Lindley approximation is used to approximate (3.34) to (3.36). 

(i) When 
1( , ) dW    −= , there are 

 
1(1 )  ,   (1 )  ,   0d dW d W d d W W W W      − − −= − = − − = = = = . (3.37) 

Putting 
1( , ) dW    −=  and (3.37) into (3.11), the posterior expectation 

1( | )dE T −
 can be written as 

 

1 1 11ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) (1 ) (1 ) [ (1 )
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(1 ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(1 ) ( + )]

d d d d d

ML ML ML ML

d

ML

d

ML

E T d J d J d d

d L L L L

d L L L L

    

        

        

       

     

     

− − − − − −

−

−

= + − + − + − −

+ − + + +

+ − + +

. (3.38) 

(ii) When ( , ) dW   −= , there are 

 
1 2 ,   ( 1)  ,   0d dW d W d d W W W W      − − − −= − = + = = = = . (3.39) 

Putting ( , ) dW   −=  and (3.39) into (3.11), the posterior expectation ( | )dE T−
 can be written as 
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1 1 2

1

1

1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) [ ( 1)
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( + )]

d d d d d

ML ML ML ML

d

ML

d

ML

E T d J d J d d

d L L L L

d L L L L

    

        

        

       

     

     

− − − − − − − −

− −

− −

= − − + +

− + + +

− + +

. (3.40) 

Hence the BE ˆ
SSE  under the SSE loss function are obtained by submitting (3.38) and (3.40) in (3.31). 

Using Lindley approximation, the BEs ˆ
SSE and ˆ ( )SSER t  under SSE loss function can be obtained 

by the similar steps. 

3.3. Bayesian estimation under LINEX loss function 

Lemma 3. Suppose that T  is a set of simple random samples. The BE ˆ
L  of unknown parameter 

  under the LINEX loss function (3.3) for any prior distribution ( )   is 

 
1ˆ ln[ ( | )]a

L E e T
a

 −= − . (3.41) 

Proof. The Bayesian risk of ˆ
L  based on LINEX loss function (3.3) is 

 3
ˆ ˆ( ) ( ( ( , ) ))L LR E E S T  = . 

Denote 3 3
ˆ ˆ( ) ( ( , ) )L Lh E S T  = , and 

 
ˆ( )

3
ˆ ˆ( ) [ | ] ( | )La

L Lh E e T a aE T   −= − + . 

The derivative of 3
ˆ( )Lh   is 

 
ˆ ˆ( ) ( )

3
ˆ( ) [ | ]L La a

Lh ae E e T a    − − = − . 

Therefore, the BE ˆ
L  under the LINEX loss function is derived by solving equation 3

ˆ( ) 0Lh  = . 

It follows from Lemma 3 that the BEs under LINEX loss function are 

 
1

ˆ ln[ ( | )]a

L E e T
a

 −= −  (3.42) 

 
1ˆ ln[ ( | )]a

L E e T
a

 −= −  (3.43) 

 
1ˆ ( ) ln[ (exp( ) | )]t

LR t E ae T
a

 −−= − − . (3.44) 

Subsequently, (3.42)–(3.44) can be written as 

 
1 2 1 2

0

1 1 1

0 0
1

1
ˆ ln[ ( | ) ]

1
ln[ (1 ) ]i i i

a

L

r
t t Qr b r b a a a

i

i

e T d
a

K e t e e d d
a

 



    

   

   
− −

+
−

+ +
− −+ − + − − − − − −

=

= −

= − −



 
 (3.45) 
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2 1 1 2

0

1 1 1

0 0
1

1ˆ ln[ ( | ) ]

1
ln[ (1 ) ]i i i

a

L

r
t t Qr b r b a a a

i

i

e T d
a

K e t e e d d
a

 



    

   

   
− −

+
−

+ +
− −+ − + − − − − − −

=

= −

= − −



 
 (3.46) 

 
1 2 1 2

0 0

1 1 1

0 0
1

1ˆ ( ) ln[ exp( ) ( , | ) ]

1
ln[ exp( ) (1 ) ]i i i

t

L

r
t t Qr b r b a at

i

i

R t ae T d d
a

K ae e t e e d d
a



 



   

    

   

−

− −−

+ +
−

+ +
− −+ − + − − −− − −

=

= − −

= − − −

 

 
. (3.47) 

Next, the explicit expressions of these BEs are obtained by using the Lindley approximation. 

When ( , ) aW e   −= , there are 

 2,   ,   0a aW ae W a e W W W W 

     

− −= − = = = = = . (3.48) 

According to Lindley's formula (3.11), the posterior expectation ( | )aE e T−  can be written as 

 

ˆ ˆ ˆ ˆ2

ˆ

ˆ

1 ˆ ˆˆ ˆ( | ) [( 2 ) 2
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( + )]

ML ML ML ML

ML

ML

a a a aa

a

a

E e T e a e ae J ae J

ae L L L L

ae L L L L

   

   



        



        

 

    

    

− − − −−

−

−

= + − −

− + + +

− + +

. (3.49) 

The BE ˆ
L  under LINEX loss function is derived by substituting (3.49) into (3.42). The BEs ˆ

L  

and ˆ ( )LR t  can be acquired using a comparable method to the aforementioned steps, and therefore will 

not be reiterated here. 

4. Estimation based on generalized pivotal quantity 

In Sections 2 and 3, the MLEs and BEs have been derived. However, we cannot obtain the explicit 

forms of MLEs and BEs easily by using both methods. In addition, it is necessary to select the 

appropriate initial values when using the Newtown-Raphson iteration method. Therefore, the 

generalized pivot quantity is constructed for deriving IMEs and GCIs in this Section. Compared with 

the maximum likelihood estimation and Bayes estimation, the inverse moment estimation is much 

simpler in calculation. It only needs some mathematical transformations and finally solves the equations. 

Wang [17] proposed a new method and named it as inverse moment estimation method in 1992. 

Additionally, the method was applied to parameter estimation of Weibull distribution. After that, 

inverse moment estimation has been widely used and studied. For example, Luo et al. [18] used the 

inverse third-moment method when forecasting a single time series using a large number of predictors 

in the presence of a possible nonlinear forecast function. Qin and Yuan [19] proposed an ensemble of 

IMEs to explore the central subspace. Based on progressive censored data, Gao et al. [20] proposed 

the pivotal inference for inverse exponentiated Rayleigh distribution. The point estimators were 

derived using the method that combined pivotal quantity with inverse moment estimation. 

In this section, the IMEs and GCIs of   ,   and ( )R t   are obtained by constructing the 

generalized pivot quantity. 
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4.1. Inverse moment estimation 

Definition 1. Assume that T  is a random variable and t  is the observation of T , and 1  is an 

interest parameter and 2  is a nuisance parameter. A function 1 2( ; , , )G T t  
 
is called a generalized 

pivotal quantity if it satisfies the following conditions: 

(1) Given t , the distribution of 1 2( ; , , )G T t    is unrelated to both 1  and 2 . 

(2) Given t , the observation 1 2( ; , , )G t t    of generalized pivotal quantity 1 2( ; , , )G T t    is unrelated 

to 2 . 

First, let 

 ,  1,2,...,i iX T i r −= = . (4.1) 

The distribution of iX  is 

 ( ) ( ) ( ) 1 ix

X i i i i iF x P X x P T x e −−=  =  = − . (4.2) 

Let Exp(1)   be the standard exponential distribution. It is obvious that ~ Exp(1)iX  , and 

1 1...r rX X X−   . Let 

 

1

2 1

3 2 1

1 2

( 1)( )

( 2)( )

...

r

r r

r r

r

S rX

S r X X

S r X X

S X X

−

− −

=


= − −



= − −



= −

. (4.3) 

Then, 1 2, ,..., rS S S
  

are independent of each other and Exp(1)iS   . Denote 
1

2
r

i

i

U S
=

=    and 

12V S=  , so U   follows 
2χ   distribution with 2 2r −   degrees of freedom and V  follows 

2χ  

distribution with 2 degrees of freedom. Finally, let 

 
1

1

( 1)

2 2 2
r

r

i r

i

r r TV U
G

r
T rT



 

−

− −

=

−
= =

−
−

 (4.4) 

 2

1

2
r

i

i

G U V T  −

=

= + =  . (4.5) 

Therefore, 1G  and 2G  are independent, 1G  follows F  distribution with 2  and 2 2r −  degrees 

of freedom and 2G  follows 
2χ  distribution with 2r  degrees of freedom. According to Definition 1, 

1G  is the generalized pivotal quantity of  , but 2G  is neither a generalized pivotal quantity of 

nor  . Since 1( 1)( 2)r r −− −  is the mean of F(2,2 2)r −  and 2r  is the mean of 2χ (2 )r , Theorem 1 

can be derived. 

Theorem 1. Let 1 2( , ,..., )rT T T T=
 
be a progressive type-Ⅱ censored sample following IW( , )  , and 

let 1 2( , ,..., )rQ Q Q Q=   be the censoring scheme. Denote 1 2( , ,..., )rt t t t=   as the observation of T  . 
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The IME ˆ
G  of   and the IME ˆ

G  of   are determined by the following expressions. The IME 

ˆ ( )GR t  is obtained by replacing the parameters with ˆ
G  and ˆ

G . 

 

1

1

ˆ

2

1

( 1) 1

2

2 2G

r

r

i r

i

r

i

i

r r t r
G

r
t rt

G t r



 



−

− −

=

−

=

 − −
= =

−
 −


 = =






. (4.6) 

4.2. Generalized confidence interval 

This section will discuss the GCIs by generalized pivotal quantity. 

Lemma 3. Suppose that a set of constants ik  ( 1,2,...,i r= ) satisfy 1 20 ... rk k k     and denote 

1

( 1)
( ) r

r

i r

i

r r k
G

k rk



 


−

− −

=

−
=

−
. 

(i) ( )G  decreases monotonically when 0  ; 

(ii) The equation ( )G k =  has only one solution, which 0k   and k  is a constant. 

Proof. (i) The derivative of ( )G   is 

 
1 1

1 1 2 2 1 2

1 1 2 2 1 1

( ) ( 1) [ ln (ln ) ]

( 1) ( ln ln ... ln ln ln ... ln )

( 1) [ (ln ln ) (ln ln ) ... (ln ln )]

r r

r i i r i

i i

r r r r r r r

r r r r r r

G r r k k k k k

r r k k k k k k k k k k k k k

r r k k k k k k k k k k

  





 − − −

= =

−

−

− −

 = − −

= − + + + − − − −

= − − + − + + −

 

. 

According to 1 20 ... rk k k     , it can be derived 1 20 ln ln ... ln rk k k     . That is 

ln ln 0i rk k−   ( 1,2,..., 1i r= − ). Therefore, ( )G   decreases monotonically when 0  . 

(ii) Suppose that the equation ( )G k =  has two unequal solutions, 1  
and 2  

respectively. 

Based on 1 2( ) ( )G G = , there is 

 
1 2

1 1 2 2

1 1

( 1) ( 1)r r

r r

i r i r

i i

r r k r r k

k rk k rk

 

   

− −

− − − −

= =

− −
=

− − 

. 

That is 

 

1 2

1 1

1 1

( ) ( )
r r

i i

i ir r

k k
r r

k k

 − −

= =

=

− − 

. 

Here, ( )i

r

k

k

−
 is monotone because of 1i

r

k

k
 . Hence the above expression is inconsistent with the 

supposition, and the equation ( )G k =  has only one solution. 

Theorem 2. Let 1 2( , ,..., )rT T T T=   with observation 1 2( , ,..., )rt t t t=   be a progressive type-Ⅱ 
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censored sample following IW( , )   , and let 1 2( , ,..., )rQ Q Q Q=   be the censoring scheme. 

F (2,2 2)r −  and 2χ (2 )r  
denote the upper quantile of F(2,2 2)r −  and 

2χ (2 )r  respectively with 

1 1

2




− −
= . The 100(1 )%−  GCIs of   and   are given as follows: 

 

1 1 1

ˆ ˆ1 2 1 2

1

1 1

( ,..., ,F (2,2 2)) ( ,..., ,F (2,2 2))

(2 ) χ (2 ) (2 ) χ (2 )G G

r r

r r

i i

i i

t t r t t r

t r t r

 

 

 

  



−

− −− −

−

= =

−   −



 

 

 (4.7) 

where 1 1( ,..., ,F (2,2 2))rt t r − −
 
is the solution of equation (4.8) and 1( ,..., ,F (2,2 2))rt t r −  is the 

solution of Eq (4.9). 

 
1

1

( 1)
F (2,2 2)r

r

i r

i

r r t
r

t rt




 

−

−
− −

=

−
= −

−

 (4.8) 

 

1

( 1)
F (2,2 2)r

r

i r

i

r r t
r

t rt




 

−

− −

=

−
= −

−

. (4.9) 

Proof. From Section 4.1, there are 
1  ~ F(2,2 2)G r −  and 2

2 ~ χ (2 )G r . 1G  and 2G  are independent, so 

 

2 2

1 1 2 1

2 2

1 1 2 1

(F (2,2 2) F (2,2 2),χ (2 ) χ (2 ))

(F (2,2 2) F (2,2 2)) (χ (2 ) χ (2 ))

1 1

1

P r G r r G r

P r G r P r G r

   

   

 



− −

− −

−   −  

= −   −   

= −  −

= −

. 

The 1 1F (2,2 2) F (2,2 2)r G r − −   −  may be written as 

 
1

1

( 1)
F (2,2 2) F (2,2 2)r

r

i r

i

r r t
r r

t rt



 
 

−

−
− −

=

−
−   −

−

. 

According to Lemma 3, 1F (2,2 2)r− −   and F (2,2 2)r −   are positive constants, the above 

inequation is equivalent to 

 1 1 1( ,..., ,F (2,2 2)) ( ,..., ,F (2,2 2))r rt t r t t r   − −   − . 

2 2

2 1χ (2 ) χ (2 )r G r −  is equivalent to 

 
ˆ ˆ1 2 1 2

1

1 1

(2 ) χ (2 ) (2 ) χ (2 )G G

r r

i i

i i

t r t r
 

 − −− −

−

= =

   . 

5. Monte Carlo simulation 

In this Section, the proposed estimation methods are compared using MATLAB. For point 

estimates, the mean squared errors (MSEs) are calculated by Eq (5.1). For interval estimates, coverage 

probability (CP) is used to reflect the performance of GCIs. The simulation is carried out under true 
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value ( , ) (2,2)real real  =   and different n  , r   and Q  , and the trials are N   at 1000 times. The 

hyper-parameter of the prior distribution is 1 1( , ) (2,1.8)a b =   and 2 2( , ) (1.5,2)a b =  , and the 

parameters of SSE loss function and LINEX loss function are 4d =   and 4a =   respectively. The 

MSEs of  , and   are shown in Tables 1 and 2 respectively, and the MSEs of ( )R t  are shown in 

Table 3 with 3t = . The CP values is shown in Table 4. 

Balakrishnan and Sandhu [21] proposed an algorithm to produce progressive type-Ⅱ censored 

sample from any continuous distribution. The specific steps applied to the IWD are as follows: 

Step 1. Generate samples 1 2, ,..., rw w w  from (0,1)U , where 1 2, ,..., rw w w  are independent. 

Step 2. Let 
1

1 1( ... )r r r ii Q Q Q

i iv w
−

− − ++ + + +
=  and 1 11 ...i r r r iu v v v− − += − . 

Step 3. Let 1( ; , )i i real realt F u  −= , where ( )F   is the CDF (1.2) of IWD, 1,2,...,i r= . 

Then, 1 2 ... rt t t     are progressive type-Ⅱ censored data from IW( , )    with a censoring 

scheme Q . Calculation results can be found in Tables 1–3. 

 
2

1

1ˆ ˆ( ) ( )
N

i real

i

MSE
N

  
=

= − . (5.1) 

Table 1. The MSEs of  . 

n  r  Q  
MSE 

ˆ
ML  ˆ

SE  ˆ
SSE  ˆ

L  ˆ
G  

20 10 (3*1,0*4,7*1,0*4) 0.4045 0.1702 0.2618 0.3882 0.4207 

(10*1,0*9) 0.6676 0.1367 0.3823 0.4630 0.5111 

(2*5,0*5) 0.5663 0.1397 0.4627 0.2966 0.3729 

20 (0*20) 0.3788 0.1225 0.2355 0.2871 0.2957 

30 10 (5*3,0*2,5*1,0*4) 0.3418 0.1099 0.2446 0.2133 0.5184 

(20*1,0*9) 0.3413 0.1399 0.3037 0.2509 0.2788 

(4*5,0*5) 0.6002 0.1364 0.3790 0.2189 0.5100 

20 (0*10,2*5,0*5) 0.2588 0.0913 0.1663 0.1542 0.3119 

(10*1,0*19) 0.2918 0.1106 0.2028 0.2170 0.1997 

(1*10,0*10) 0.2529 0.1004 0.1790 0.1629 0.2052 

 30 (0*30) 0.1962 0.0944 0.1454 0.1435 0.1687 

50 15 (2*4,1*6,0*5) 0.1479 0.0860 0.1356 0.1850 0.3282 

(35*1,0*14) 0.2021 0.1098 0.1999 0.1703 0.1994 

(7*5,0*10) 0.1516 0.0886 0.1450 0.1474 0.4038 

20 (5*6,0*10,0*4) 0.1304 0.0784 0.1153 0.1297 0.2861 

(30*1,0*19) 0.1854 0.0969 0.1595 0.1506 0.1690 

(6*5,0*15) 0.1316 0.0858 0.1324 0.1273 0.2458 

30 (3*4,0*7,1*8,0*11) 0.1121 0.0689 0.0919 0.0975 0.2010 

(4*5,0*25) 0.1270 0.0811 0.1137 0.1012 0.1412 

(20*1,0*29) 0.1578 0.0916 0.1315 0.1108 0.1525 

50 (0*50) 0.1038 0.0667 0.0844 0.0903 0.1042 
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Table 2. The MSEs of  . 

n  r  Q  
MSE 

ˆ
ML  ˆ

SE  ˆ
SSE  ˆ

L  ˆ
G  

20 10 (3*1,0*4,7*1,0*4) 0.4838 0.2817 0.2544 0.2704 0.5386 

(10*1,0*9) 0.5354 0.1750 0.2800 0.3230 0.4666 

(2*5,0*5) 0.4809 0.1760 0.2538 0.3093 0.5099 

20 (0*20) 0.1701 0.0966 0.1241 0.1230 0.3621 

30 10 (5*3,0*2,5*1,0*4) 0.4990 0.1847 0.2592 0.2567 0.5616 

(20*1,0*9) 0.4024 0.1763 0.2308 0.2739 0.4615 

(4*5,0*5) 0.5383 0.1622 0.2823 0.2722 0.5173 

20 (0*10,2*5,0*5) 0.1760 0.0967 0.1166 0.1277 0.4387 

(10*1,0*19) 0.1746 0.0979 0.1198 0.1160 0.3448 

(1*10,0*10) 0.1874 0.1099 0.1303 0.1148 0.3156 

30 (0*30) 0.0982 0.0670 0.0800 0.0774 0.2799 

50 15 (2*4,1*6,0*5) 0.2545 0.1383 0.1596 0.1655 0.4156 

(35*1,0*14) 0.1876 0.1183 0.1280 0.1448 0.3584 

(7*5,0*10) 0.2201 0.1309 0.1416 0.1609 0.3567 

20 (5*6,0*10,0*4) 0.1587 0.1010 0.1093 0.1194 0.3233 

(30*1,0*19) 0.1461 0.1004 0.1067 0.0938 0.3066 

(6*5,0*15) 0.1500 0.1023 0.1121 0.1058 0.2882 

30 (3*4,0*7,1*8,0*11) 0.1099 0.0760 0.0825 0.0848 0.2882 

(4*5,0*25) 0.0946 0.0700 0.0761 0.0719 0.2754 

(20*1,0*29) 0.0904 0.0672 0.0735 0.0728 0.2723 

50 (0*50) 0.0575 0.0447 0.0476 0.0488 0.2112 

Table 3. The MSEs of ( )R t . 

n  r  Q  
MSE 

ˆ ( )MLR t  ˆ ( )SER t  ˆ ( )SSER t  ˆ ( )LR t  ˆ ( )GR t  

20 10 (3*1,0*4,7*1,0*4) 0.0088 0.0061 0.0113 0.0110 0.0129 

(10*1,0*9) 0.0107 0.0069 0.0121 0.0129 0.0166 

(2*5,0*5) 0.0090 0.0021 0.0111 0.0108 0.0142 

20 (0*20) 0.0052 0.0040 0.0096 0.0913 0.0128 

30 

 

 

 

 

 

 

10 (5*3,0*2,5*1,0*4) 0.0092 0.0064 0.0103 0.0129 0.0131 

(20*1,0*9) 0.0091 0.0064 0.0123 0.0180 0.0166 

(4*5,0*5) 0.0112 0.0080 0.0096 0.0129 0.0120 

20 

 

 

(0*10,2*5,0*5) 0.0047 0.0037 0.0061 0.0119 0.0082 

(10*1,0*19) 0.0049 0.0039 0.0058 0.0152 0.0122 

(1*10,0*10) 0.0048 0.0038 0.0057 0.0081 0.0095 

30 (0*30) 0.0036 0.0030 0.0041 0.0068 0.0101 

50 15 

 

 

 

(2*4,1*6,0*5) 0.0059 0.0045 0.0070 0.0066 0.0099 

 (35*1,0*14) 0.0063 0.0050 0.0078 0.0104 0.0127 

 (7*5,0*10) 0.0064 0.0051 0.0083 0.0083 0.0100 

 20 (5*6,0*10,0*4) 0.0044 0.0036 0.0056 0.0079 0.0092 
Continued on next page 
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n  r  Q  
MSE 

ˆ ( )MLR t  ˆ ( )SER t  ˆ ( )SSER t  ˆ ( )LR t  ˆ ( )GR t  

  (30*1,0*19) 0.0053 0.0043 0.0062 0.0070 0.0111 

  (6*5,0*15) 0.0053 0.0044 0.0064 0.0088 0.0096 

 30 (3*4,0*7,1*8,0*11) 0.0034 0.0029 0.0039 0.0042 0.0072 

 (4*5,0*25) 0.0033 0.0029 0.0039 0.0045 0.0087 

 (20*1,0*29) 0.0032 0.0027 0.0037 0.0062 0.0091 

 50 (0*50) 0.0019 0.0017 0.0021 0.0039 0.0085 

Table 4. The CP values with confidence level 95%. 

n  r  Q      

20 10 (3*1,0*4,7*1,0*4) 0.897 0.970 

(10*1,0*9) 0.976 0.987 

(2*5,0*5) 0.937 0.974 

20 (0*20) 0.960 0.977 

30 10 (5*3,0*2,5*1,0*4) 0.842 0.974 

(20*1,0*9) 0.980 0.981 

(4*5,0*5) 0.854 0.979 

20 (0*10,2*5,0*5) 0.826 0.958 

(10*1,0*19) 0.977 0.978 

(1*10,0*10) 0.930 0.977 

30 (0*30) 0.963 0.975 

50 15 (2*4,1*6,0*5) 0.889 0.974 

(35*1,0*14) 0.976 0.982 

(7*5,0*10) 0.832 0.986 

20 (5*6,0*10,0*4) 0.866 0.977 

(30*1,0*19) 0.978 0.982 

(6*5,0*15) 0.901 0.985 

30 (3*4,0*7,1*8,0*11) 0.868 0.974 

(4*5,0*25) 0.942 0.978 

(20*1,0*29) 0.968 0.977 

50 (0*50) 0.957 0.977 

From Table 1 to Table 3, we have the following conclusions: 

(i) Obviously, considering the same n  and r , the censoring scheme Q  has a great influence on MSE. 

(ii) Considering the same n , r  and Q , the BE of   under SE loss function is the better than the 

MLE and IME. 

(iii) Considering the same n , r  and Q , the BE   under SE loss function is better than others. 

However, the BE of   under SSE loss function is close to the BE under LINEX loss function. 

(iv) Considering the same n , r  and Q , for the reliability ( )R t , MSEs of MLEs and BEs under SE 

and SSE loss functions are relatively close, while, MSEs of BEs under LINEX loss function are larger 

than others. 

From Table 4, We know that CP values for   and   are all close to 95%. 
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6. Real data analysis 

There is a set of real data from Dumonceaux and Antle [22], which represents the maximum flood 

level (in millions of cubic feet per second) of the Susquehanna River at Harrisburg, Pennsylvania over 20 

four-year periods (1890–1969) as: 

0.265, 0.269, 0.297, 0.315, 0.324, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 

0.449, 0.484, 0.494, 0.613, 0.654, 0.740. 

According to the data, we can plot the empirical CDF and the CDF of the IWD, as shown in 

Figure1. In the IWD, we using the BEs under SE loss function as the value of parameter, i.e. 

0.0336, 2.0431 = = . According to Figure 1, we can see that the IWD can well model the data. 

Therefore, we can conclude that this distribution is valid. 

 

Figure 1. The empirical CDF and the CDF of IWD. 

Now, the real data with censoring scheme 1 2 10( , ,..., ) (1,1,...,1)Q Q Q =  are as follows: 

0.265, 0.297, 0.324, 0.379, 0.392, 0.412, 0.418, 0.449, 0.494, 0.654. 

Before proceeding with the estimation, it is necessary to establish the existence and uniqueness 

of the maximum likelihood estimate. However, proving this can be a complicated process due to the 

nonlinearity of the system of Eq (2.5). For this reason, we visualize it through Figure 2, where L1 

represents 
( , ; )L t 






 in Eq (2.3) and L2 represents 

( , ; )L t 






 in Eq (2.4). 

Figure 2. The Partial derivatives of log-likelihood function. 
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From Figure 2, we know that the two curves intersect at only one point, indicating the presence 

of a unique MLE. 

The estimates and generalized confidence intervals that obtained by using these proposed methods 

are shown in Table 5. 

Table 5. The results of real data analysis (
0 0.412t = ). 

 MLEs 
BEs 

IMEs GCIs 
SE SSE LINEX 

  0.0582 0.0336 0.0196 0.0514 0.0238 (0.0101, 0.0732) 

  3.2009 2.0431 2.5710 2.9821 3.6513 (1.7307, 9.2871) 

0( )R t  0.6301 0.3859 0.3743 0.5330 0.4546  

7. Conclusions 

In this paper, we have investigated the point estimation and interval estimation of parameters 

based on progressive type-II censored sample for IWD. First, the Newton-Raphson iteration method 

is used to solve the likelihood equations of parameters and obtain their MLEs. Then, the BEs are 

derived based on SE and SSE loss functions, respectively. Finally, the IMEs are derived by generalized 

pivotal quantity. Additionally, the GCIs are also constructed by generalized pivotal quantity. Monte 

Carlo simulation is used to present the effect of the above estimators. The simulation results revealed 

that the estimators derived using Bayesian approach perform better than other methods in terms of 

MSE. Moreover, a real set of data is analyzed and the results coincide with simulation. Monte Carlo 

simulation results indicate that Bayesian estimation under the SE loss function works best among all 

the methods mentioned in this paper. 
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