Research article

Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data

  • Received: 18 February 2023 Revised: 10 April 2023 Accepted: 13 April 2023 Published: 26 April 2023
  • MSC : 62F10, 62F15

  • In this paper, a new censoring test plan called progressively double Type-II hybrid censoring scheme is introduced for the first time. Based on this type of censored data, the maximum likelihood estimates of the unknown parameters and reliability for the two-parameter Pareto distribution are obtained. Using the Bayesian method, the Bayesian estimates of the unknown parameters and reliability are obtained under the symmetric and asymmetric loss functions. The failure times of all withdrawn units are predicted using the classical and Bayesian methods, including the predictive values and the prediction intervals. The mean values and mean square errors of the estimators are calculated by Monte-Carlo simulation, and the mean square errors between them are compared, and the results show that all Bayesian estimates are better than the corresponding maximum likelihood estimates. Using a real data set, we compute the Bayesian estimates of the unknown parameters and reliability, and predict the observations of the censored units.

    Citation: Bing Long, Zaifu Jiang. Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data[J]. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784

    Related Papers:

  • In this paper, a new censoring test plan called progressively double Type-II hybrid censoring scheme is introduced for the first time. Based on this type of censored data, the maximum likelihood estimates of the unknown parameters and reliability for the two-parameter Pareto distribution are obtained. Using the Bayesian method, the Bayesian estimates of the unknown parameters and reliability are obtained under the symmetric and asymmetric loss functions. The failure times of all withdrawn units are predicted using the classical and Bayesian methods, including the predictive values and the prediction intervals. The mean values and mean square errors of the estimators are calculated by Monte-Carlo simulation, and the mean square errors between them are compared, and the results show that all Bayesian estimates are better than the corresponding maximum likelihood estimates. Using a real data set, we compute the Bayesian estimates of the unknown parameters and reliability, and predict the observations of the censored units.



    加载中


    [1] X. J. Zhu, N. Balakrishnan, C. Z. Feng, J. C. Ni, N. X. Yu, W. L. Zhou, Exact likelihood-ratio tests for joint type-II censored exponential data, Statistics, 54 (2020), 636–648. https://doi.org/10.1080/02331888.2020.1764559 doi: 10.1080/02331888.2020.1764559
    [2] H. Nagatsuka, N. Balakrishnan, A consistent method of estimation for the three-parameter lognormal distribution based on Type-II right censored data, Commun. Stat. Theor. M., 45 (2016), 5693–5708. http://doi.org/10.1080/03610926.2014.948205 doi: 10.1080/03610926.2014.948205
    [3] I. Basak, N. Balakrishnan, A note on the prediction of censored exponential lifetimes in a simple step-stress model with Type-II censoring, Calcutta Statistical Association Bulletin, 70 (2018), 57–73. https://doi.org/10.1177/0008068318769506 doi: 10.1177/0008068318769506
    [4] M. Han, E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples, Commun. Stat. Theor. M., 49 (2020), 1858–1872. https://doi.org/10.1080/03610926.2019.1565837 doi: 10.1080/03610926.2019.1565837
    [5] J. R. Ren, W. H. Gui, A statistical inference for generalized Rayleigh model under Type-II progressive censoring with binomial removals, J. Syst. Eng. Electron., 31 (2020), 206–223. https://doi.org/10.21629/JSEE.2020.01.20 doi: 10.21629/JSEE.2020.01.20
    [6] I. Basak, N. Balakrishnan, Prediction of censored exponential lifetimes in a simple step-stress model under progressive Type II censoring, Comput. Stat., 32 (2017), 1665–1687. https://doi.org/10.1007/s00180-016-0684-0 doi: 10.1007/s00180-016-0684-0
    [7] A. A. Soliman, A. H. A. Ellah, N. A. Abou-Elheggag, R. M. El-Sagheer, Bayesian and frequentist prediction using progressive Type-II censored with binomial removals, Intelligent Information Management, 5(2013), 162–170. http://doi.org/10.4236/iim.2013.55017
    [8] M. Rezapour, M. H. Alamatsaz, N. Balakrishnan, Distribution of the number of observations greater than the ith dependent progressively Type-II censored order statistic and its use in goodness-of-fit testing, Commun. Stat. Theor. M., 44 (2015), 2517–2529. http://doi.org/10.1080/03610926.2015.1043796 doi: 10.1080/03610926.2015.1043796
    [9] J. W. Wu, W. L. Hung, C. H. Tsai, Estimation of the parameters of the Gompertz distribution under the first failure-censored sampling plan, Statistics, 37 (2003), 517–525. http://doi.org/10.1080/02331880310001598864 doi: 10.1080/02331880310001598864
    [10] J. W. Wu, H. Y. Yu, Statistical inference about the shape parameter of the Burr type XII distribution under the failure-censored sampling plan, Appl. Math. Comput., 163 (2005), 443–482. https://doi.org/10.1016/j.amc.2004.02.019 doi: 10.1016/j.amc.2004.02.019
    [11] S. J. Wu, C. Kus, On estimation based on progressive first-failure-censored sampling, Comput. Stat. Data An., 53 (2009), 3659–3670. https://doi.org/10.1016/j.csda.2009.03.010 doi: 10.1016/j.csda.2009.03.010
    [12] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Statist., 25 (1954), 555–564.
    [13] A. Childs, B. Chandrasekar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319–330. https://doi.org/10.1007/BF02530502 doi: 10.1007/BF02530502
    [14] D. Kundu, A. Joarder, Analysis of Type-II progressively hybrid censored data, Comput. Stat. Data An., 50 (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002 doi: 10.1016/j.csda.2005.05.002
    [15] C. T. Lin, Y. Y. Hsu, S. Y. Lee, N. Balakrishnan, Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with type-I hybrid censoring, J. Stat. Comput. Sim., 89 (2019), 720–749. https://doi.org/10.1080/00949655.2019.1571591 doi: 10.1080/00949655.2019.1571591
    [16] N. Balakrishnan, A. R. Shafay, One-and two-sample Bayesian prediction intervals based on Type-II hybrid censored data, Commun. Stat. Theor. M., 41 (2012), 1511–1531. http://doi.org/10.1080/03610926.2010.543300 doi: 10.1080/03610926.2010.543300
    [17] B. Long, Z. Z. Zhang, Statistical analysis of two-parameter Pareto distribution under double Type-II hybrid censoring scheme, Acta Math. Sci., 42 (2022), 269–281. https://doi.org/10.3969/j.issn.1003-3998.2022.01.021 doi: 10.3969/j.issn.1003-3998.2022.01.021
    [18] B. Pradhan, D. Kundu, Bayes estimation and prediction of the two-parameter gamma distribution, J. Stat. Comput. Sim., 81 (2011), 1187–1198. http://doi.org/10.1080/00949651003796335 doi: 10.1080/00949651003796335
    [19] R. Valiollahi, A. Asgharzadeh, M. Z. Raqab, Prediction of future failures times based on Type-I hybrid censored samples of random sample sizes, Commun. Stat. Simul. C., 48 (2019), 109–125. http://doi.org/10.1080/03610918.2017.1375519 doi: 10.1080/03610918.2017.1375519
    [20] R. Valiollahi, A. Asgharzadeh, D. Kundu, Prediction of future failures for generalized exponential distribution under Type-I or Type-II hybrid censoring, Braz. J. Probab. Stat., 31 (2017), 41–61. https://www.jstor.org/stable/24913861
    [21] A. Asgharzadeh, R. Valiollahi, D. Kundu, Prediction for future failures in Weibull distribution under hybrid censoring, J. Stat. Comput. Sim., 85 (2015), 824–838. http://doi.org/10.1080/00949655.2013.848451 doi: 10.1080/00949655.2013.848451
    [22] A. M. Nigm, E. K. Al-Hussaini, Z. F. Jaheen, Bayesian one-sample prediction of future observations under Pareto distribution, Statistics, 37 (2003), 527–536. https://doi.org/10.1080/02331880310001598837 doi: 10.1080/02331880310001598837
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1259) PDF downloads(90) Cited by(3)

Article outline

Figures and Tables

Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog