Research article Special Issues

General and optimal decay rates for a viscoelastic wave equation with strong damping

  • Received: 26 May 2022 Revised: 03 August 2022 Accepted: 09 August 2022 Published: 12 August 2022
  • MSC : 35L05, 35L20

  • This work is devoted to investigating the decay properties for a nonlinear viscoelastic wave equation with strong damping. Under certain class of relaxation functions and initial data and using the perturbed energy method, we obtain general and optimal decay results.

    Citation: Qian Li. General and optimal decay rates for a viscoelastic wave equation with strong damping[J]. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006

    Related Papers:

  • This work is devoted to investigating the decay properties for a nonlinear viscoelastic wave equation with strong damping. Under certain class of relaxation functions and initial data and using the perturbed energy method, we obtain general and optimal decay results.



    加载中


    [1] M. M. Cavalcanti, V. N. Domingos Cavalcanti, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043–1053. http://dx.doi.org/10.1002/mma.250 doi: 10.1002/mma.250
    [2] Y. X. Chen, R. Z. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 1–39. http://dx.doi.org/10.1016/j.na.2019.111664 doi: 10.1016/j.na.2019.111664
    [3] H. Chen, G. W. Liu, Global existence, uniform decay and exponential growth for a class of semilinear wave equation with strong damping, Acta Math. Sci., 35B (2013), 41–58. http://dx.doi.org/10.1016/S0252-9602(12)60193-3 doi: 10.1016/S0252-9602(12)60193-3
    [4] L. F. He, On decay and blow-up of solutions for a system of viscoelastic equations with weak damping and source terms, J. Inequal. Appl., 200 (2019), 95–112. http://dx.doi.org/10.1186/s13660-019-2155-y doi: 10.1186/s13660-019-2155-y
    [5] J. H. Hao, H. Y. Wei, Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term, Bound. Value Probl., 65 (2017), 1–12. http://dx.doi.org/10.1186/s13661-017-0796-7 doi: 10.1186/s13661-017-0796-7
    [6] M. Jleli, B. Samet, Blow up for semilinear wave equations with time-dependent damping in an exterior domain, Commun. Pur. Appl. Anal., 19 (2020), 3885–3900. http://dx.doi.org/10.3934/cpaa.2020143 doi: 10.3934/cpaa.2020143
    [7] L. Q. Lu, S. J. Li, S. J. Chai, On a viscoelatic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution, Nonlinear Anal. Real World Appl., 12 (2011), 295–303. http://dx.doi.org/10.1016/j.nonrwa.2010.06.016 doi: 10.1016/j.nonrwa.2010.06.016
    [8] H. A. Levien, S. A. Messaoudi, C. M. Webler, Instability and nonexistence of global solutions of nonlinear wave equation of the form $Pu_tt = Au + F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1–21. http://dx.doi.org/10.1090/S0002-9947-1974-0344697-2 doi: 10.1090/S0002-9947-1974-0344697-2
    [9] H. A. Levien, J. Serrin, A global nonexistence theorem for quasilinear evolution equation with dissipation, Arch. Rational. Mech. Anal., 137 (1997), 341–361. http://dx.doi.org/10.1007/s002050050032 doi: 10.1007/s002050050032
    [10] H. A. Levien, Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, SIAM J. Math. Anal., 5 (1974), 138–146. http://dx.doi.org/10.1137/0505015 doi: 10.1137/0505015
    [11] W. J. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Anal. Theory Methods Appl., 73 (2010), 1890–1904. http://dx.doi.org/10.1016/j.na.2010.05.023 doi: 10.1016/j.na.2010.05.023
    [12] M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. http://dx.doi.org/10.1016/j.jmaa.2017.08.019 doi: 10.1016/j.jmaa.2017.08.019
    [13] S. A. Messaoudi, W. Al-khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Appl. Math. Lett., 66 (2017), 16–22. http://dx.doi.org/10.1016/j.aml.2016.11.002 doi: 10.1016/j.aml.2016.11.002
    [14] S. A. Messaoudi, N. E. TaTar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem, Math. Sci. Res. J., 7 (2003), 136–149. http://dx.doi.org/10.1016/j.amc.2006.11.105 doi: 10.1016/j.amc.2006.11.105
    [15] S. A. Messaoudi, General deay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457–1467. http://dx.doi.org/10.1016/j.jmaa.2007.11.048 doi: 10.1016/j.jmaa.2007.11.048
    [16] S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589–2598. http://dx.doi.org/10.1016/j.na.2007.08.035 doi: 10.1016/j.na.2007.08.035
    [17] S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66. http://dx.doi.org/10.1002/mana.200310104 doi: 10.1002/mana.200310104
    [18] W. Lian, R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. http://dx.doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [19] N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Nonlinear analysis-theory and methods. Springer Monographs in Mathematics, Springer, Cham, 2019. http://dx.doi.org/10.1007/978-3-030-03430-6
    [20] R. Z. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. http://dx.doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1489) PDF downloads(110) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog