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1. Introduction

Let R be a commutative ring with identity, andA a unital algebra over R. For any X,Y ∈ A, denote
the Jordan product of X,Y by X ◦ Y = XY + YX. An additive mapping ∆ fromA into itself is called a
derivation (resp., anti-derivation ) if ∆(XY) = ∆(X)Y + X∆(Y) (resp., ∆(XY) = ∆(Y)X + Y∆(X)) for all
X,Y ∈ A. It is called a Jordan derivation if ∆(X ◦Y) = ∆(X) ◦Y +X ◦∆(Y) for all X,Y ∈ A. It is called
a Jordan triple derivation if ∆(X ◦Y ◦Z) = ∆(X)◦Y ◦Z +X ◦∆(Y)◦Z +X ◦Y ◦∆(Z) for all X,Y,Z ∈ A.
Obviously, every derivation or anti-derivation is a Jordan derivation. However, the inverse statement is
not true in general (see [1]). If a Jordan derivation or Jordan triple derivation is not a derivation, then it
is said to be proper. Otherwise, it is said to be improper.

In the past few decades, the problem of characterizing the structure of Jordan derivations and Jordan
triple derivations has attracted the attention of many mathematical workers and has achieved some
important research results. For example, Herstein in [2] proved that every Jordan derivation on a prime
ring not of characteristic 2 is a derivation. This result was extended by Cusack in [3] and Brešar in [4]
to the case of semiprime. Zhang in [5, 6] showed that every Jordan derivation on a nest algebra or
a 2-torsion free triangular algebra is a inner derivation or a derivation, respectively. Later, Hoger in [7]
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extended the result of Zhang in [6] and proved that, under certain conditions, each Jordan derivation on
trivial extension algebras is a sum of a derivation and an anti-derivation. In addition, there have been
many research results on Jordan triple derivations, as shown in references [8–11].

Definition 1.1. Let R be a commutative ring with identity,A a unital algebra over R, N0 be the set of
all nonnegative integers, and D = {dn}n∈N0 be a family of additive maps on A such that d0 = idA ( the
identity map onA). D is said to be:

(i) a higher derivation if for each n ∈ N0,

dn(XY) =
∑

p+q=n

dp(X)dq(Y)

for all X,Y ∈ A;
(ii) a higher anti-derivation if for each n ∈ N0,

dn(XY) =
∑

p+q=n

dp(Y)dq(X)

for all X,Y ∈ A;
(iii) a higher Jordan derivation if for each n ∈ N0,

dn(X ◦ Y) =
∑

p+q=n

dp(X) ◦ dq(Y)

for all X,Y ∈ A;
(iv) a higher Jordan triple derivation if for each n ∈ N0,

dn(X ◦ Y ◦ Z) =
∑

p+q+r=n

dp(X) ◦ dq(Y) ◦ dr(Z)

for all X,Y,Z ∈ A.

If a higher Jordan derivation or a higher Jordan triple derivation is not a higher derivation, then it is
said to be proper. Otherwise, it is said to be improper. With the deepening of research on this topic,
many research achievements have been obtained about higher Jordan derivations and higher Jordan
triple derivations. For example, Xiao and Wei in [12] proved that every higher Jordan derivation on
triangular algebras is a higher derivation; Fu, Xiao, and Du in [13] extended this conclusion, and proved
that every nonlinear higher Jordan derivation on triangular algebras is a higher derivation. Later, Vishki,
Mirzavaziri, and Moafian in [14] proved that, under certain conditions, every higher Jordan derivation
on trivial extension algebras is a higher derivation, and this conclusion further extended the works of
the authors of references [12, 13]. Salih and Haetinger in [15] proved that, under certain conditions,
every higher Jordan triple derivation on prime rings is a higher derivation. Ashraf and Jabeenin [16]
proved that every nonlinear higher Jordan triple derivable mapping on triangular algebras is a higher
derivation.

In this paper, we are interested in describing the form of higher Jordan triple derivation on trivial
extension algebras. As a main result, we give conditions under which each higher Jordan triple
derivation on trivial extension algebras is a sum of a higher derivation and a higher anti-derivation.
This result extends the study of Jordan derivation on trivial extension algebras [7], Jordan triple
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derivations on ∗-type trivial extension algebras [17], and Jordan higher derivations on trivial extension
algebras [14].

Let R be a commutative ring with identity, A a unital algebra over R and M be an A-bimodule.
Then the direct product A ⊕ M together with the pairwise addition, scalar product, and algebra
multiplication defined by

(a,m)(b, n) = (ab, an + mb)(∀a, b ∈ A,m, n ∈ M)

is an R-algebra with a unity (1, 0) denoted by

T = A⊕M = {(a,m) : a ∈ A,m ∈ M}

and T is called a trivial extension algebra.
An important example of trivial extension algebra is the triangular algebra which was introduced

by Cheung in [18]. Let A and B be unital algebras over a commutative ring R, and M be a unital
(A,B)-bimodule, which is faithful as both a leftA-module and a right B-module. Then, the R-algebra

U = Tri(A,M,B) =
{(

a m
0 b

)
: a ∈ A,m ∈ M, b ∈ B

}
under the usual matrix operations is called a triangular algebra. Basic examples of triangular algebras
are upper triangular matrix algebras and nest algebras.

It is well-known that every triangular algebra can be viewed as a trivial extension algebra. Indeed,
denote by A ⊕ B the direct product as an R-algebra, and then M is viewed as an A ⊕ B-bimodule
with the module action given by (a, b)m = am and m(a, b) = mb for all (a, b) ∈ A ⊕ B and m ∈ M.
Then triangular algebra U is isomorphic to trivial extensions algebra T = (A ⊕ B) ⊕M. However, a
trivial extension algebra is not necessarily a triangular algebra. For more details about trivial extension
algebras, we refer the readers to [19–21].

The following notations will be used in our paper: Let R be a commutative ring with identity, A a
unital algebra over R,M anA-bimodule, T = A⊕M be a 2-torsion free trivial extension algebra (i.e.,
for any X ∈ T , 2X = {0} implies X = 0), and denote by 1 and 0 are the unity and zero of T = A⊕M,
respectively.

We say T = A ⊕M is a ∗-type trivial extension algebra ifA has a non-trivial idempotent element
e and f = 1 − e such that

(i) eM f =M;
(ii) exeM = {0} implies exe = 0,∀x ∈ A;
(iii)M f x f = {0} implies f x f = 0,∀x ∈ A;
(iv) ex f ye = 0 = f xey f = 0,∀x, y ∈ A.
For convenience, in the following we let P1 = (e, 0), P2 = ( f , 0), and

Ti j = PiTP j( 1 ≤ i ≤ j ≤ 2).

It is not hard to see that the trivial extension algebra T may be represented as

T = P1TP1 + P1TP2 + P2TP1 + P2TP2 = T11 + T12 + T21 + T22.

Then every element A ∈ T may be represented as A = A11 + A12 + A21 + A22, where Ai j ∈ Ti j(1 ≤ i ≤
j ≤ 2). In the following, we give a property of ∗-type trivial extension algebras (see Lemma 1.1).
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Lemma 1.1. [17] Let T be a ∗-type trivial extension algebra and 1 ≤ i , j ≤ 2. Then,
(i) for any A11 ∈ T11, if A11T12 = 0, then A11 = 0 ;
(ii) for any A22 ∈ T22, if T12A22 = 0, then A22 = 0;
(iii) Ai jB ji = AiiB ji = Ai jBii = 0, ∀Aii, Bii ∈ Tii,∀Ai j ∈ Ti j,∀B ji ∈ T ji.

For ease of reading, we provide the main conclusions of reference [17] as follows:

Theorem 1.1. [17] Let T = A ⊕ M be a 2-torsion free ∗-type trivial extension algebra and ∆ be
a Jordan triple derivation on T . Then, there exists a derivation D and an anti-derivation φ on T ,
respectively, such that

∆(A) = D(A) + φ(A)

for all A ∈ T .

2. Main results

The main result of this paper is the following theorem:

Theorem 2.1. Let T = A ⊕M be a 2-torsion free ∗-type trivial extension algebra, and D = {dn}n∈N0

be a higher Jordan triple derivation on T . Then, there exists a higher derivation G = {gn}n∈N0 and a
higher anti-derivation F = { fn}n∈N0 on T , respectively, such that

dn(X) = gn(X) + fn(X)

for any n ≥ 1 and X ∈ T .

In order to prove Theorem 2.1, we shall establish Theorems 2.2 and 2.3 in the following. We assume
that T is a ∗-type trivial extension algebra, N0 is the set of all nonnegative integers, and D = {dn}n∈N0

is a higher Jordan triple derivation on T .
In [17], it is proved that if d1 is a Jordan triple derivation on T , then for all Ai j ∈ Ti j (1 ≤ i, j ≤ 2),

d1 satisfies the following properties (L):
(i) d1(P1) = −d1(P2);
(ii) d1(P1) = P1d1(P1)P2 + P2d1(P1)P1 and d1(P2) = P1d1(P2)P2 + P2d1(P2)P1;
(iii) P2d1(A11)P2 = 0, P1d1(A11)P2 = A11d1(P1) and P2d1(A11)P1 = d1(P1)A11;
(iv) P1d1(A22)P1 = 0, P1d1(A22)P2 = d1(P2)A22 and P2d1(A22)P1 = A22d1(P2);
(v) d1(A12) = P1d1(A12)P2 + P2d1(A12)P1 and d1(A21) = P1d1(A21)P2 + P2d1(A21)P1;
(vi) d1(P1) ◦ d1(P2) = d1(P1) ◦ d1(A12) = d1(P1) ◦ d1(A21) = d1(P2) ◦ d1(A12) = d1(P2) ◦ d1(A21) = 0;
(vii) d1(A12) ◦ d1(A12) = d1(A21) ◦ d1(A21) = d1(A12) ◦ d1(A21) = 0.
Now, for all Ai j ∈ Ti j (1 ≤ i, j ≤ 2), we assume that dk (1 ⩽ k < n) satisfy the properties L. In the

following, we show that dn satisfies the properties L.

Lemma 2.1. Let D = {dn}n∈N0 be a higher Jordan triple derivation on T . Then, for each n ≥ 1, and
for any A11 ∈ T11, A12 ∈ T12, A21 ∈ T21, A22 ∈ T22,

(i) dn(P1) = P1dn(P1)P2 + P2dn(P1)P1 and dn(P2) = P1dn(P2)P2 + P2dn(P2)P1;
(ii) dn(P1) = −dn(P2);
(iii) P2dn(A11)P2 = 0, P1dn(A11)P2 = A11dn(P1) and P2dn(A11)P1 = dn(P1)A11;
(iv) P1dn(A22)P1 = 0, P1dn(A22)P2 = dn(P2)A22 and P2dn(A22)P1 = A22dn(P2);
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(v) dn(A12) = P1dn(A12)P2 + P2dn(A12)P1 and dn(A21) = P1dn(A21)P2 + P2dn(A21)P1;
(vi) dn(P1) ◦ dn(P2) = dn(P1) ◦ dn(A12) = dn(P1) ◦ dn(A21) = dn(P2) ◦ dn(A12) = dn(P2) ◦ dn(A21) = 0;
(vii) dn(A12) ◦ dn(A12) = dn(A21) ◦ dn(A21) = dn(A12) ◦ dn(A21) = 0.

Proof. (i) For each n ≥ 1 and for any X,Y,Z ∈ T , by the definition of D = {dn}n∈N0 , we get

dn(X ◦ Y ◦ Z) =
∑

p+q+r=n

dp(X) ◦ dq(Y) ◦ dr(Z). (2.1)

Taking X = Y = Z = P1 in Eq (2.1), we assume that dk (1 ⩽ k < n) satisfy the properties L, and then it
follows from Lemma 1.1 (iii) that

4dn(P1) =
∑

p+q+r=n

dp(P1) ◦ dq(P1) ◦ dr(P1)

=
∑

p+q+r=n,1≤p,q,r

dp(P1) ◦ dq(P1) ◦ dr(P1) +
∑

q+r=n,1≤q,r

P1 ◦ dq(P1) ◦ dr(P1)

+
∑

p+r=n,1≤p,r

dp(P1) ◦ P1 ◦ dr(P1) +
∑

p+q=n,1≤p,q

dp(P1) ◦ dq(P1) ◦ P1

+ dn(P1) ◦ P1 ◦ P1 + P1 ◦ dn(P1) ◦ P1 + P1 ◦ P1 ◦ dn(P1)
= dn(P1) ◦ P1 ◦ P1 + P1 ◦ dn(P1) ◦ P1 + P1 ◦ P1 ◦ dn(P1)
= 4P1dn(P1)P1 + 4P1dn(P1) + 4dn(P1)P1.

This yields from the 2-torsion freeness of T that

P1dn(P1)P1 = P2dn(P1)P2 = 0.

Similarly, we get that

P1dn(P2)P1 = P2dn(P2)P2 = 0.

Therefore, dn(P1) = P1dn(P1)P2 + P2dn(P1)P1 and dn(P2) = P1dn(P2)P2 + P2dn(P2)P1.
(ii) For each n ≥ 1, taking X = P1,Y = P2,Z = P1 in Eq (2.1), we assume that dk (1 ⩽ k < n) satisfy

the properties L, then by Lemma 1.1 (iii) and Lemma 2.1 (i), we get that

0 =
∑

p+q+r=n

dp(P1) ◦ dq(P2) ◦ dr(P1)

=
∑

p+q+r=n,1≤p,q,r

dp(P1) ◦ dq(P2) ◦ dr(P1) +
∑

q+r=n,1≤q,r

P1 ◦ dq(P2) ◦ dr(P1)

+
∑

p+r=n,1≤p,r

dp(P1) ◦ P2 ◦ dr(P1) +
∑

p+q=n,1≤p,q

dp(P1) ◦ dq(P2) ◦ P1

+ dn(P1) ◦ P2 ◦ P1 + P1 ◦ dn(P2) ◦ P1 + P1 ◦ P2 ◦ dn(P2)
= dn(P1) ◦ P2 ◦ P1 + P1 ◦ dn(P2) ◦ P1 + P1 ◦ P2 ◦ dn(P2)
= {dn(P1)P2 + P2dn(P1)} ◦ P1 + {P1dn(P2) + dn(P2)P1} ◦ P1

= P1dn(P1)P2 + P2dn(P1)P1 + P1dn(P2) + dn(P2)P1 + 2P1dn(P2)P1

= P1dn(P1)P2 + P2dn(P1)P1 + P1dn(P2)P2 + P2dn(P2)P1

AIMS Mathematics Volume 9, Issue 3, 6933–6950.



6938

= dn(P1) + dn(P2).

(iii)–(iv) For each n ≥ 1 and for any A11 ∈ T11, taking X = A11,Y = Z = P2 in Eq (2.1), we assume
that dk (1 ⩽ k < n) satisfy the properties L, and then by Lemma 1.1 (iii) and Lemma 2.1 (i, ii), we get
that

0 =
∑

p+q+r=n

dp(A11) ◦ dq(P2) ◦ dr(P2)

=
∑

p+q+r=n,1≤p,q,r

dp(A11) ◦ dq(P2) ◦ dr(P2) +
∑

q+r=n,1≤q,r

A11 ◦ dq(P2) ◦ dr(P2)

+
∑

p+r=n,1≤p,r

dp(A11) ◦ P2 ◦ dr(P2) +
∑

p+q=n,1≤p,q

dp(A11) ◦ dq(P2) ◦ P2

+ dn(A11) ◦ P2 ◦ P2 + A11 ◦ dn(P2) ◦ P2 + A11 ◦ P2 ◦ dn(P2)
= dn(A11) ◦ P2 ◦ P2 + A11 ◦ dn(P2) ◦ P2 + A11 ◦ P2 ◦ dn(P2)
= {dn(A11)P2 + P2dn(A11)} ◦ P2 + {A11dn(P2) + dn(P2)A11} ◦ P2

= {dn(A11)P2 + P2dn(A11) + 2P2dn(A11)P2} + {A11dn(P2) + P2dn(P2)A11}

= dn(A11)P2 + P2dn(A11) + A11dn(P2) + dn(P2)A11.

This implies that P2dn(A11)P2 = 0. and

P1dn(A11)P2 = A11dn(P1) and P2dn(A11)P1 = dn(P1)A11.

Similarly, for each n ≥ 1 and for any A22 ∈ T22, we get that P1dn(A22)P1 = 0, P1dn(A22)P2 = dn(P2)A22

and P2dn(A22)P1 = A22dn(P2).
(v) For each n ≥ 1 and for any A12 ∈ T12, taking X = P1,Y = A12,Z = P2 in Eq (2.1), we assume

that dk (1 ⩽ k < n) satisfy the properties L, and then by Lemma 1.1 (iii) and Lemma 2.1 (i, ii), we get
that

dn(A12) =
∑

p+q+r=n

dp(P1) ◦ dq(A12) ◦ dr(P2)

=
∑

p+q+r=n,1≤p,q,r

dp(P1) ◦ dq(A12) ◦ dr(P2) +
∑

q+r=n,1≤q,r

P1 ◦ dq(A12) ◦ dr(P2)

+
∑

p+r=n,1≤p,r

dp(P1) ◦ A12 ◦ dr(P2) +
∑

p+q=n,1≤p,q

dp(P1) ◦ dq(A12) ◦ P2

+ dn(P1) ◦ A12 ◦ P2 + P1 ◦ dn(A12) ◦ P2 + P1 ◦ A12 ◦ dn(P2)
= P1 ◦ dn(A12) ◦ P2

= P1dn(A12)P2 + P2dn(A12)P1.

Similarly, for each n ≥ 1 and for any A21 ∈ T21, we get that dn(A21) = P1dn(A21)P2 + P2dn(A21)P1.
(vi) For each n ≥ 1 and for any A12 ∈ T12, A21 ∈ T21, by Lemma 1.1 (iii) and Lemma 2.1 (i, ii, v),

we can easily check that (vi) holds. Similarly, we show (vii) holds. The proof is complete. □

Theorem 2.2. Let F = { fn}n∈N0 be a sequence of mappings on T (with f0 = i fT ). For each n ≥ 1 and
X ∈ T , define

fn(X) = P2dn(P1XP2)P1 + P1dn(P2XP1)P2.
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Then, F is a higher anti-derivation on T .

It is clear that fn(Aii) = 0 and fn(Ai j) = P j fn(Ai j)Pi for each n ≥ 1, and for any Aii ∈ Tii, Ai j ∈ Ti j

(1 ≤ i , j ≤ 2).
In the following, we show that F = { fn}n∈N0 is a higher anti-derivation, i.e., for each n ≥ 1 and for

any X,Y ∈ T , fn satisfies fn(XY) =
∑

p+q=n fp(Y) fq(X). For this, we introduce Lemmas 2.2 and 2.3,
and prove Lemmas 2.2 and 2.3.

Lemma 2.2. Let fn : T → T be defined as in Theorem 2.2. Then, for each n ≥ 1 and for any
Aii, Bii ∈ Tii, Ai j, Bi j ∈ Ti j, B ji ∈ T ji, B j j ∈ T j j (1 ≤ i , j ≤ 2),

(i) fn(AiiBii) =
∑

p+q=n fp(Bii) fq(Aii);
(ii) fn(AiiB j j) =

∑
p+q=n fp(B j j) fq(Aii);

(iii) fn(AiiB ji) =
∑

p+q=n fp(B ji) fq(Aii);
(iv) fn(Ai jBii) =

∑
p+q=n fp(Bii) fq(Ai j);

(v) fn(Ai jBi j) =
∑

p+q=n fp(Bi j) fq(Ai j);
(vi) fn(Ai jB ji) =

∑
p+q=n fp(B ji) fq(Ai j).

Proof. (i) For any n ≥ 1 and Aii, Bii ∈ Tii (1 ≤ i ≤ 2), we get from fn(AiiBii) = fn(Aii) = fn(Bii) = 0 that

fn(AiiBii) =
∑

p+q=n

fp(Bii) fq(Aii).

Similarly, we can show (ii) holds.
(iii) For each n ≥ 1 and for any Aii ∈ Tii, B ji ∈ T ji (1 ≤ i , j ≤ 2), on the one hand, we have

fn(AiiB ji) = fn(0) = 0. On the other hand, it follows from fn(Aii) = 0 and fn(B ji) = Pi fn(B ji)P j that∑
p+q=n

fp(B ji) fq(Aii) =
∑

p+q=n,1≤p,q

fp(B ji) fq(Aii) + fn(B ji)Aii + B ji fn(Aii)

= fn(B ji)Aii

= (Pi fn(B ji)P j)Aii

= 0.

Therefore, fn(AiiB ji) =
∑

p+q=n fp(B ji) fq(Aii). Similarly, we get (iv).
(v) For each n ≥ 1 and for any Ai j, Bi j ∈ Ti j (1 ≤ i , j ≤ 2), on the one hand, we have

fn(Ai jBi j) = fn(0) = 0. On the other hand, we get from fn(Bi j) fn(Ai j) = {P j fn(Bi j)Pi}{P j fn(Ai j)Pi} = 0
and Lemma 1.1 (iii) that∑

p+q=n

fp(Bi j) fq(Ai j) =
∑

p+q=n,1≤p,q

fp(Bi j) fq(Ai j) + fn(Bi j)Ai j + Bi j fn(Ai j)

= fn(Bi j)Ai j + Bi j fn(Ai j)
= {P j fn(Bi j)Pi}Ai j + Bi j{P j fn(Ai j)Pi}

= 0.

Therefore, fn(Ai jBi j) =
∑

p+q=n fp(Bi j) fq(Ai j). Similarly, we get (vi). The proof is complete. □
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Lemma 2.3. Let fn : T → T be defined as in Theorem 2.2. Then, for each n ≥ 1 and for any
Aii ∈ Tii, Bi j ∈ Ti j, B j j ∈ T j j (1 ≤ i , j ≤ 2),

(i) fn(AiiBi j) =
∑

p+q=n fp(Bi j) fq(Aii);
(ii) fn(Ai jB j j) =

∑
p+q=n fp(B j j) fq(Ai j).

Proof. (i) For each n ≥ 1 and for any Aii ∈ Tii, Bi j ∈ Ti j (1 ≤ i , j ≤ 2), it follows from AiiBi j =

Aii ◦ Bi j ◦ P j and Lemma 2.1 that

fn(AiiBi j) = P jdn(AiiBi j)Pi

= P jdn(Aii ◦ Bi j ◦ P j)Pi

= P j{
∑

p+q+r=n

dp(Aii) ◦ dq(Bi j) ◦ dr(P j)}Pi

= P j{
∑

p+q+r=n,1≤p,q,r

dp(Aii) ◦ dq(Bi j) ◦ dr(P j)}Pi

+ P j{
∑

q+r=n,1≤q,r

Aii ◦ dq(Bi j) ◦ dr(P j)}Pi

+ P j{
∑

p+r=n,1≤r,t

dp(Aii) ◦ Bi j ◦ dr(P j)}Pi

+ P j{
∑

p+q=n,1≤r,s,t

dp(Aii) ◦ dq(Bi j) ◦ P j}Pi

+ P j{dn(Aii) ◦ Bi j ◦ P j}Pi + P j{Aii ◦ dn(Bi j) ◦ P j}Pi

+ P j{Aii ◦ Bi j ◦ dn(P j)}Pi

= P j{dn(Aii) ◦ Bi j ◦ P j}Pi + P j{Aii ◦ dn(Bi j) ◦ P j}Pi

+ P j{Aii ◦ Bi j ◦ dn(P j)}Pi

= P j{dn(Aii)Bi jP j + P jdn(Aii)Bi j + Bi jdn(Aii)P j}Pi

+ P j{Aiidn(Bi j)P j + P jdn(Bi j)Aii}Pi

+ P j{AiiBi j ◦ dn(P j)}Pi

= P jdn(Bi j)AiiPi

= fn(Bi j)Aii. (2.2)

On the other hand, it is follows from fn(Aii) = 0 (n ≥ 1) that fn−k(Bi j)dk(Aii) = 0, so we get

fn(AiiBi j) = fn(Bi j)Aii + fn−1(Bi j) f1(Aii) + fn−2(Bi j) f2(Aii) + . . . + Bi j fn(Aii)

=
∑

p+q=n

fp(Bi j) fq(Aii).

Similarly, we get (ii). The proof is complete. □

In the following, we give the completed proof of Theorem 2.2:

Proof of Theorem 2.2. For each n ≥ 1, let A = A11 + A12 + A21 + A22 and B = B11 + B12 + B21 + B22 be
arbitrary elements of T , where Ai j, Bi j ∈ Ti j (1 ≤ i, j ≤ 2). Then, it follows from Lemmas 2.2 and 2.3
that

fn(AB) = fn((A11 + A12 + A21 + A22)(B11 + B12 + B21 + B22))
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= fn(A11B11) + fn(A11B12) + fn(A11B21) + fn(A11B22)
+ fn(A12B11) + fn(A12B12) + fn(A12B21) + fn(A12B22)
+ fn(A21B11) + fn(A21B12) + fn(A21B21) + fn(A21B22)
+ fn(A22B11) + fn(A22B12) + fn(A22B21) + fn(A22B22)
=

∑
p+q=n

fp(B11) fq(A11) +
∑

p+q=n

fp(B11) fq(A12)

+
∑

p+q=n

fp(B11) fq(A21) +
∑

p+q=n

fp(B11) fq(A22)

+
∑

p+q=n

fp(B12) fq(A11) +
∑

p+q=n

fp(B12) fq(A12)

+
∑

p+q=n

fp(B12) fq(A21) +
∑

p+q=n

fp(B12) fq(A22)

+
∑

p+q=n

fp(B21) fq(A11) +
∑

p+q=n

fp(B21) fq(A12)

+
∑

p+q=n

fp(B21) fq(A21) +
∑

p+q=n

fp(B21) fq(A22)

+
∑

p+q=n

fp(B22) fq(A11) +
∑

p+q=n

fp(B22) fq(A12)

+
∑

p+q=n

fp(B22) fq(A21) +
∑

p+q=n

fp(B22) fq(A22)

=
∑

p+q=n

fp(B) fq(A).

Therefore, F = { fn}n∈N0 is a higher anti-derivation on T . The proof is complete. □

Theorem 2.3. Let G = {gn}n∈N0 be a sequence of mappings on T (with g0 = igT ). For each n ≥ 1 and
for any X ∈ T , define

gn(X) = dn(X) − fn(X).

Then, G is a higher derivation on T .

Next, we show that G = {gn}n∈N0 is a higher derivation on T . In order to prove G is a higher
derivation, we introduce Lemmas 2.4–2.6, and then, using the mathematical induction, we prove
Lemmas 2.4–2.6.

In [12] Theorem 1.3, we have proved that if g1 = d1 − f1, then g1 is a derivation on T , i.e., for any
X,Y ∈ T , g1 satisfies

g1(XY) = g1(X)Y + Xg1(Y) =
∑

p+q=1

gp(X)gq(Y).

Therefore, in the following, we assume that

gk(XY) =
∑

p+q=k

gp(X)gq(Y) (2.3)

AIMS Mathematics Volume 9, Issue 3, 6933–6950.



6942

for each 1 ⩽ k < n and X,Y ∈ T . Next, we prove that Lemmas 2.4–2.6 hold.
By the definitions of F = { fn}n∈N0 and G = {gn}n∈N0 , and by Lemma 2.1, we can easily check that

the following Lemma holds:

Lemma 2.4. Let gn : T → T be defined as in Theorem 2.3. Then, for each n ≥ 1 and for any
Aii ∈ Tii, Ai j ∈ Ti j (1 ≤ i , j ≤ 2),

(i) gn(Pi) = −gn(P j) and gn(Pi) = Pign(Pi)P j + P jgn(Pi)Pi;
(ii) P jgn(Aii)P j = 0, Pign(Aii)P j = Aiign(Pi) and P jgn(Aii)Pi = gn(Pi)Aii;
(iii) gn(Ai j) = Pign(Ai j)P j.

Lemma 2.5. Let gn : T → T be defined as in Theorem 2.3. Then, for each n ≥ 1, and for any
Aii, Bii ∈ Tii, B j j ∈ T j j, Ai j, Bi j ∈ Ti j (1 ≤ i , j ≤ 2),

(i) gn(AiiBi j) =
∑

p+q=n gp(Aii)gq(Bi j);
(ii) gn(Ai jB j j) =

∑
p+q=n gp(Ai j)gq(B j j);

(iii) gn(AiiBii) =
∑

p+q=n gp(Aii)gq(Bii);
(iv) gn(AiiB j j) =

∑
p+q=n gp(Aii)gqB j j).

Proof. (i) For each n ≥ 1 and for any Aii ∈ Tii, Bi j ∈ Ti j (1 ≤ i , j ≤ 2), taking X = Aii,Y = Bi j,Z = P j

in Eq (2.1), and by Lemma 1.1 (iii) and Lemma 2.1, we get

dn(AiiBi j) = dn(Aii ◦ Bi j ◦ P j)

=
∑

p+q+r=n

dp(Aii) ◦ dq(Bi j) ◦ dr(P j)

=
∑

p+q+r=n,1≤p,q,r

dp(Aii) ◦ dq(Bi j) ◦ dr(P j) +
∑

q+r=n,1≤q,r

Aii ◦ dq(Bi j) ◦ dr(P j)

+
∑

p+r=n,1≤p,r

dp(Aii) ◦ Bi j ◦ dr(P j) +
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(Bi j) ◦ P j

+ dn(Aii) ◦ Bi j ◦ P j + Aii ◦ dn(Bi j) ◦ P j + Aii ◦ Bi j ◦ dn(P j)

=
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(Bi j) ◦ P j + dn(Aii) ◦ Bi j ◦ P j + Aii ◦ dn(Bi j) ◦ P j

=
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(Bi j) + dn(Aii)Bi j + Aiidn(Bi j) + dn(Bi j)Aii

=
∑

p+q=n

dp(Aii)dq(Bi j) + dn(Bi j)Aii.

Therefore, it follows from Eq (2.2), with fn(Aii) = 0 and fn(Ai j) = P j fn(Ai j)Pi (n ≥ 1), that

gn(AiiBi j) = dn(AiiBi j) − fn(AiiBi j)

=
∑

p+q=n

dp(Aii)dq(Bi j) + dn(Bi j)Aii − dn(Bi j)Aii

=
∑

p+q=n,1≤p,q

dp(Aii)dq(Bi j) + dn(Aii)Bi j + Aiidn(Bi j)

=
∑

p+q=n,1≤p,q

{dp(Aii) − fp(Aii)}dq(Bi j) + {dn(Aii) − fn(Aii)}Bi j + Aii{dn(Bi j) − fn(Bi j)}
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=
∑

p+q=n,1≤p,q

gp(Aii)dq(Bi j) + gn(Aii)Bi j + Aiign(Bi j)

=
∑

p+q=n,1≤p,q

gp(Aii){dq(Bi j) − fq(Bi j)} + gn(Aii)Bi j + Aiign(Bi j)

=
∑

p+q=n,1≤p,q

gp(Aii)gq(Bi j) + gn(Aii)Bi j + Aiign(Bi j)

=
∑

p+q=n

gp(Aii)gq(Bi j).

Similarly, we get that (ii) holds.
(iii) For each n ≥ 1 and for any Aii, Bii ∈ Tii, Xi j ∈ Ti j (1 ≤ i , j ≤ 2), by Lemma 2.5 (i) and

Eq (2.3), on the one hand, we get

gn(AiiBiiXi j) = gn((AiiBii)Xi j)

=
∑

p+q=n,1≤q

gp(AiiBii)gq(Xi j) + gn(AiiBii)Xi j

=
∑

p+q=n,1≤q

{
∑

r+s=p

gr(Aii)gs(Bii)}gq(Xi j) + gn(AiiBii)Xi j

=
∑

r+s+q=n,1≤q

gr(Aii)gs(Bii)gq(Xi j) + gn(AiiBii)Xi j.

On the other hand, we have

gn(AiiBiiXi j) = gn(Aii(BiiXi j))

=
∑

p+q=n

gp(Aii)gq(BiiXi j)

=
∑

p+q=n

gp(Aii)
∑

r+s=q

gr(Bii)gs(Xi j)

=
∑

p+r+s=n

gp(Aii)gr(Bii)gs(Xi j)

=
∑

p+r+s=n,1≤s

gp(Aii)gr(Bii)gs(Xi j) +
∑

p+r=n

gp(Aii)gr(Bii)Xi j.

Comparing the above two equations, we get

{gn(AiiBii) −
∑

p+r=n

gp(Aii)gr(Bii)}Xi j = 0,∀Xi j ∈ Ti j(1 ≤ i , j ≤ 2).

This yields from Lemma 1.1 (i) that

Pign(AiiBii)Pi = Pi{
∑

p+r=n

gp(Aii)gr(Bii)}Pi. (2.4)

Next, we show that

Pign(AiiBii)P j = Pi{
∑

p+r=n

gp(Aii)gr(Bii)}P j and P jgn(AiiBii)Pi = P j{
∑

p+r=n

gp(Aii)gr(Bii)}Pi.
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Indeed, for each n ≥ 1 and for any Aii, Bii ∈ Tii (1 ≤ i , j ≤ 2), taking X = Aii,Y = Z = P j in Eq (2.1),
by Lemma 2.1, we get

0 = dn(Aii ◦ P j ◦ P j)

=
∑

p+q+r=n

dp(Aii) ◦ dq(P j) ◦ dr(P j)

=
∑

p+q+r=n,1≤p,q,r

dp(Aii) ◦ dq(P j) ◦ dr(P j) +
∑

q+r=n,1≤q,r

Aii ◦ dq(P j) ◦ dr(P j)

+
∑

p+r=n,1≤p,r

dp(Aii) ◦ P j ◦ dr(P j) +
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(P j) ◦ P j

+ dn(Aii) ◦ P j ◦ P j + Aii ◦ dn(P j) ◦ P j + Aii ◦ P j ◦ dn(P j)

=
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(P j) ◦ P j + dn(Aii) ◦ P j ◦ P j + Aii ◦ dn(P j) ◦ P j

=
∑

p+q=n,1≤p,q

{dp(Aii)dq(P j) + dq(P j)dp(Aii)} ◦ P j

+ dn(Aii)P j + P jdn(Aii) + Aiidn(P j) + dn(P j)Aii

=
∑

p+q=n

dp(Aii)dq(P j) +
∑

p+q=n

dq(P j)dp(Aii).

Therefore, we get from
∑

p+q=n dp(Aii)dq(P j) ∈ Ti j and
∑

p+q=n dq(P j)dp(Aii) ∈ T ji that∑
p+q=n

dp(Aii)dq(P j) = 0 and
∑

p+q=n

dq(P j)dp(Aii) = 0.

So we get from fk(Aii) = 0 and fk(P j) = 0 (k ≥ 1) that

0 =
∑

p+q=n

dp(Aii)dq(P j) =
∑

p+q=n,1≤p,q

dp(Aii)dq(P j) + dn(Aii)P j + Aiidn(P j)

=
∑

p+q=n,1≤p,q

(dp(Aii) − fp(Aii))(dq(P j) − fq(P j))

+ (dn(Aii) − fn(Aii))P j + Aii(dn(P j) − fn(P j))

=
∑

p+q=n,1≤p,q

gp(Aii)gq(P j) + gn(Aii)P j + Aiign(P j)

=
∑

p+q=n

gp(Aii)gq(P j)

=
∑

p+q=n,1≤q

gp(Aii)gq(P j) + gn(Aii)P j

= −
∑

p+q=n,1≤q

gp(Aii)gq(Pi) + gn(Aii)P j

= −
∑

p+q=n

gp(Aii)gq(Pi) + gn(Aii)Pi + gn(Aii)P j

= −
∑

p+q=n

gp(Aii)gq(Pi) + gn(Aii).
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Therefore,

gn(Aii) =
∑

p+q=n

gp(Aii)gq(Pi). (2.5)

For each n ≥ 1 and for any Aii, Bii ∈ Tii, by Eq (2.5), we get

gn(AiiBii) =
∑

p+q=n

gp(AiiBii)gq(Pi)

=
∑

p+q=n,1≤q

gp(AiiBii)gq(Pi) + gn(AiiBii)Pi

=
∑

p+q=n,1≤q

{
∑

r+s=p

gr(Aii)gs(Bii)}gq(Pi) + gn(AiiBii)Pi

=
∑

r+s+q=n,1≤q

gr(Aii)gs(Bii)gq(Pi) + gn(AiiBii)Pi

=

n∑
r=0

gr(Aii){
∑

s+q=n−r,1≤q

gs(Bii)gq(Pi)} + gn(AiiBii)Pi

=

n∑
r=0

gr(Aii){
∑

s+q=n−r

gs(Bii)gq(Pi) − gn−r(Bii)Pi} + gn(AiiBii)Pi

=

n∑
r=0

gr(Aii){gn−r(Bii) − gn−r(Bii)Pi} + gn(AiiBii)Pi

=

n∑
r=0

gr(Aii)gn−r(Bii) −
n∑

r=0

gr(Aii)gn−r(Bii)Pi + gn(AiiBii)Pi

=
∑

p+q=n

gp(Aii)gq(Bii) +
∑

p+q=n

gp(Aii)gq(Bii)Pi + gn(AiiBii)Pi.

This implies that

Pign(AiiBii)P j = Pi{
∑

p+q=n

gp(Aii)gq(Bii)}P j. (2.6)

Similarly, we get

P jgn(AiiBii)Pi = P j{
∑

p+q=n

gp(Aii)gq(Bii)}Pi. (2.7)

Therefore, by Eqs (2.4), (2.6), (2.7) and Lemma 2.4 (ii), we get that

gn(AiiBii) = Pi{
∑

p+q=n

gp(Aii)gq(Bii)}Pi + Pi{
∑

p+q=n

gp(Aii)gq(Bii)}P j

+ P j{
∑

p+q=n

gp(Aii)gq(Bii)}Pi

=
∑

p+q=n

gp(Aii)gq(Bii).
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(iv) For each n ≥ 1 and for any Aii ∈ Tii, B j j ∈ T j j (1 ≤ i , j ≤ 2), taking X = Aii,Y = B j j,Z = P j

(1 ≤ i , j ≤ 2) in Eq (2.1) , we get from Lemma 2.1 that

0 = dn(Aii ◦ B j j ◦ P j)

=
∑

p+q+r=n

dp(Aii) ◦ dq(B j j) ◦ dr(P j)

=
∑

p+q+r=n,1≤p,q,r

dp(Aii) ◦ dq(B j j) ◦ dr(P j) +
∑

q+r=n,1≤q,r

Aii ◦ dq(B j j) ◦ dr(P j)

+
∑

p+r=n,1≤p,r

dp(Aii) ◦ B j j ◦ dr(P j) +
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(B j j) ◦ P j

+ dn(Aii) ◦ B j j ◦ P j + Aii ◦ dn(B j j) ◦ P j + Aii ◦ B j j ◦ dn(P j)

=
∑

p+q=n,1≤p,q

dp(Aii) ◦ dq(B j j) ◦ P j + dn(Aii) ◦ B j j ◦ P j + Aii ◦ dn(B j j) ◦ P j

=
∑

p+q=n,1≤p,q

dp(Aii)dq(B j j) ◦ P j +
∑

p+q=n,1≤p,q

dp(B j j)dq(Aii) ◦ P j

+ dn(Aii)B j j + B j jdn(Aii) + Aiidn(B j j) + dn(B j j)Aii

=
∑

p+q=n,1≤p,q

dp(Aii)dq(B j j) +
∑

p+q=n,1≤p,q

dp(B j j)dq(Aii)

+ dn(Aii)B j j + B j jdn(Aii) + Aiidn(B j j) + dn(B j j)Aii

=
∑

p+q=n

dp(Aii)dq(B j j) +
∑

p+q=n

dp(B j j)dq(Aii).

Hence, we get from
∑

p+q=n dp(Aii)dq(B j j) ∈ Ti j and
∑

p+q=n dp(B j j)dq(Aii) ∈ T ji (1 ≤ i , j ≤ 2) that∑
p+q=n

dp(Aii)dq(B j j) =
∑

p+q=n

dp(B j j)dq(Aii) = 0.

Therefore, it follows from gk(Aii) = dk(Aii) and gk(B j j) = dk(B j j) (k ≥ 1) that

gn(AiiB j j) = 0 =
∑

p+q=n

dp(Aii)dq(B j j) =
∑

p+q=n

gp(Aii)gq(B j j).

The proof is complete. □

Lemma 2.6. Let gn : T → T be defined as in Theorem 2.3. Then for each n ≥ 1 and for any
Aii ∈ Tii, B j j ∈ T j j, Ai j, Bi j ∈ Ti j, A ji, B ji ∈ T ji (1 ≤ i , j ≤ 2),

(i) gn(Ai jB ji) =
∑

p+q gp(Ai j)gq(B ji);
(ii) gn(Ai jBi j) =

∑
p+q=n gp(Ai j)gq(Bi j);

(iii) gn(AiiB ji) =
∑

p+q=n gp(Aii)gq(B ji);
(iv) gn(A jiB j j) =

∑
p+q=n gp(A ji)gq(B j j).

Proof. (i) For each n ≥ 1 and for any Ai j ∈ Ti j, B ji ∈ T ji (1 ≤ i , j ≤ 2), it follows from Lemma 1 (iii)
that Ai jB ji = 0, and therefore we get

gn(Ai jB ji) = gn(0) = 0.
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On the other hand, by Lemma 1 (iii) and Lemma 2.4 (iii), we have gp(Ai j)gq(B ji) = 0, therefore we get

gn(Ai jB ji) = 0 =
∑

p+q=n

gp(Ai j)gq(B ji).

Similarly, we get that (ii) holds.
(iii) For each n ≥ 1 and for any Aii ∈ Tii, B ji ∈ T ji (1 ≤ i , j ≤ 2), by Lemma 1 (iii) and Lemma 2.4

(ii, iii), we get gp(Aii)gq(B ji) = 0, and therefore we get

gn(AiiB ji) = 0 =
∑

p+q=n

gp(Aii)gq(B ji).

Similarly, we get (iv) holds. The proof is complete. □

In the following, we complete the proof of Theorem 2.3.

Proof of Theorem 2.3. For any n ≥ 1, let A = A11 + A12 + A21 + A22 and B = B11 + B12 + B21 + B22 be
arbitrary elements of T , where Ai j, Bi j ∈ Ti j (1 ≤ i, j ≤ 2). It follows from Lemmas 2.4–2.6 that

gn(AB) = gn((A11 + A12 + A21 + A22)(B11 + B12 + B21 + B22))
= gn(A11B11) + gn(A11B12) + gn(A11B21) + gn(A11B22)
+ gn(A12B11) + gn(A12B12) + gn(A12B21) + gn(A12B22)
+ gn(A21B11) + gn(A21B12) + gn(A21B21) + gn(A21B22)
+ gn(A22B11) + gn(A22B12) + gn(A22B21) + gn(A22B22)
=

∑
p+q=n

gp(A11)gq(B11) +
∑

p+q=n

gp(A11)gq(B12)

+
∑

p+q=n

gp(A11)gq(B21) +
∑

p+q=n

gp(A11)gq(B22)

+
∑

p+q=n

gp(A12)gq(B11) +
∑

p+q=n

gp(A12)gq(B12)

+
∑

p+q=n

gp(A12)gq(B21) +
∑

p+q=n

gp(A12)gq(B22)

+
∑

p+q=n

gp(A21)gq(B11) +
∑

p+q=n

gp(A21)gq(B12)

+
∑

p+q=n

gp(A21)gq(B21) +
∑

p+q=n

gp(A21)gq(B22)

+
∑

p+q=n

gp(A22)gq(B11) +
∑

p+q=n

gp(A22)gq(B21)

+
∑

p+q=n

gp(A22)gq(B21) +
∑

p+q=n

gp(A22)gq(B22)

=
∑

p+q=n

gp(A11 + A12 + A21 + A22)gq(B11 + B12 + B21 + B22)

=
∑

p+q=n

gp(A)gq(B).

Therefore, G = {gn}n∈N0 is a higher derivation on T . The proof is complete. □
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Next, we show that Theorem 2.1 holds.

Proof of Theorem 2.1. For each n ≥ 1 and for any A, B ∈ T , by Theorems 2.2 and 2.3, we obtain that

dn(A) = gn(A) + fn(A),

where G = {gn}n∈N0 is a higher derivation and F = { fn}n∈N0 is a higher anti-derivation from T into itself
such that fn(Aii) = 0 for all Aii ∈ Tii (1 ≤ i ≤ 2). The proof is complete. □

Remark 2.1. Let D = {dn}n∈N0 be a higher Jordan triple derivation from T into itself. Then, by
Theorems 2.1 and 2.2, we obtain that the following statements are equivalent.

(i) D = {dn}n∈N0 is a higher derivation;
(ii) P jdn(Ai j)Pi = 0 for each n ≥ 1 and for any Ai j ∈ Ti j (1 ≤ i , j ≤ 2);
(iii) dn(Ai j) ∈ Ti j for each n ≥ 1 and for any Ai j ∈ Ti j (1 ≤ i , j ≤ 2).
In the following, we show that every higher Jordan triple derivation on triangular algebras is a

higher derivation.

Corollary 2.1. LetA and B be unital algebras over a commutative ring R andM be a unital (A,B)-
bimodule, which is faithful as both a leftA-module and a right B-module, andU be the 2-torsion free
triangular algebra, and D = {dn}n∈N0 be a higher Jordan triple derivation onU. Then D = {dn}n∈N0 is
a higher derivation.

Proof of Corollary 2.1. Let 1A and 1B be the identities of the algebrasA and B, respectively, and let 1
be the identity of the triangular algebraU. We denote

P1 =

(
1A 0
0 0

)
by the standard idempotent ofU, P2 = 1 − P1 =

(
0 0
0 1B

)
and

Ui j = PiUP j for 1 ≤ i ≤ j ≤ 2.

It is clear that the triangular algebraU may be represented as

U = P1UP1 + P1UP2 + P2UP2 = A +M + B.

Here P1UP1 and P2UP2 are subalgebras of U isomorphic to A and B, respectively, and P1UP2 is a
(P1UP1, P2UP2)-bimodule isomorphic to the (A,B)-bimoduleM.

By the definition of triangular algebra U, we can easily check that U is a ∗-type trivial extension
algebra, and so ifU is a 2-torsion free triangular algebra, then for any n ≥ 1, A = A11 + A12 + A22 ∈ U,
where Ai j ∈ Ui j (1 ≤ i, j ≤ 2), we get from Theorem 2.1 that

dn(A) = gn(A) + fn(A).

Where G = {gn}n∈N0 is a higher derivation and F = { fn}n∈N0 is a higher anti-derivation from U into
itself such that fn(Aii) = 0 for all Aii ∈ Uii (1 ≤ i ≤ 2). Next, we show that fn(A12) = 0 for each n ≥ 1
and for any A12 ∈ U12.

Indeed, for any A12 ∈ U12, it follows from Lemma 2.1 (v) andU21 = {0} that

dn(A12) = P1dn(A12)P2 + P2dn(A12)P1 = P1dn(A12)P2.

And then we obtain from the definition of fn in Theorem 2.2 that fn(A12) = P2dn(A12)P1 = 0. Therefore,
for any A ∈ U, fn(A) = 0, so D = {gn}n∈N0 is a higher derivation. The proof is complete. □
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Next, we give an application of Corollary 2.1 to certain special classes of triangular algebras, such
as block upper triangular matrix algebras and nest algebras.

Let R be a commutative ring with identity and let Mn×k(R) be the set of all n × k matrices over R.
For n ≥ 2 and m ≤ n, the block upper triangular matrix algebra T k̄

n(R) is a subalgebra of Mn(R) with
the form 

Mk1(R) Mk1×k2(R) · · · Mk1×km(R)
0 Mk2(R) · · · Mk2×km(R)
...

...
. . .

...

0 0 · · · Mkm(R)

 ,
where k̄ = (k1, k2, · · · , km) is an ordered m-vector of positive integers such that k1 + k2 + · · · + km = n.

A nest of a complex Hilbert space H is a chain N of closed subspaces of H containing {0} and
H , which is closed under arbitrary intersections and closed linear span, and B(H) is the algebra of all
bounded linear operators onH . The nest algebra associated with N is the algebra

AlgN = {T ∈ B(H) : T N ⊆ N , for all N ∈ N}.

A nest N is called trivial if N = {0,H}. It is clear that every nontrivial nest algebra is a triangular
algebra and every finite dimensional nest algebra is isomorphic to a complex block upper triangular
matrix algebra.

Corollary 2.2. Let T k̄
n(R) be a 2-torsion free block upper triangular matrix algebra, and D = {dn}n∈N0

be a higher Jordan triple derivation on T k̄
n(R). Then, D = {dn}n∈N0 is a higher derivation.

Corollary 2.3. Let N be a nontrivial nest of a complex Hilbert space H , AlgN a nest algebra, and
D = {dn}n∈N0 a higher Jordan triple derivation on AlgN . Then, D = {dn}n∈N0 is a higher derivation.
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