Research article

Higher Jordan triple derivations on $ * $-type trivial extension algebras

  • Received: 15 November 2023 Revised: 27 January 2024 Accepted: 04 February 2024 Published: 19 February 2024
  • MSC : 16W25, 46L10

  • In this paper, we investigated the problem of describing the form of higher Jordan triple derivations on trivial extension algebras. We show that every higher Jordan triple derivation on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of a higher derivation and a higher anti-derivation. As for its applications, higher Jordan triple derivations on triangular algebras are characterized.

    Citation: Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang. Higher Jordan triple derivations on $ * $-type trivial extension algebras[J]. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338

    Related Papers:

  • In this paper, we investigated the problem of describing the form of higher Jordan triple derivations on trivial extension algebras. We show that every higher Jordan triple derivation on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of a higher derivation and a higher anti-derivation. As for its applications, higher Jordan triple derivations on triangular algebras are characterized.



    加载中


    [1] D. Benkovi$\check{c}$, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017 doi: 10.1016/j.laa.2004.10.017
    [2] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110.
    [3] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324.
    [4] M. Brešar, J. Vukman, Jordan derivations on semiprime rings, Bull. Austral. Math. Soc., 37 (1988), 321–322.
    [5] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chin. Ser.), 41 (1998), 205–212.
    [6] J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015
    [7] H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc., 39 (2013), 635–645.
    [8] M. Ashraf, A. Jabeen, Nonlinear Jordan triple derivable mappings of triangular algebras, Pac. J. Appl. Math., 7 (2016), 225–235.
    [9] M. Fošner, D. Iliševi, On Jordan triple derivations and related mappings, Mediterr. J. Math., 5 (2008), 415–427. https://doi.org/10.1007/s00009-008-0159-9 doi: 10.1007/s00009-008-0159-9
    [10] M. Brešar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218–228. https://doi.org/10.1016/0021-8693(89)90285-8 doi: 10.1016/0021-8693(89)90285-8
    [11] X. H. Fei, H. F. Zhang, A class of nonlinear nonglobal semi-Jordan triple derivable mappings on triangular algebras, J. Math., 2021 (2021), 4401874. https://doi.org/10.1155/2021/4401874 doi: 10.1155/2021/4401874
    [12] Z. K. Xiao, F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl., 432 (2010), 2615–2622. https://doi.org/10.1016/j.laa.2009.12.006 doi: 10.1016/j.laa.2009.12.006
    [13] W. L. Fu, Z. K. Xiao, X. K. Du, Nonlinear Jordan higher derivations on triangular algebras, Commun. Math. Res., 31 (2015), 119–130.
    [14] H. R. E. Vishki, M. Mirzavaziri, F. Moafian, Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc., 31 (2016), 247–259. http://dx.doi.org/10.4134/CKMS.2016.31.2.247 doi: 10.4134/CKMS.2016.31.2.247
    [15] S. M. Salih, C. Haetinger, Jordan triple higher derivations on prime rings, Math. Theory Model., 5 (2015), 69–76.
    [16] M. Ashraf, A. Jabeen, Nonlinear Jordan triple higher derivable mappings of triangular algebras, Southeast Asian Bull. Math., 42 (2018), 503–520.
    [17] X. H. Fei, H. F. Zhang, Jordan triple derivations on $*$-type trivial extension algebras, in Chinese, Adv. Math., 2023, 1–12.
    [18] W. S. Cheung, Mappings on triangular algebras, Ph.D thesis, University of Victoria, 2000.
    [19] I. Assem, D. Happel, O. Roldan, Representation-finite trivial extension algebras, J. Pure Appl. Algebra, 33 (1984), 235–242. https://doi.org/10.1016/0022-4049(84)90058-6 doi: 10.1016/0022-4049(84)90058-6
    [20] W. G. Bade, H. G. Dales, Z. A. Lykova, Algebraic and Strong Splittings of Extensions of Banach Algebras, Washington: American Mathematical Society, 1999.
    [21] D. Bennis, B. Fahid, Derivations and the first cohomology group of trivial extension algebras, Mediterr. J. Math., 14 (2017), 150–171. https://doi.org/10.1007/s00009-017-0949-z doi: 10.1007/s00009-017-0949-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(588) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog