Research article

Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $

  • Received: 08 June 2022 Revised: 29 July 2022 Accepted: 05 August 2022 Published: 12 August 2022
  • MSC : 30D35, 34M05

  • By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation

    $ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $

    where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.

    Citation: Linkui Gao, Junyang Gao. Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $[J]. AIMS Mathematics, 2022, 7(10): 18297-18310. doi: 10.3934/math.20221007

    Related Papers:

  • By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation

    $ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $

    where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.



    加载中


    [1] J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37 (1962), 17–27. https://doi.org/10.1112/jlms/s1-37.1.17 doi: 10.1112/jlms/s1-37.1.17
    [2] W. Doeringer, Exceptional value of differential polynomials, Pacific J. Math., 98 (1982), 55–62. https://doi.org/10.2140/pjm.1982.98.55 doi: 10.2140/pjm.1982.98.55
    [3] W. K. Hayman, Meromorphic functions, Oxford at the Clarendon Press, 1964.
    [4] I. Laine, Nevanlinna theory and complex differential equation, Walter de Gruyter, Berlin–New York, 1993. https://doi.org/10.1515/9783110863147
    [5] P. Li, Entire solutions of certain type of differential equations, J. Math. Anal. Appl., 344 (2008), 253–259. https://doi.org/10.1016/j.jmaa.2008.02.064
    [6] P. Li, Entire solutions of certain type of differential equations II, J. Math. Anal. Appl., 375 (2011), 310–319. https://doi.org/10.1016/j.jmaa.2010.09.026 doi: 10.1016/j.jmaa.2010.09.026
    [7] P. Li, C. C. Yang, On the nonexistence of entire solutions of cetain type of nonlinear differential equations, J. Math. Anal. Appl., 320 (2006), 827–835. https://doi.org/10.1016/j.jmaa.2005.07.066 doi: 10.1016/j.jmaa.2005.07.066
    [8] L. W. Liao, C. C. Yang, J. J. Zhang, On meromorphic solutions of certain type of non-linear differential equations, Ann. Acad. Sci. Fenn. Math., 38 (2013), 581–593.
    [9] H. F. Liu, Z. Q. Mao, Meromorphic solutions of certain types of non-linear differential equations, Comput. Methods Funct. Theory, 20 (2020), 319–332. https://doi.org/10.1007/s40315-020-00313-0 doi: 10.1007/s40315-020-00313-0
    [10] X. Q. Lu, L. W. Liao, J. Wang, On meromorphic solutions of a certain type of nonlinear differential equations, Acta Math. Sin., 33 (2017), 1597–1608. https://doi.org/10.1007/s10114-017-6484-9 doi: 10.1007/s10114-017-6484-9
    [11] N. Steinmetz, Zur Wertverteilund der quotienten von exponentialpolynomen, Arch. Math., 35 (1980), 461–470.
    [12] B. Xue, Entire solutions of certain types of non-linear differential equations, Math. Slovaca, 70 (2020), 87–94. https://doi.org/10.1515/ms-2017-0334 doi: 10.1515/ms-2017-0334
    [13] C. C. Yang, P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math., 82 (2004), 442–448. https://doi.org/10.1007/s00013-003-4796-8 doi: 10.1007/s00013-003-4796-8
    [14] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, 2003.
    [15] J. Zhang, L. W. Liao, On entire solutions of a certain type of nonlinear differential and difference equations, Taiwan. J. Math., 15 (2011), 2145–2157.
    [16] Y. Y. Zhang, Z. S. Gao, J. L. Zhang, Entire solutions of certain nonlinear differential and delay-differential equations, J. Math. Anal. Appl., 503 (2021), 1–12. https://doi.org/10.1016/j.jmaa.2021.125349 doi: 10.1016/j.jmaa.2021.125349
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1560) PDF downloads(95) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog