By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation
$ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $
where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.
Citation: Linkui Gao, Junyang Gao. Meromorphic solutions of $ f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z} $[J]. AIMS Mathematics, 2022, 7(10): 18297-18310. doi: 10.3934/math.20221007
By using Nevanlinna of the value distribution of meromorphic functions, we investigate the transcendental meromorphic solutions of the non-linear differential equation
$ \begin{equation*} f^{n}+P_{d}(f) = p_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}+p_{3}e^{\alpha_{3}z}, \end{equation*} $
where $ P_{d}(f) $ is a differential polynomial in $ f $ of degree $ d(0\leq d\leq n-3) $ with small meromorphic coefficients and $ p_{i}, \alpha_{i}(i = 1, 2, 3) $ are nonzero constants. We show that the solutions of this type equation are exponential sums and they are in $ \Gamma_{0}\cup\Gamma_{1}\cup\Gamma_{3} $ which will be given in Section $ 1 $. Moreover, we give some examples to illustrate our results.
[1] | J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37 (1962), 17–27. https://doi.org/10.1112/jlms/s1-37.1.17 doi: 10.1112/jlms/s1-37.1.17 |
[2] | W. Doeringer, Exceptional value of differential polynomials, Pacific J. Math., 98 (1982), 55–62. https://doi.org/10.2140/pjm.1982.98.55 doi: 10.2140/pjm.1982.98.55 |
[3] | W. K. Hayman, Meromorphic functions, Oxford at the Clarendon Press, 1964. |
[4] | I. Laine, Nevanlinna theory and complex differential equation, Walter de Gruyter, Berlin–New York, 1993. https://doi.org/10.1515/9783110863147 |
[5] | P. Li, Entire solutions of certain type of differential equations, J. Math. Anal. Appl., 344 (2008), 253–259. https://doi.org/10.1016/j.jmaa.2008.02.064 |
[6] | P. Li, Entire solutions of certain type of differential equations II, J. Math. Anal. Appl., 375 (2011), 310–319. https://doi.org/10.1016/j.jmaa.2010.09.026 doi: 10.1016/j.jmaa.2010.09.026 |
[7] | P. Li, C. C. Yang, On the nonexistence of entire solutions of cetain type of nonlinear differential equations, J. Math. Anal. Appl., 320 (2006), 827–835. https://doi.org/10.1016/j.jmaa.2005.07.066 doi: 10.1016/j.jmaa.2005.07.066 |
[8] | L. W. Liao, C. C. Yang, J. J. Zhang, On meromorphic solutions of certain type of non-linear differential equations, Ann. Acad. Sci. Fenn. Math., 38 (2013), 581–593. |
[9] | H. F. Liu, Z. Q. Mao, Meromorphic solutions of certain types of non-linear differential equations, Comput. Methods Funct. Theory, 20 (2020), 319–332. https://doi.org/10.1007/s40315-020-00313-0 doi: 10.1007/s40315-020-00313-0 |
[10] | X. Q. Lu, L. W. Liao, J. Wang, On meromorphic solutions of a certain type of nonlinear differential equations, Acta Math. Sin., 33 (2017), 1597–1608. https://doi.org/10.1007/s10114-017-6484-9 doi: 10.1007/s10114-017-6484-9 |
[11] | N. Steinmetz, Zur Wertverteilund der quotienten von exponentialpolynomen, Arch. Math., 35 (1980), 461–470. |
[12] | B. Xue, Entire solutions of certain types of non-linear differential equations, Math. Slovaca, 70 (2020), 87–94. https://doi.org/10.1515/ms-2017-0334 doi: 10.1515/ms-2017-0334 |
[13] | C. C. Yang, P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math., 82 (2004), 442–448. https://doi.org/10.1007/s00013-003-4796-8 doi: 10.1007/s00013-003-4796-8 |
[14] | C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, 2003. |
[15] | J. Zhang, L. W. Liao, On entire solutions of a certain type of nonlinear differential and difference equations, Taiwan. J. Math., 15 (2011), 2145–2157. |
[16] | Y. Y. Zhang, Z. S. Gao, J. L. Zhang, Entire solutions of certain nonlinear differential and delay-differential equations, J. Math. Anal. Appl., 503 (2021), 1–12. https://doi.org/10.1016/j.jmaa.2021.125349 doi: 10.1016/j.jmaa.2021.125349 |