Research article Special Issues

Estimation methods based on ranked set sampling for the arctan uniform distribution with application

  • Received: 26 November 2023 Revised: 07 January 2024 Accepted: 17 January 2024 Published: 14 March 2024
  • MSC : 62F15, 62G20, 65C60

  • The arctan uniform distribution (AUD) is a brand-new bounded distribution that may be used for modeling a variety of existing bounded real-world datasets. Ranked set sampling (RSS) is a useful technique for parameter estimation when accurate measurement of the observation is challenging and/or expensive. In the current study, the parameter estimator of the AUD is addressed based on RSS and simple random sampling (SRS) techniques. Some of the popular conventional estimating techniques are considered. The efficiency of the produced estimates is compared using a Monte Carlo simulation. It appears that the maximum product spacing method has an advantage in assessing the quality of proposed estimates based on the outcomes of our simulations for both the SRS and RSS datasets. In comparison to estimates produced from the SRS datasets, it can be seen that those from the RSS datasets are more reliable. This implies that RSS is a more effective sampling technique in terms of generating estimates with a smaller mean squared error. The benefit of the RSS design over the SRS design is further supported by real data results.

    Citation: Salem A. Alyami, Amal S. Hassan, Ibrahim Elbatal, Naif Alotaibi, Ahmed M. Gemeay, Mohammed Elgarhy. Estimation methods based on ranked set sampling for the arctan uniform distribution with application[J]. AIMS Mathematics, 2024, 9(4): 10304-10332. doi: 10.3934/math.2024504

    Related Papers:

  • The arctan uniform distribution (AUD) is a brand-new bounded distribution that may be used for modeling a variety of existing bounded real-world datasets. Ranked set sampling (RSS) is a useful technique for parameter estimation when accurate measurement of the observation is challenging and/or expensive. In the current study, the parameter estimator of the AUD is addressed based on RSS and simple random sampling (SRS) techniques. Some of the popular conventional estimating techniques are considered. The efficiency of the produced estimates is compared using a Monte Carlo simulation. It appears that the maximum product spacing method has an advantage in assessing the quality of proposed estimates based on the outcomes of our simulations for both the SRS and RSS datasets. In comparison to estimates produced from the SRS datasets, it can be seen that those from the RSS datasets are more reliable. This implies that RSS is a more effective sampling technique in terms of generating estimates with a smaller mean squared error. The benefit of the RSS design over the SRS design is further supported by real data results.



    加载中


    [1] C. W. Topp, F. C. Leone, A family of j-shaped frequency functions, J. Amer. Stat. Assoc., 50 (1995), 209–219.
    [2] P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydro., 46 (1980), 79–88. http://dx.doi.org/10.1016/0022-1694(80)90036-0 doi: 10.1016/0022-1694(80)90036-0
    [3] A. F. B. Menezes, J. Mazucheli, S. Dey, The unit-logistic distribution: Different methods of estimation, Pes. Oper., 9 (2018), 555–578. https://doi.org/10.1590/0101-7438.2018.038.03.0555 doi: 10.1590/0101-7438.2018.038.03.0555
    [4] J. Mazucheli, A. F. B. Menezes, S. Dey, The unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57.
    [5] J. Mazucheli, A. F. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. https://doi.org/10.6092/issn.1973-2201/8497 doi: 10.6092/issn.1973-2201/8497
    [6] M. A. Almuqrin, A. M. Gemeay, M. M. Abd El-Raouf, M. Kilai, R. Aldallal, E. Hussam, A flexible extension of reduced Kies distribution: Properties, inference, and applications in biology, Complexity, 2022 (2022), 6078567. https://doi.org/10.1155/2022/6078567 doi: 10.1155/2022/6078567
    [7] J. Mazucheli, A. F. B. Menezes, L. B. Fernandes, R. P. De Oliveira, M. E. Ghitany, The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates, J. Appl. Stat., 47 (2020), 954–974. https://doi.org/10.1080/02664763.2019.1657813 doi: 10.1080/02664763.2019.1657813
    [8] M. C. Korkmaz, The unit generalized half normal distribution: A new bounded distribution with inference and application, U.P.B. Sci. Bull. Series A, 82 (2020), 954–974.
    [9] E. Altun, M. El-Morshedy, M. S. Eliwa, A new regression model for bounded response variable: An alternative to the beta and unit-Lindley regression models, Plos one, 16 (2021), e0245627. https://doi.org/10.1371/journal.pone.0245627 doi: 10.1371/journal.pone.0245627
    [10] M. C. Korkmaz, C. Chesneau, On the unit Burr-XII distribution with the quantile regression modeling and applications, Comput. Appl. Math., 40 (2021). https://doi.org/10.1007/s40314-021-01418-5
    [11] E. Yıldırım, E. S. Ilıkkan, A. M. Gemeay, N. Makumi, M. E. Bakr, O. S. Balogun, Power unit Burr-XII distribution: Statistical inference with applications, AIP Adv., 13 (2023), 105107. https://doi.org/10.1063/5.0171077 doi: 10.1063/5.0171077
    [12] R. A. R. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, Theory and applications of the unit gamma/Gompertz distribution, Mathematics, 9 (2021). https://doi.org/10.3390/math9161850
    [13] A. Krishna, R. Maya, C. Chesneau, M. R. Irshad, The unit Teissier distribution and its applications, Math. Comput. Appl., 27 (2022), 12. https://doi.org/10.3390/mca27010012 doi: 10.3390/mca27010012
    [14] S. Nasiru, C. Chesneau, A. G. Abubakari, I. D. Angbing, Generalized unit half-logistic geometric distribution: Properties and regression with applications to insurance, Analytics, 2 (2023), 438–462. https://doi.org/10.3390/analytics2020025 doi: 10.3390/analytics2020025
    [15] O. Kharazmi, M. Alizadeh, J. E. Contreras-Reyes, H. Haghbin, Arctan-based family of distributions: Properties, survival regression, Bayesian analysis and applications, Axioms, 11 (2022), 399. https://doi.org/10.3390/axioms11080399 doi: 10.3390/axioms11080399
    [16] G. A. McIntyre, A method for unbiased selective sampling, using ranked sets, Aust. J. Agri. Res., 3 (1952), 385–390.
    [17] H. M. Aljohani, E. M. Almetwally, A. S. Alghamdi, E. H. Hafez, Ranked set sampling with application of modified Kies exponential distribution, Alexandria Eng. J., 60 (2021), 4041–4046. https://doi.org/10.1016/j.aej.2021.02.043 doi: 10.1016/j.aej.2021.02.043
    [18] L. K. Halls, T. R. Dell, Trial of ranked-set sampling for forage yields, Forest Sci., 12 (1966), 22–26.
    [19] M. H. Sabry, E. M. Almetwally, Estimation of the exponential Pareto distributions parameters under ranked and double ranked set sampling designs, Pak. J. Stat. Oper. Res., 17 (2021), 169–184. https://doi.org/10.18187/PJSOR.v17i1.3448 doi: 10.18187/PJSOR.v17i1.3448
    [20] R. Alharbi, M. S. Mustafa, A. Al-Mutairi, M. Hussein, M. Yusuf, A. Elshenawy, S. G. Nassr, Enhancing mean estimators in median ranked set sampling with dual auxiliary information, Heliyon, 9 (2023), E21427. https://doi.org/10.1016/j.heliyon.2023.e21427 doi: 10.1016/j.heliyon.2023.e21427
    [21] J. M. Cobby, M. S. Ridout, P. J. Bassett, R. V. Large, An investigation into the use of ranked set sampling on grass and grass-clover swards, Grass Forage Sci., 40 (1985), 257–263. https://doi.org/10.1111/j.1365-2494.1985.tb01753.x doi: 10.1111/j.1365-2494.1985.tb01753.x
    [22] G. P. Patil, A. K. Sinha, C. Taille, Relative precision of ranked set sampling: A comparison with the regression estimator, Environmetrics, 4 (1993), 399–412. https://doi.org/10.1111/j.1365-2494.1985.tb01753.x doi: 10.1111/j.1365-2494.1985.tb01753.x
    [23] H. Muttlak, W. Al-Sabah, Statistical quality control based on ranked set sampling, J. Appl. Stat., 30 (2003), 1055–1078. https://doi.org/10.1080/0266476032000076173 doi: 10.1080/0266476032000076173
    [24] N. Alotaibi, A. S. Al-Moisheer, I. Elbatal, M. Shrahili, M. Elgarhy, E. M. Almetwally, Half logistic inverted Nadarajah-Haghighi distribution under ranked set sampling with applications, Mathematics, 11 (2023), 1693. https://doi.org/10.3390/math11071693 doi: 10.3390/math11071693
    [25] F. H. Riad, M. A. Sabry, E. M. Almetwally, R. Aldallal, R. Alharbi, M. M. Hossain, On extended neoteric ranked set sampling plan: Likelihood function derivation and parameter estimation, Complexity, 2022 (2022), 1697481. https://doi.org/10.1155/2022/1697481 doi: 10.1155/2022/1697481
    [26] L. Stokes, Parametric ranked set sampling, Ann. Instit. Statist. Math., 47 (1995), 465–482. https://doi.org/10.1007/BF00773396 doi: 10.1007/BF00773396
    [27] A. B. Shaibu, H. A. Muttlak, Estimating the parameters of the normal, exponential and gamma distributions using median and extreme ranked set samples, Statistica, 64 (2004), 75–98. https://doi.org/10.6092/issn.1973-2201/25 doi: 10.6092/issn.1973-2201/25
    [28] A. Adatia, Estimation of parameters of the half-logistic distribution using generalized ranked set sampling, Comput. Stat. Data Analy., 33 (2000), 1–13. https://doi.org/10.1016/S0167-9473(99)00035-3 doi: 10.1016/S0167-9473(99)00035-3
    [29] O. M. Yousef, S. A. Al-Subh, Estimation of Gumbel parameters under ranked set sampling, J. Modern Appl. Stat. Methods, 13 (2014), 24. https://doi.org/10.56801/10.56801/v13.i.741 doi: 10.56801/10.56801/v13.i.741
    [30] M. Esemen, S. Gurler, Parameter estimation of generalized Rayleigh distribution based on ranked set sample, J. Statist. Comput. Simul., 88 (2018), 615–628. https://doi.org/10.1080/00949655.2017.1398256 doi: 10.1080/00949655.2017.1398256
    [31] W. Chen, R. Yang, D. Yao, C. Long, Pareto parameters estimation using moving extremes ranked set sampling, Statist. Papers, 62 (2021), 1195–1211. https://doi.org/10.1007/s00362-019-01132-9 doi: 10.1007/s00362-019-01132-9
    [32] W. Qian, W. Chen, X. He, Parameter estimation for the Pareto distribution based on ranked set sampling, Statist. Papers, 62 (2021), 395–417. https://doi.org/10.1007/s00362-019-01102-1 doi: 10.1007/s00362-019-01102-1
    [33] A. I. Al-Omari, S. Benchiha, I. M. Almanjahie, Efficient estimation of two-parameter xgamma distribution parameters using ranked set sampling design, Mathematics, 10 (2022), 3170. https://doi.org/10.3390/math10173170 doi: 10.3390/math10173170
    [34] A. I. Samuh, M. H. Al-Omari, N. Koyuncu, Estimation of the parameters of the new Weibull-Pareto distribution using ranked set sampling, Statistica, 80 (2020), 103–123. https://doi.org/10.6092/issn.1973-2201/9368 doi: 10.6092/issn.1973-2201/9368
    [35] R. Bantan, M. Elsehetry, A. S. Hassan, M. Elgarhy, D. Sharma, C. Chesneau, et al., A two-parameter model: properties and estimation under ranked sampling, Mathematics, 9 (2013), 1214. https://doi.org/10.3390/math9111214 doi: 10.3390/math9111214
    [36] A. I. Al-Omari, S. Benchiha, I. M. Almanjahie, Efficient estimation of the generalized quasi- Lindley distribution parameters under ranked set sampling and applications, Math. Prob. Eng., 2021 (2021), 1214. https://doi.org/10.1155/2021/9982397 doi: 10.1155/2021/9982397
    [37] H. F. Nagy, A. I. Al-Omari, A. S. Hassan, G. A. Alomani, Improved estimation of the inverted kumaraswamy distribution parameters based on ranked set sampling with an application to real data, Mathematics, 10 (2022), 4102. https://doi.org/10.3390/math10214102 doi: 10.3390/math10214102
    [38] A. S. Hassan, N. Alsadat, M. Elgarhy, C. Chesneau, H. F. Nagy, Analysis of $R = P[Y < X < Z]$ using ranked set sampling for a generalized inverse exponential model, Axioms, 12 (2023), 302. https://doi.org/10.3390/axioms12030302 doi: 10.3390/axioms12030302
    [39] N. Alsadat, A. S. Hassan, M. Elgarhy, C. Chesneau, R. E. Mohamed, An efficient stress-strength reliability estimate of the unit Gompertz distribution using ranked set sampling, Symmetry, 15 (2023), 1121. https://doi.org/10.3390/sym15051121 doi: 10.3390/sym15051121
    [40] R. Yang, W. Chen, Y. Dong, Log-extended exponential-geometric parameters estimation using simple random sampling and moving extremes ranked set sampling, Commun. Stat. Simul. Comput., 52 (2023), 267–277. https://doi.org/10.1080/03610918.2020.1853167 doi: 10.1080/03610918.2020.1853167
    [41] A. S. Hassan, N. Alsadat, M. Elgarhy, C. Chesneau, R. E. Mohamed, Different classical estimation methods using ranked set sampling and data analysis for the inverse power Cauchy distribution, J. Radiation Res. Appl. Sci., 16 (2023), 100685. https://doi.org/10.1016/j.jrras.2023.100685 doi: 10.1016/j.jrras.2023.100685
    [42] N. Alsadat, A. S. Hassan, A. M. Gemeay, C. Chesneau, M. Elgarhy, Different estimation methods for the generalized unit half-logistic geometric distribution: Using ranked set sampling, J. Radiation Res. Appl. Sci., 13 (2023), 085230. https://doi.org/10.1063/5.0169140 doi: 10.1063/5.0169140
    [43] T. W. Anderson, D. A. Darling, Asymptotic theory of certain goodness of fit criteria based on stochastic processes, The Ann. Math. Stat., 13 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437 doi: 10.1214/aoms/1177729437
    [44] P. D. M. Macdonald, Comments and queries comment on an estimation procedure for mixtures of distributions by Choi and Bulgren, J. Royal Statist. Society Ser. B Statist. Methodol., 33 (1971), 326–329. https://doi.org/10.1111/j.2517-6161.1971.tb00884.x doi: 10.1111/j.2517-6161.1971.tb00884.x
    [45] R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. Royal Statist. Society Ser. B Statist. Methodol., 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
    [46] H. Torabi, A general method for estimating and hypotheses testing using spacings, J. Statist. Theory Appl., 8 (2008), 163–168.
    [47] E. Castillo, A. S. Hadi, A method for estimating parameters and quantiles of distributions of continuous random variables, Comput. Stat. Data Anal., 20 (1995), 421–439. https://doi.org/10.1016/0167-9473(94)00049-O doi: 10.1016/0167-9473(94)00049-O
    [48] A. Abd El-Bar, H. S. Bakouch, S. Chowdhury, A new trigonometric distribution with bounded support and an application, Rev. Unión Mat. Arge., 62 (2021), 459–473. https://doi.org/10.33044/revuma.1872
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(662) PDF downloads(50) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog