Research article

Decay for thermoelastic laminated beam with nonlinear delay and nonlinear structural damping

  • Received: 10 December 2023 Revised: 29 January 2024 Accepted: 08 February 2024 Published: 19 February 2024
  • MSC : 35B40, 35L56, 74F05, 93D15, 93D20

  • This paper discussed the decay of a thermoelastic laminated beam subjected to nonlinear delay and nonlinear structural damping. We provided explicit and general energy decay rates of the solution by imposing suitable conditions on both weight delay and wave speeds. To achieve this, we leveraged the properties of convex functions and employed the multiplier technique as a specific approach to demonstrate our stability results.

    Citation: Hicham Saber, Fares Yazid, Fatima Siham Djeradi, Mohamed Bouye, Khaled Zennir. Decay for thermoelastic laminated beam with nonlinear delay and nonlinear structural damping[J]. AIMS Mathematics, 2024, 9(3): 6916-6932. doi: 10.3934/math.2024337

    Related Papers:

  • This paper discussed the decay of a thermoelastic laminated beam subjected to nonlinear delay and nonlinear structural damping. We provided explicit and general energy decay rates of the solution by imposing suitable conditions on both weight delay and wave speeds. To achieve this, we leveraged the properties of convex functions and employed the multiplier technique as a specific approach to demonstrate our stability results.



    加载中


    [1] S. W. Hansen, R. D. Spies, Structural damping in laminated beams due to interfacial slip, J. Sound Vib., 402 (1997), 183–202. https://doi.org/10.1006/jsvi.1996.0913 doi: 10.1006/jsvi.1996.0913
    [2] D. Fayssal, Stabilization of laminated beam with structural damping and a heat conduction of Gurtin-Pipkin's law, Appl. Anal., 102 (2022), 4659–4677. https://doi.org/10.1080/00036811.2022.2132236 doi: 10.1080/00036811.2022.2132236
    [3] C. Nonato, C. Raposo, B. Feng, Exponential stability for a thermoelastic laminated beam with nonlinear weights and time-varying delay, Asymptotic Anal., 126 (2022), 157–185. https://doi.org/10.3233/ASY-201668 doi: 10.3233/ASY-201668
    [4] K. Zennir, S. Zitouni, On the absence of solutions to damped system of nonlinear wave equations of Kirchhoff-type, Vladikavkaz. Mat. Zh., 17 (2015), 44–58.
    [5] K. Zennir, A. Beniani, A. Benaissa, Stability of viscoelastic wave equation with structural $\delta$-evolution in $R^n$, Anal. Theory Appl., 36 (2020), 89–98. https://doi.org/10.4208/ata.OA-2017-0066 doi: 10.4208/ata.OA-2017-0066
    [6] X. Fang, Q. He, H. Ma, C. Zhu, Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate, Appl. Math. Mech.-Engl. Ed., 44 (2023), 1351–1366. https://doi.org/10.1007/s10483-023-3017-6 doi: 10.1007/s10483-023-3017-6
    [7] X. Fang, H. W. Ma, C. S. Zhu, Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force, Mech. Adv. Mater. Struc., 2022. https://doi.org/10.1080/15376494.2022.2158503 doi: 10.1080/15376494.2022.2158503
    [8] K. Mpungu, T. A. Apalara, Asymptotic behavior of a laminated beam with nonlinear delay and nonlinear structural damping, Hacettepe J. Math. Stat., 51 (2022), 1517–1534. https://doi.org/10.15672/hujms.947131 doi: 10.15672/hujms.947131
    [9] L. Djilali, A. Benaissa, A. Benaissa, Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear delay term, Appl. Anal., 95 (2016), 2637–2660. https://doi.org/10.1080/00036811.2015.1105961 doi: 10.1080/00036811.2015.1105961
    [10] J. M. Wang, G. Q. Xu, S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575–1597. https://doi.org/10.1137/040610003 doi: 10.1137/040610003
    [11] N. Bahri, A. Beniani, K. Zennir, Z. Hongwei, Existence and exponential stability of solutions for laminated viscoelastic Timoshenko beams, Appl. Sci., 22 (2020), 1–16.
    [12] F. S. Djeradi, F. Yazid, S. G. Georgiev, Z. Hajjej, K. Zennir, On the time decay for a thermoelastic laminated beam with microtemperature effects, nonlinear weight and nonlinear time-varying delay, AIMS Math., 8 (2023), 26096–26114. https://doi.org/10.3934/math.20231330 doi: 10.3934/math.20231330
    [13] D. Fayssal, Well posedness and stability result for a thermoelastic laminated beam with structural damping, Ricerche Mat., 2022. https://doi.org/10.1007/s11587-022-00708-2 doi: 10.1007/s11587-022-00708-2
    [14] A. Benaissa, M. Bahlil, Global existence and energy decay of solutions to a nonlinear Timoshenko beam system with a delay term, Taiwanese J. Math., 18 (2014), 1411–1437. https://doi.org/10.11650/tjm.18.2014.3586 doi: 10.11650/tjm.18.2014.3586
    [15] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585. https://doi.org/10.1137/060648891 doi: 10.1137/060648891
    [16] T. A. Apalara, A. Soufyane, Energy decay for a weakly nonlinear damped porous system with a nonlinear delay, Appl. Anal., 101 (2022), 6113–6135. https://doi.org/10.1080/00036811.2021.1919642 doi: 10.1080/00036811.2021.1919642
    [17] V. I. Arnold, Mathematical methods of classical mechanics, Springer, New York, 1989. https://doi.org/10.1007/978-1-4757-2063-1
    [18] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundar1y damping, Differ. Integal. Equ., 6 (1993), 507–533. https://doi.org/10.57262/die/1370378427 doi: 10.57262/die/1370378427
    [19] V. Vomornik, Exact controllability and stabilization: the multiplier method, Vol. 36, Elsevier Masson, 1994.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(874) PDF downloads(39) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog