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Abstract: In this paper, a new censoring test plan called progressively double Type-II hybrid 

censoring scheme is introduced for the first time. Based on this type of censored data, the maximum 

likelihood estimates of the unknown parameters and reliability for the two-parameter Pareto 

distribution are obtained. Using the Bayesian method, the Bayesian estimates of the unknown 

parameters and reliability are obtained under the symmetric and asymmetric loss functions. The 

failure times of all withdrawn units are predicted using the classical and Bayesian methods, including 

the predictive values and the prediction intervals. The mean values and mean square errors of the 

estimators are calculated by Monte-Carlo simulation, and the mean square errors between them are 

compared, and the results show that all Bayesian estimates are better than the corresponding 

maximum likelihood estimates. Using a real data set, we compute the Bayesian estimates of the 

unknown parameters and reliability, and predict the observations of the censored units. 
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1. Introduction 

In the fields of reliability engineering and survival analysis, due to time or other constraints, it is 

often impossible to obtain the lifetimes of all tested units, so we can use a censored test scheme to 

obtain censored data. So far, many types of censoring schemes have been produced, and the 
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corresponding statistical inference theories have been developed rapidly. Due to simplicity and 

applicability, Type-I and Type-II are the two most common and widely used censoring schemes. 

Type-I censoring is to stop the test when the preset time arrives, while Type-II censoring is to stop 

the test after a given number of failure data is obtained. A common feature of these two schemes is 

that the living units cannot be removed during the test. Sometimes it is necessary to withdraw some 

of the living units to observe their degradation, in this context, the progressive Type-II censoring 

scheme has been proposed. There are many research results based on the above three types of 

censored data. For more details, see references [1–8]. In some cases, for some high-reliability and 

long-life units, if the Type-II censoring scheme is adopted, the test time will be very long, and it will 

cost more money. In order to improve the test efficiency, another censoring scheme has been 

proposed, that is, the first-failure censoring scheme, which can save time and test costs. Based on the 

first-failure censored data, many scholars have studied the statistical inference on the parameters of 

various distributions, for example, Wu et al. [9,10] obtained maximum likelihood estimates and 

confidence intervals of the parameters for Gompertz and Burr XII distributions on the basis of the 

first-failure censored data. Wu and Kus [11] considered the advantages of the above censoring 

schemes, extended the first-failure censoring scheme, and proposed the progressive first-failure 

censoring scheme, and proved that this scheme had shorter expected test times than the progressive 

Type-II censoring scheme. Based on the characteristics of Type-I and Type-II censoring schemes, 

Epstein [12] first proposed a mixture of Type-I and Type-II censoring schemes, that is, Type-I hybrid 

censoring scheme. Later, Childs et al. [13] introduced another mixture of Type-I and Type-II 

censoring schemes, namely, Type-II hybrid censoring scheme. If n  units are put into the life test at 

time zero, they have the following ordered lifetimes: 1: 2: :, ,...,n n n nX X X , and T  represents the 

specified censoring time, r  represents the number of failed units determined in advance. The 

Type-I hybrid censoring test is terminated at a random time 
*

1 :min( , )r nT X T= , and the Type-II 

hybrid censoring test is terminated at a random time 
*

2 :max( , )r nT X T= . The advantage of the Type-I 

hybrid censoring scheme is that the test time will not exceed T , and the disadvantage is that little 

failure data may be obtained. The advantage of the Type-II hybrid censoring scheme is that at least 

r  failure data can be obtained, but the disadvantage is that the duration of the test cannot be 

controlled. For Type-I and Type-II hybrid censoring schemes, living units cannot be removed during 

the test. Therefore, Kundu et al. [14] extended the hybrid censoring scheme and proposed a 

progressive Type-I hybrid censoring scheme. At present, in the fields of reliability and survival 

analysis, hybrid censoring schemes are very popular in analyzing high-reliability life data. Interested 

readers may refer to references [15,16]. According to the existing censoring schemes, Long and 

Zhang [17] proposed a mixture of two Type-II censoring schemes, which are called double Type-II 

hybrid censoring scheme. When the lifetimes of the tested units follow two-parameter Pareto 

distribution, the statistical inference methods for the unknown parameters and reliability indicators 

are given based on this type of hybrid censored data. In this paper, we will generalize the double 

Type-II hybrid censoring scheme, propose a progressively double Type-II hybrid censoring scheme, 

and discuss the estimation of the unknown parameters and reliability under the two-parameter Pareto 

model, as well as the prediction of the failure times of evacuated units. The specific test scheme will 

be introduced in Section 2. 

One of the most important problems in life test is to predict future failure times based on 

observed data. In the early stages of the test, we can predict how expensive the test will be and 

whether measures need to be taken to adjust the test scheme. So far, many scholars have done a lot of 

work on prediction, for example, see references [18–22]. In this paper, we will further explore the 
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prediction problems under the progressively double Type-II hybrid censored data. 

The rest of the paper is organized as follows: In Section 2, the two-parameter Pareto model and 

progressively double Type-II hybrid censoring scheme are introduced, and the maximum likelihood 

estimates of the unknown parameters and reliability are given. The Bayesian estimates of the 

unknown parameters and reliability are obtained in Section 3. In Section 4, the classical and 

Bayesian methods are used to predict failure times of the evacuated units. In Section 5, Monte-Carlo 

simulation is used to verify the goodness of the estimators. A real data set is analyzed in Section 6. 

We conclude the paper in Section 7. 

2. Model description and maximum likelihood estimation 

The two-parameter Pareto distribution was originally proposed as an income distribution, 

mainly used to analyze economic and natural phenomena, and later the distribution was also applied 

to the fields of reliability and survival analysis. Its cumulative distribution function and probability 

density function are respectively given as follow 

( ; , ) 1F x
x






  = − , 

1
( ; , ) ,f x

x






 

+
=  x  ,                (2.1) 

where ( 0)  is the scale parameter and ( 0)   is the shape parameter. If X  represents the 

lifetime of unit, the reliability function is 

( )R x
x






= .                               (2.2) 

In this paper, it is assumed that the lifetimes of the tested units follow the two-parameter Pareto 

distribution (2.1), and based on progressively double Type-II hybrid censored data, we will discuss 

the relevant estimation and prediction problems of this distribution. 

In the reliability test, progressively double Type-II hybrid censoring is a mixture of two 

progressive Type-II hybrid censoring schemes. The model is described as follows: 

Suppose that n  independent and identically distributed units are put into the test, the time 0t  

and the positive integers 1 2,m m  are determined in advance, and 1 2m m n   are satisfied. When 

the first unit fails, the failure time is denoted as 1:nX , and 1R  non-failed units are removed from the 

remaining ( 1)n −  units. When the second unit fails, the failure time is denoted as 2:nX , and 2R  

non-failed units are removed from the remaining 1( 2 )n R− −  units. By analogy, the failure time of 

the 1m -th unit is denoted as 
1:m nX . If 

1: 0m nX t , the test is terminated at time 
1:m nX , and all the 

1

1

1

1

1

m

m i

i

R n m R
−

=

= − −  units that have not failed are withdrawn from the test, where 

11: 2: :0 ...n n m nX X X     are the order times of failure. If 
1: 0m nX t , the test is terminated when 

2m  units fail, and the 
2

2

1

2

1

m

m i

i

R n m R
−

=

= − −  units that have not failed are withdrawn from the test, 
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where 
21: 2: :0 ...n n m nX X X     are the order times of failure. The number of removed units 

21 2, ,..., mR R R  can be determined in advance. 

Using the above test scheme, we can obtain the following two types of censored data: 

Case I： ( )
1 11: 1 2: 2 :, , , , ,n n m n mX R X R X R,... , if 

1: 0m nX t ; 

Case II： ( )
2 21: 1 2: 2 :, , , , ,n n m n mX R X R X R,... , if 

1: 0m nX t . 

Denote 

1

2

,    Case I

,    Case II

m
k

m


= 


. 

Then the obtained progressively double Type-II hybrid censored data can be expressed as 

( )1: 1 2: 2 :, , , , ,n n k n kx x R x R x R= ,... , if 1 2 1... 0,  k kR R R R n k−= = = = = − , x  is double Type-II hybrid 

censored data. 

Based on the experimental data x , the likelihood function can be expressed as 

( , )L   ∝  : : 1:

1

( ; , ) 1 ( ; , ) ( )
i

k
R

i n i n n

i

f x F x I x    
=

−   

∝
: : 1:

1 1

exp ln ln ( )
k k

k n

i n i i n n

i i

x R x I x   
= =

  
− +   

  
  ,               (2.3) 

where ( )I   is an indicator function. 

From (2.3), the maximum likelihood estimates of   and   can be obtained as 

: : 1:

1 1

ln ln ln
k k

i n i i n n

i i

k

x R x n x



= =

=

+ − 
, 1:nx = . 

According to the invariance of the maximum likelihood estimation, the maximum likelihood 

estimate of the reliability function ( )R x  is 

( ) ( / )R x x = . 

When   is known, the maximum likelihood estimates of   and ( )R x  are 
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: :

1 1

ˆ

ln ln ln
k k

i n i i n

i i

k

x R x n




= =

=

+ − 
, 

ˆˆ( ) ( / )R x x = . 

3. Bayesian estimation 

In this section, when   is known and   is unknown, the prior distribution of   is taken as 

Gamma distribution, and the Bayesian estimates of   and reliability function are given. When both 

  and   are unknown, the Bayesian estimates of  ,  and reliability function are obtained under 

three types of loss functions. 

3.1. Bayesian estimation when   is known 

Since   is known, we only need to regard   as a random variable, and the prior distribution 

of   can be taken as Gamma distribution, and its probability density function is 

1( )
( )

a
a bb

e
a

   − −=


, 0  ,                     (3.1) 

where the hyper-parameters 0, 0a b  , ( )   represents the Gamma function. 

According to reference [4], in order to ensure the robustness of Bayesian estimation, the value 

of a  should satisfy 0 1a  , and the value of b  should not be too large. 

From (2.3) and (3.1), according to the Bayesian formula, the posterior density function of   can be 

obtained as 

1 ( )( )
( ) ,

( )

k a
k a A bA b

x e
k a

  
+

+ − − ++
=

 +
 0  ,                 (3.2) 

where : :

1 1

ln ln ln
k k

i n i i n

i i

A x R x n 
= =

= + −  . 

In statistical decision theory and Bayesian analysis, the squared error loss function is a 

symmetric loss function that is often used, and an important advantage is that the Bayesian 

estimation of the estimated quantity can be easily calculated. The squared error loss is defined as 

 
2

1( ( ), ) ( )L      = − , 

where   is an estimate of ( )  . 

Under the squared error loss, the Bayesian estimate of ( )   is 

ˆ [ ( ) ]S E data  = ,                             (3.3) 
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where ( )E   denotes posterior expectation with respect to the posterior density of ( )  . 

Using (3.2) and (3.3), the Bayesian estimates of   and ( )R x  under the squared error loss are 

given, respectively, by 

ˆ
BS

k a

A b


+
=

+
, 

( )ˆ ( )
( ln ln )

k a

BS k a

A b
R x

A b x 

+

+

+
=

+ + −
. 

Based on the square error loss, the risks of overestimation and underestimation are the same. In 

some estimation and prediction problems, overestimation and underestimation will have different 

estimation risks, so the symmetric loss function may be unreasonable. Therefore, we consider two 

kinds of asymmetric loss functions, namely, the linear-exponential (LINEX) loss and general entropy 

loss functions, which are defined as 

( ( ))

2 ( ( ), ) ( ( )) 1, ( 0)cL e c c       −= − − −  , 

3( ( ), )L    ∝ ln 1
( ) ( )

q

q
 

   

   
− −   

   
. 

For the LINEX loss function, when 0c  , the loss of underestimation is greater than that of 

overestimation, and when 0c  , the opposite is true. For the general entropy loss function, when 

0q  , the loss of underestimation is greater than that of overestimation, and the opposite is true 

when 0q  . 

Under the LINEX loss and general entropy loss, the Bayesian estimates of ( )   are 

( )1ˆ ln[ ( )]c

L E e data
c

 

 −= − ,                         (3.4) 

 
1/ˆ [( ( )) ]

q
q

G E data  
−

−=                         (3.5) 

Using (3.2) and (3.4), when ( )c A b − + , the Bayesian estimates of   and ( )R x  under the 

LINEX loss are given, respectively, by 

ˆ ln 1BL

k a c

c A b


+  
= + 

+ 
, 

 
( )

0

1 ( )ˆ ( ) ln ( ) (ln ln )
!

j
k ak a

BL

j

c
R x A b A b j x

c j



− ++

=

 −
= − + + + − 

 
 .
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Using (3.2) and (3.5), when q k a + , the Bayesian estimates of   and ( )R x  under the general 

entropy loss are given, respectively, by 

1/

1( )ˆ ( )
( )

q

BG

k a
A b

k a q
 −  +

= + 
 + − 

, 

(ln ln )ˆ ( ) 1

k a

q

BG

q x
R x

A b


+

− 
= − + 

. 

In addition, the Bayesian credible interval for   can be obtained from the posterior density (3.2). 

Since 
22( ) ~ (2 2 )A b k a + + , the 100(1 )%−  equal-tail credible interval of   is ( , )L U , 

where 

2

1 / 2 (2 2 )

2( )

k a
L

A b

 − +
=

+
, 

2

/ 2 (2 2 )

2( )

k a
U

A b

 +
=

+
, 

2 ( )k  is the 100 %  right-tail percentile of the 

chi-squared distribution with k  degrees of freedom. 

3.2. Bayesian estimation when   and   are unknown 

In most cases, both   and   are unknown. According to Bayesian theories, they are regarded 

as random variables, and prior distributions need to be given in advance. Here we take the prior 

distribution of   as the noninformative prior distribution, namely 

1

1
( ) 


= , 0  .                              (3.6) 

The prior distribution of   is still taken as Gamma distribution, its probability density function 

is (3.1), and it is assumed that   and   are independent. 

Using the prior distributions (3.1) and (3.6), the joint posterior density of ( , )   is  

1:

1

1
0 0

( , ) ( ) ( )
( , )

( , ) ( ) ( )
nx

L
x

L d d

     
  

       
+

=

 
 

1
1 1 ( )1:( ln )

( 1)

k a
k a n B bnn B b n x

e
k a

  
+ −

+ − − − ++ −
=

 + −
,                (3.7) 

where : :

1 1

ln ln
k k

i n i i n

i i

B x R x
= =

= +  , 1:0 ,0nx     + . 

Therefore, the posterior distribution of   is Gamma distribution, and its probability density 

function is 

1:

0
( ) ( , )

nx

x x d     =   
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1:

1
( ln )21:( ln )

( 1)
n

k a
B b n xk anB b n x

e
k a


+ −

− + −+ −+ −
=

 + −
, 0  .                (3.8) 

In addition, the posterior density of   is 

0
( ) ( , )x x d     

+

=   

1 1 ( )

1:( 1) ( ln ) ( ln )k a k a

nn k a B b n x B b n − + − − += + − + − + − , 1:0 nx  .       (3.9) 

So under the squared error loss, the Bayesian estimate of   is 

0
1:

1
( )

ln
BS

n

k a
x d

B b n x
   

+ + −
= =

+ − . 

Under the squared error loss, the Bayesian estimate of   is 

0
( )BS x d   

+

=   

1:1 ( )

1:
0

( 1)( ln ) ( ln )
nx

k a k a

nn k a B b n x B b n d + − − += + − + − + − .             (3.10) 

Under the squared error loss, the Bayesian estimate of ( )R x  is 

1:

0 0
( ) ( , )

nx

BSR x x x d d      
+

−=    

 
1

21:
1:

0

( ln )
exp [ ln ( 1) ln ]

1 ( 1)

k a
k an

n

B b n xn
B b x n x d

n k a
  

+ −
+

+ −+ −
=  − + + − +

+  + −   

1

1:

1:

ln

1 ln ( 1) ln

k a

n

n

B b n xn

n B b x n x

+ −

 + −
=  

+ + + − + 
. 

Using (3.4), (3.8) and (3.9), when 1:( ln )nc B b n x − + − , the Bayesian estimates of   and   

under the LINEX loss are given, respectively, by 

1:

1
ln 1

ln
BL

n

k a c

c B b n x


 + −
= + 

+ − 
, 

 1:1 1 ( )

1:
0

1
ln ( 1)( ln ) ( ln )

nx
k a k a c

BL nn k a B b n x B b n e d
c

   + − − − + −= − + − + − + − .    (3.11) 

Because 
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( )( )
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cR x c xE e x E e x
 

   

−− −  =   
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( 1)1

1: 1:

0
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ln ln ( ) ln )
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j
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− + −+ −
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−
= + − + + − +

+
 . 

The Bayesian estimate of ( )R x  under the LINEX loss is 

 ( )

,

1
( ) ln cR x

BLR x E e x
c

 

− = −    

( )  
( 1)1

1: 1:

0

1 ( )
ln ln ln ( ) ln )

!( )

j
k ak a

n n

j

c
n B b n x B b j x n j x
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− + −+ −

=

 −
= − + − + + − + 

+ 
 . 

Using (3.5), (3.8) and (3.9), when 1q k a + − , the Bayesian estimates of   and   under the 

general entropy loss are given, respectively, by 

1/

1

1:

( 1)
( ln )

( 1)

q

BG n

k a
B b n x

k a q
 −  + −

= + − 
 + − − 
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 1:
1/

1 1 ( )

1:
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( 1)( ln ) ( ln )
n

q
x

k a q k a

BG nn k a B b n x B b n d   
−

+ − − − − += + − + − + − .   (3.12) 

Because 

( ), ,( )q q qE R x x E x x 
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1
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( ln )

( ) ln ( ) ln

k a

n
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n

n B b n x

n q B b q x n q x

+ −

+ −

+ −
=

− + − − −
, 

the Bayesian estimate of ( )R x  under the general entropy loss is 

 

1/
1

1:

1

1:

( ln )
( )

( ) ln ( ) ln

q
k a

n
BG k a

n

n B b n x
R x

n q B b q x n q x

−
+ −

+ −

 + − 
=  

− + − − −  

. 

The approximate values of (3.10)–(3.12) can be obtained by numerical method, so as to obtain the 

Bayesian estimates of  . 

According to the posterior density (3.9) of  , its cumulative distribution function can be obtained as 

1

1:

1

( ln )
( )

( ln )

k a

n

k a

B b n x
F y

B b n y


+ −

+ −

+ −
=

+ −
, 1:0 ny x  . 
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Since ( ) ~ (0,1)F y U , let 1 2, , , Nu u u...  be mutually independent random numbers from a uniform 

distribution (0,1)U . Using the inverse transform method, 

1/( 1)

1:

1
exp ( ln ) ,   ( 1,2,..., )k a

i n iy B b B b n x u i N
n

− + − 
 = + − + − =  

 
 are the random numbers from the 

density function (3.9). So we can obtain 

1

1 N

BS i

i

y
N


=

  ,  
1

1 1
ln i

N
cy

BL

i

e
c N

 −

=

 
 −  

 
 , 

1/

1

1
q

N
q

BG i

i

y
N



−

−

=

 
  
 
 . 

Previously, we discussed the point estimation of the unknown parameters, and the Bayesian credible 

intervals for   and   will be given below. 

According to the posterior density (3.8) of  , we can obtain 

2

1:2( ln ) ~ (2 2 2)nB b n x k a + − + − , 

the 100(1 )%−  equal-tail credible interval of   is ( , )L U  , where 

2

1 / 2

1:

(2 2 2)

2( ln )
L

n

k a

B b n x




− + −
=

+ −
,  

2

/ 2

1:

(2 2 2)

2( ln )
U

n

k a

B b n x




+ −
=

+ −
. 

According to the posterior density (3.9), the 100(1 )%−  equal-tail credible interval of   is 

( , )L U  , where L  and U  should satisfy 

( )LP   =
0

( )
L

x d


   / 2= , 
1:

( ) ( ) / 2
n

U

x

UP x d


      = = .          (3.13) 

According to (3.13), we can further obtain 

( )
1

1
1:

1
exp ( ln ) / 2 k a

L nB b B b n x
n

 
−

+ −
  

= + − + −  
  

, 

( )
1

1
1:

1
exp ( ln ) 1 / 2 k a

U nB b B b n x
n

 
−

+ −
  

= + − + − −  
  

. 

4. Prediction of censored units 

In this section, we will give the prediction methods of censored observations ,ijZ 1, 2,..., ij R= , 

and 1,2,...,i k= . For the given observation data x , then the conditional density of ijZ  is 

 
1

: :( , , ) ( ) ( ) ( ) 1 ( ) 1 ( )
i i

j R j Ri

ij ij ij i n ij i n

R
f z x j f z F z F x F z F x

j
 

− − − 
   = − − −     

 
,     (4.1) 
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where :ij i nz x , 1, 2,..., .ij R=  

4.1. Best unbiased predictor 

In this subsection, we consider the best unbiased predictor (BUP) to predict censored 

observation
 ijZ . A statistic ˆ

ijz  is called a BUP of ijZ , if the predictor error ˆ
ij ijz Z−  has a mean 

zero and ˆ( )ij ijVar z Z−  is less than or equal to the variance of any unbiased predictor of ijZ . 

Therefore, the BUP of ijZ  can be obtained as ( )ijE Z x . In (4.1), if 
:

1 ( )

1 ( )

ij

i n

F z
u

F x

−
=

−
, then 

~ ( 1, )iu x Beta R j j− + . If the BUP of ijZ  is denoted as 
( )ˆ ij

BUPz , we can obtain 

:

( )ˆ ( , , )
i n

ij

BUP ij ij ij
x

z z f z x dz 
+

=   

1
1/ 1:

0
(1 )

( 1, )
iR j ji n

i

x
u u du

Beta R j j

− − −= −
− +   

( )
( ): 1/ 1,    

1,   

i n
i

i

x
Beta R j j

Beta R j j
=  − − +

− +
.              (4.2) 

The above expression contains the unknown parameter  , and the desired BUP can be obtained by 

substituting   into (4.2). 

4.2. Conditional median predictor 

In this subsection, we consider using the conditional median to predict censored observation
 

ijZ . According to the definition of the conditional median, for a given x , the median of the 

conditional distribution of ijZ  is the conditional median predictor (CMP), denoted as 
( )ˆ ij

CMPz , it needs 

to satisfy 

( ) ( )( ) ( )ˆ ˆij ij

ij CMP ij CMPP Z z P Z z =  . 

Using the conditional density function (4.1), it can be expressed as 

( )ˆ
( , , ) 0.5

ij
CMP

ij
z

f z x  
+

= .                            (4.3) 

Substituting (2.1) into (4.1), the conditional density of ijZ  is 

1
( 1) ( 1) 1

:

0

1
( , , ) ( 1) i i

j
i R m j R m jm

ij i n ij

m

R j
f z x j x z

j m

   
−

+ − + − + − + −

=

−   
= −   

   
 , :ij i nz x .     (4.4) 
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Then (4.3) can be transformed into 

( 1)
1

:

( )
0

1 1
( 1) 0.5

ˆ1

iR m j
j

i m i n

ij
m i CMP

R j x
j

j m R m j z

 + − +
−

=

−     
− =    

+ − +     
 .              (4.5) 

Therefore, the CMP 
( )ˆ ij

CMPz  of ijZ  is the solution of Eq (4.5), and   is replaced by its maximum 

likelihood estimate  . 

4.3. Bayesian median predictor 

In the previous subsections we used the classical methods to predict ijZ . In this subsection we 

consider the Bayesian method to predict ijZ . Using the posterior density (3.7) of ( , )  , the 

corresponding posterior prediction density is 

1:

0 0
( ) ( , , ) ( , )

nx

ij ijh z x f z x x d d      
+

=    

1
1

1:

0

1
( 1)( ln ) ( 1)

j
ik a m

n

m

R j
k a B b n x j

j m

−
+ −

=

−   
= + − + − −   

   
  

( )
1

1: :ln ( 1)(ln ln )
k a

ij n i ij i nz B b n x R m j z x
− +

−   + − + + − + −  .            (4.6) 

According to (4.6), the Bayesian posterior survival function is 

( ) ( )ij ij
t

S t x h z x dz
+

=   

1
1

1:

0

1
( ln ) ( 1)

j
ik a m

n

m

R j
B b n x j

j m

−
+ −

=

−   
= + − −   

   
  

 
( ) 1

1: :

1
ln ( 1)(ln ln )

1

k a

n i i n

i

B b n x R m j t x
R m j

− + +
 + − + + − + −

+ − +
, : .i nt x        (4.7) 

According to the definition of the median, if the Bayesian median predictor (BMP) of ijZ  is 
( )ˆ ij

BMPz , 

it needs to satisfy 

( )ˆ( ) 0.5ij

BMPS z x = , 

that is 

1
1

1:

0

1
( ln ) ( 1)

j
ik a m

n

m

R j
B b n x j

j m

−
+ −

=

−   
+ − −   
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( ) 1
( )

1: :

1
ˆln ( 1)(ln ln ) 0.5

1

k a
ij

n i BMP i n

i

B b n x R m j z x
R m j

− + +

  + − + + − + − = + − +
. 

4.4. Prediction intervals 

In the previous subsections, we obtained point prediction of ijZ  using a variety of methods. 

Prediction intervals of censored observations will be constructed below, and two types of prediction 

intervals are obtained in this subsection using the classical method and the Bayesian method, 

respectively. 

According to the conditional density (4.4), the predictive survival function can be obtained as 

*( , , ) ( , , )ij ij
t

S t x f z x dz   
+

=   

( 1)1

:

0

1 1
( 1)

1

iR m jj
i m i n

m i

R j x
j

j m R m j t

+ − +−

=

−     
= −     

+ − +     
 , :i nt x . 

Therefore, the 100(1 )%−  classical prediction interval of ijZ  is 
( ) ( )ˆ ˆ( , )ij ij

L Uz z , and the lower bound 

( )ˆ ij

Lz  and the upper bound 
( )ˆ ij

Uz  should satisfy 

( 1)
1

:

( )
0

1 1
( 1) 1 / 2

ˆ1

iR m j
j

i m i n

ij
m i L

R j x
j

j m R m j z





+ − +
−

=

−     
− = −    

+ − +     
 , 

( 1)
1

:

( )
0

1 1
( 1) / 2

ˆ1

iR m j
j

i m i n

ij
m i U

R j x
j

j m R m j z





+ − +
−

=

−     
− =    

+ − +     
 , 

where   is replaced by its maximum likelihood estimate  . 

According to the Bayesian posterior survival function (4.7), the 100(1 )%−  Bayesian prediction 

interval of ijZ  is 
( ) ( )( , )ij ij

L Uz z , and 
( )ij

Lz  and 
( )ij

Uz  should satisfy 

1
1

1:

0

1
( ln ) ( 1)

j
ik a m

n

m

R j
B b n x j

j m

−
+ −

=

−   
+ − −   

   
  

( ) 1
( )

1: :

1
ln ( 1)(ln ln ) 1 / 2

1

k a
ij

n i L i n

i

B b n x R m j z x
R m j


− + +

  + − + + − + − = − + − +
, 

1
1

1:

0

1
( ln ) ( 1)

j
ik a m

n

m

R j
B b n x j

j m

−
+ −

=

−   
+ − −   
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( ) 1
( )

1: :

1
ln ( 1)(ln ln ) / 2

1

k a
ij

n i U i n

i

B b n x R m j z x
R m j


− + +

  + − + + − + − = + − +
. 

5. Simulation study 

In this section, we will use Monte-Carlo simulation to verify the properties of the estimators. 

The simulated samples come from the progressively double Type-II hybrid censoring scheme of the 

two-parameter Pareto distribution, and 6, 2 = = . When the values of 1m , 2m , 1 2( , ,..., )kR R R  and 

0t  are given under small sample size ( 20)n = , medium sample size ( 40)n = , and large sample size

( 60)n = , respectively, the progressively double Type-II hybrid censored data with three sample sizes 

can be obtained. The values of the hyper-parameters are taken as ( , ) (1,1)a b = , and 1, 1c q= =  in 

the loss functions. The values of the estimators are calculated based on the censored data. Each 

estimator is simulated 10000 times to calculate mean value (MV) and mean square error (MSE), and 

the formula of MSE is 

21ˆ ˆ( ) ( )
10000

MSE   = − , 

where ̂  is an estimate of  . 

For convenience, short notation is used to represent different, for example, scheme (3,0,0,0,0)  

is denoted as 
*4(3,0 ) . The MVs and MSEs for all point estimates of ,   and ( )R x  are listed in 

Tables 1–5. From the values in the Tables, it is easily observed that when n  is fixed, the MSEs of 

all estimators decrease as 0t  increases. Furthermore, when 0t  is fixed, the MSEs of all estimators 

decrease as n  increases. In terms of MSEs, all Bayesian estimates are better than the corresponding 

maximum likelihood estimates under the same condition, and the differences between them decrease 

rapidly as n  increases. Especially in the case of small sample size, the advantage of Bayesian 

estimation is more obvious. In general, for three types of Bayesian estimates of   and ( )R x , the 

MSE is minimal under the LINEX loss. For the Bayesian estimation of  , the MSE is minimal 

under the general entropy loss. Under the same condition, when   is unknown, the MSEs of the 

point estimates of   and ( )R x  is larger than the MSEs when   is known. From the MVs of the 

point estimates, the maximum likelihood estimates of the unknown parameters   and   are 

greater than their Bayesian estimates. The maximum likelihood estimate of the reliability function is 

less than three Bayesian estimates. 

Table 1. MVs and MSEs of point estimates for   when   is known. 

n  1m  2m  1 2( , , ..., )kR R R  0t  
 

̂  
ˆ
BS  ˆ

BL  ˆ
BG  

20 10 14 (0*9,10) or (0*9,3,0*3,3) 8 MV 2.13812 1.91591 1.75973 1.74171 

     MSE 0.32570 0.20271 0.19925 0.22839 

    12 MV 1.88524 1.77095 1.67082 1.65297 

     MSE 0.28010 0.19222 0.18354 0.22487 

Continued on next page 
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n  1m  2m  1 2( , , ..., )kR R R  0t  
 

̂  
ˆ
BS  ˆ

BL  ˆ
BG  

40 20 28 (0*19,20) or (0*19,6,0*7,6) 8 MV 2.02012 1.91813 1.83252 1.82686 

     MSE 0.21293 0.16274 0.15797 0.17158 

    12 MV 2.03174 1.95786 1.89290 1.89014 

     MSE 0.13764 0.11101 0.10686 1.87791 

60 30 42 (0*29,30) or (0*29,8,0*11,10) 8 MV 2.00764 1.94051 1.88055 1.87791 

     MSE 0.14173 0.11815 0.11490 0.12226 

    12 MV 2.03286 1.98336 1.93827 1.93738 

     MSE 0.08793 0.07465 0.07148 0.07494 

Table 2. MVs and MSEs of point estimates for ( )R x  when   is known ( 7.5)x = . 

n  1m  2m  1 2( , , ..., )kR R R  0t  
 

R̂  
ˆ

BSR  ˆ
BLR  ˆ

BGR  

20 10 14 (0*9,10) or (0*9,3,0*3,3) 8 MV 0.62604 0.66065 0.65742 0.64968 

     MSE 0.00689 0.00432 0.00428 0.00448 

    12 MV 0.65946 0.67904 0.67543 0.67195 

     MSE 0.00454 0.00406 0.00365 0.00379 

40 20 28 (0*19,20) or (0*19,6,0*7,6) 8 MV 0.64046 0.65712 0.65401 0.65138 

     MSE 0.00409 0.00337 0.00336 0.00342 

    12 MV 0.63761 0.64990 0.64625 0.64562 

     MSE 0.00265 0.00225 0.00224 0.00229 

60 30 42 (0*29,30) or (0*29,8,0*11,10) 8 MV 0.64111 0.65233 0.64901 0.64838 

     MSE 0.00272 0.00239 0.00237 0.00241 

    12 MV 0.63667 0.64501 0.64300 0.64207 

     MSE 0.00166 0.00146 0.00146 0.00148 

Table 3. MVs and MSEs of point estimates for   when   is unknown. 

n  1m  2m  1 2( , , ..., )kR R R  0t  
 

  BS  BL  BG  

20 10 14 (0*9,10) or (0*9,3,0*3,3) 8 MV 2.23162 1.90169 1.73313 1.71152 

     MSE 0.37844 0.23303 0.22707 0.26414 

    12 MV 2.00654 1.74541 1.64163 1.62074 

     MSE 0.32407 0.18069 0.21918 0.24375 

40 20 28 (0*19,20) or (0*19,6,0*7,6) 8 MV 2.11199 1.90141 1.81309 1.80634 

     MSE 0.25496 0.16798 0.16572 0.18034 

    12 MV 2.09806 1.94752 1.88105 1.87796 

     MSE 0.15981 0.11365 0.11056 0.11801 

60 30 42 (0*29,30) or (0*29,8,0*11,10) 8 MV 2.06281 1.92611 1.86518 1.86191 

     MSE 0.15110 0.11631 0.11539 0.12265 

    12 MV 2.07338 1.97403 1.92826 1.92703 

     MSE 0.09413 0.07295 0.07074 0.07421 
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Table 4. MVs and MSEs of point estimates for ( )R x  when   is unknown ( 7.5)x = . 

n  1m  2m  1 2( , , ..., )kR R R  0t  
 

R  BSR  BLR  BGR  

20 10 14 (0*9,10) or (0*9,3,0*3,3) 8 MV 0.62867 0.66028 0.65698 0.64910 

     MSE 0.00871 0.00441 0.00434 0.00457 

    12 MV 0.67303 0.67696 0.67346 0.66931 

     MSE 0.00597 0.00431 0.00394 0.00404 

40 20 28 (0*19,20) or (0*19,6,0*7,6) 8 MV 0.64217 0.65660 0.65311 0.65082 

     MSE 0.00451 0.00332 0.00314 0.00337 

    12 MV 0.64290 0.64897 0.64582 0.64460 

     MSE 0.00288 0.00223 0.00213 0.00227 

60 30 42 (0*29,30) or (0*29,8,0*11,10) 8 MV 0.64226 0.65203 0.65101 0.64807 

     MSE 0.00286 0.00235 0.00221 0.00237 

    12 MV 0.63998 0.64431 0.64232 0.64133 

     MSE 0.00175 0.00145 0.00138 0.00148 

Table 5. MVs and MSEs of point estimates for  . 

n  1m  2m  1 2( , , ..., )kR R R  0t  
 

  BS  BL  BG  

20 10 14 (0*9,10) or (0*9,3,0*3,3) 8 MV 6.14564 5.95291 5.93523 5.95753 

     MSE 0.04373 0.02135 0.02324 0.02056 

    12 MV 6.14564 5.96641 5.94884 5.96968 

     MSE 0.04373 0.01873 0.02016 0.01750 

40 20 28 (0*19,20) or (0*19,6,0*7,6) 8 MV 6.06610 5.96132 5.95652 5.96550 

     MSE 0.00822 0.00765 0.00824 0.00758 

    12 MV 6.06610 5.97758 5.97013 5.97908 

     MSE 0.00822 0.00714 0.00789 0.00702 

60 30 42 (0*29,30) or (0*29,8,0*11,10) 8 MV 6.04169 5.97864 5.96840 5.98213 

     MSE 0.00307 0.00302 0.00324 0.00286 

    12 MV 6.04169 5.98151 5.97204 5.98540 

     MSE 0.00307 0.00294 0.00311 0.00279 

6. Numerical example 

Next, we will analyze the example from reference [22], in which the failure data follow Type-II 

Pareto distribution. After transformation, the failure data from the two-parameter Pareto distribution 

can be obtained, which are arranged in ascending order as follows: 0.5009, 0.5040, 0.5142, 0.5221, 

0.5261, 0.5418, 0.5473, 0.5834, 0.6091, 0.6252, 0.6404, 0.6498, 0.6750, 0.7031, 0.7099, 0.7168, 

0.7918, 0.8465, 0.9035, 1.1143. 

If we take 1 10m = , 2 14m = , 0 0.7t = , and the number of units progressively removed is 
*9 *3

1 2( , ,..., ) (0 ,3,0 ,3)kR R R = , then the censored data are obtained as 0.5009, 0.5040, 0.5142, 0.5221, 

0.5261, 0.5418, 0.5473, 0.5834, 0.6091, 0.6252, 0.6404, 0.6750, 0.7031, 0.7168. 
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Using the conclusions in this paper, when , ,a b c  and q  are taken different values, we can 

calculate the Bayesian estimates of unknown parameters and reliability under three types of loss 

functions, and the obtained estimates are shown in Tables 6 and 7. According to the test data, the 

failure observations of the removed units are predicted, including point prediction and interval 

prediction, and the computational results are shown in Table 8. 

Table 6. Bayesian estimates of   and  . 

( , )a b  
BS  BS  ( , )c q  

BL  BL  BG  BG  

(1, 1) 2.89176 0.49175 (1, 2) 2.62876 0.49172 2.78657 0.49145 

   (2, -1) 2.42054 0.49167 3.09831 0.49175 

   (-1, -2) 3.23918 0.49179 3.19992 0.49185 

   (-2, 1) 3.73041 0.49185 2.89176 0.49156 

(1, 2) 2.39671 0.48991 (1, 2) 2.21233 0.48985 2.30953 0.48947 

   (2, -1) 2.06115 0.48978 2.56790 0.48991 

   (-1, -2) 2.62876 0.48997 2.65212 0.49005 

   (-2, 1) 2.93397 0.49004 2.39671 0.48962 

Table 7. Bayesian estimates of ( )R x ( 0.6)x = . 

( , )a b  
BSR  ( , )c q  

BLR  BGR  

(1, 1) 0.57045 (1, 2) 0.56709 0.55145 

  (2, -1) 0.56372 0.57045 

  (-1, -2) 0.57379 0.57629 

  (-2, 1) 0.57712 0.55805 

(1, 2) 0.62194 (1, 2) 0.61904 0.60696 

  (2, -1) 0.61611 0.62194 

  (-1, -2) 0.62483 0.62658 

  (-2, 1) 0.62768 0.61215 

Table 8. Prediction of ijZ ( 1, 1, 0.05)a b = = = . 

i  j  
( )ˆ ij

BUPz  
( )ˆ ij

CMPz  
( )ˆ ij

BMPz  
( ) ( )ˆ ˆ( , )ij ij

L Uz z  
( ) ( )( , )ij ij

L Uz z  

10 1 0.68813 0.66612 0.67856 (0.62665, 0.87605) (0.62702, 1.01671) 

 2 0.79755 0.75616 0.79946 (0.64239, 1.19508) (0.64642, 1.63324) 

 3 1.09914 0.96407 1.09542 (0.68745, 2.31989) (0.70087, 4.43453) 

14 1 0.78859 0.76372 0.77801 (0.71846, 1.00445) (0.71889, 1.16586) 

 2 0.91441 0.86695 0.91650 (0.73649, 1.37017) (0.74109, 1.87320) 

 3 1.26018 1.10534 1.25543 (0.78815, 2.66005) (0.80359, 5.08850) 

It can be seen from Tables 6 and 7 that under the LINEX loss, the Bayesian estimates of   and 
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( )R x  are larger when c  is negative than when c  is positive. Also, under the general entropy loss, 

the Bayesian estimates of   and ( )R x  are larger when q  is negative than when q  is positive. 

For different values of , ,a b c  and q , the Bayesian estimates of   are very close under three types 

of loss functions. In Table 8, comparing the point prediction under three types of loss functions, it is 

found that the CMP is the smallest. The length of the Bayesian prediction intervals of ijZ  is greater 

than that of the classical prediction interval, and the real observations are within the prediction 

intervals. 

7. Conclusions 

In this paper, based on the progressively double Type-II hybrid censored data, the statistical 

inference of the two-parameter Pareto distribution is studied by using the classical and Bayesian 

methods. The maximum likelihood estimates of the unknown parameter(s) and reliability are 

obtained when the scale parameter is known and unknown, respectively. In the Bayesian method, we 

obtain the Bayesian estimates of the unknown parameter(s) and reliability under the squared loss, 

LINEX loss and general entropy loss, respectively. Since the Bayesian estimation of   cannot be 

obtained in an explicit form, a Monte-Carlo simulation method is proposed to obtain its Bayesian 

estimation, and we also obtain the Bayesian credible intervals of the unknown parameters. The point 

prediction and interval prediction of the failure observations of the withdrawn units are carried out 

by the classical and Bayesian methods, and the point prediction includes the best unbiased predictor, 

the conditional median predictor and the Bayesian median predictor. Simulation results show that, on 

the basis of MSE, the Bayesian estimation is better than the corresponding maximum likelihood 

estimation. Based on a real data set, we calculate the Bayesian estimates of the unknown parameters 

and reliability, and predict the observations of the censored units. We mainly consider the application 

of the progressively double Type-II hybrid censoring scheme in the two-parameter Pareto model, and 

this scheme can also be applied to other life distributions. 
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