In this paper, we investigated the problem of describing the form of higher Jordan triple derivations on trivial extension algebras. We show that every higher Jordan triple derivation on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of a higher derivation and a higher anti-derivation. As for its applications, higher Jordan triple derivations on triangular algebras are characterized.
Citation: Xiuhai Fei, Zhonghua Wang, Cuixian Lu, Haifang Zhang. Higher Jordan triple derivations on $ * $-type trivial extension algebras[J]. AIMS Mathematics, 2024, 9(3): 6933-6950. doi: 10.3934/math.2024338
In this paper, we investigated the problem of describing the form of higher Jordan triple derivations on trivial extension algebras. We show that every higher Jordan triple derivation on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of a higher derivation and a higher anti-derivation. As for its applications, higher Jordan triple derivations on triangular algebras are characterized.
[1] | D. Benkovi$\check{c}$, Jordan derivations and antiderivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017 doi: 10.1016/j.laa.2004.10.017 |
[2] | I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110. |
[3] | J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324. |
[4] | M. Brešar, J. Vukman, Jordan derivations on semiprime rings, Bull. Austral. Math. Soc., 37 (1988), 321–322. |
[5] | J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chin. Ser.), 41 (1998), 205–212. |
[6] | J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015 |
[7] | H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc., 39 (2013), 635–645. |
[8] | M. Ashraf, A. Jabeen, Nonlinear Jordan triple derivable mappings of triangular algebras, Pac. J. Appl. Math., 7 (2016), 225–235. |
[9] | M. Fošner, D. Iliševi, On Jordan triple derivations and related mappings, Mediterr. J. Math., 5 (2008), 415–427. https://doi.org/10.1007/s00009-008-0159-9 doi: 10.1007/s00009-008-0159-9 |
[10] | M. Brešar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218–228. https://doi.org/10.1016/0021-8693(89)90285-8 doi: 10.1016/0021-8693(89)90285-8 |
[11] | X. H. Fei, H. F. Zhang, A class of nonlinear nonglobal semi-Jordan triple derivable mappings on triangular algebras, J. Math., 2021 (2021), 4401874. https://doi.org/10.1155/2021/4401874 doi: 10.1155/2021/4401874 |
[12] | Z. K. Xiao, F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl., 432 (2010), 2615–2622. https://doi.org/10.1016/j.laa.2009.12.006 doi: 10.1016/j.laa.2009.12.006 |
[13] | W. L. Fu, Z. K. Xiao, X. K. Du, Nonlinear Jordan higher derivations on triangular algebras, Commun. Math. Res., 31 (2015), 119–130. |
[14] | H. R. E. Vishki, M. Mirzavaziri, F. Moafian, Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc., 31 (2016), 247–259. http://dx.doi.org/10.4134/CKMS.2016.31.2.247 doi: 10.4134/CKMS.2016.31.2.247 |
[15] | S. M. Salih, C. Haetinger, Jordan triple higher derivations on prime rings, Math. Theory Model., 5 (2015), 69–76. |
[16] | M. Ashraf, A. Jabeen, Nonlinear Jordan triple higher derivable mappings of triangular algebras, Southeast Asian Bull. Math., 42 (2018), 503–520. |
[17] | X. H. Fei, H. F. Zhang, Jordan triple derivations on $*$-type trivial extension algebras, in Chinese, Adv. Math., 2023, 1–12. |
[18] | W. S. Cheung, Mappings on triangular algebras, Ph.D thesis, University of Victoria, 2000. |
[19] | I. Assem, D. Happel, O. Roldan, Representation-finite trivial extension algebras, J. Pure Appl. Algebra, 33 (1984), 235–242. https://doi.org/10.1016/0022-4049(84)90058-6 doi: 10.1016/0022-4049(84)90058-6 |
[20] | W. G. Bade, H. G. Dales, Z. A. Lykova, Algebraic and Strong Splittings of Extensions of Banach Algebras, Washington: American Mathematical Society, 1999. |
[21] | D. Bennis, B. Fahid, Derivations and the first cohomology group of trivial extension algebras, Mediterr. J. Math., 14 (2017), 150–171. https://doi.org/10.1007/s00009-017-0949-z doi: 10.1007/s00009-017-0949-z |