HIV-1 infection is a dangerous diseases like Cancer, AIDS, etc. Many mathematical models have been introduced in the literature, which are investigated with different approaches. In this article, we generalize the HIV-1 model through nonsingular fractional operator. The non-integer mathematical model of HIV-1 infection under the Caputo-Fabrizio derivative is presented in this paper. The concept of Picard-Lindelof and fixed-point theory are used to address the existence of a unique solution to the HIV-1 model under the suggested operator. Also, the stability of the suggested model is proved through the Picard iteration and fixed point theory approach. The model's approximate solution is constructed through three steps Adams-Bashforth numerical method. Numerical simulations are provided for different values of fractional-order to study the complex dynamics of the model. Lastly, we provide the oscillatory and chaotic behavior of the proposed model for various fractional orders.
Citation: Shabir Ahmad, Aman Ullah, Mohammad Partohaghighi, Sayed Saifullah, Ali Akgül, Fahd Jarad. Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model[J]. AIMS Mathematics, 2022, 7(3): 4778-4792. doi: 10.3934/math.2022265
HIV-1 infection is a dangerous diseases like Cancer, AIDS, etc. Many mathematical models have been introduced in the literature, which are investigated with different approaches. In this article, we generalize the HIV-1 model through nonsingular fractional operator. The non-integer mathematical model of HIV-1 infection under the Caputo-Fabrizio derivative is presented in this paper. The concept of Picard-Lindelof and fixed-point theory are used to address the existence of a unique solution to the HIV-1 model under the suggested operator. Also, the stability of the suggested model is proved through the Picard iteration and fixed point theory approach. The model's approximate solution is constructed through three steps Adams-Bashforth numerical method. Numerical simulations are provided for different values of fractional-order to study the complex dynamics of the model. Lastly, we provide the oscillatory and chaotic behavior of the proposed model for various fractional orders.
[1] | R. Weiss, How does HIV cause AIDS? Science, 260 (1993), 1273–1279. https://doi.org/10.1126/science.8493571 doi: 10.1126/science.8493571 |
[2] | D. C. Douek, M. Roederer, R. A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annu. Rev. Med., 60 (2009), 471–484. https://doi.org/10.1146/annurev.med.60.041807.123549 doi: 10.1146/annurev.med.60.041807.123549 |
[3] | R. M. Anderson, R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361–367. |
[4] | R. M. May, R. M. Anderson, Population biology of infectious diseases: Part II, Nature, 280 (1979), 455–461. https://doi.org/10.1038/280455a0 doi: 10.1038/280455a0 |
[5] | H. C. Tuckwell, F. Y. M. Wan, Nature of equilibria and effects of drug treatments in some simple viral population dynamical models, IMA J. Math. Control I., 17 (2000), 311–327. https://doi.org/10.1093/imamci/17.4.311 doi: 10.1093/imamci/17.4.311 |
[6] | R. T. Alqahtani, S. Ahmad, A. Akgül, Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense, Mathematics, 9 (2021), 2370. https://doi.org/10.3390/math9192370 doi: 10.3390/math9192370 |
[7] | P. A. Naik, J. Zu, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos Soliton. Fract., 138 (2020), 109826. https://doi.org/10.1016/j.chaos.2020.109826 doi: 10.1016/j.chaos.2020.109826 |
[8] | S. Ali, S. Mubeen, R. S. Ali, G. Rahman, A. Morsy, K. S. Nisar, et al., Dynamical significance of generalized fractional integral inequalities via convexity, AIMS Math., 6 (2021), 9705–9730. http://dx.doi.org/10.3934/math.2021565 doi: 10.3934/math.2021565 |
[9] | S. Aljoudi, B. Ahmad, A. Alsaedi, Existence and uniqueness results for a coupled system of Caputo-Hadamard fractional differential equations with nonlocal Hadamard type integral boundary conditions, Fractal Fract., 4 (2020), 13. https://doi.org/10.3390/fractalfract4020013 doi: 10.3390/fractalfract4020013 |
[10] | A. Shaikh, K. S. Nisar, V. Jadhav, S. K. Elagan, M. Zakarya, Dynamical behaviour of HIV/AIDS model using fractional derivative with Mittag-Leffler kernel, Alex. Eng. J., 64 (2022), 2601–2610. https://doi.org/10.1016/j.aej.2021.08.030 doi: 10.1016/j.aej.2021.08.030 |
[11] | F. Rahman, A. Ali, S. Saifullah, Analysis of time-fractional $\Phi^{4}$-equation with singular and non-singular kernels, Int. J. Appl. Comput. Math., 7 (2021), 192. https://doi.org/10.1007/s40819-021-01128-w doi: 10.1007/s40819-021-01128-w |
[12] | T. Jin, X. Yang, H. Xia, H. Ding, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type, Fractals, 29 (2021), 2150012. https://doi.org/10.1142/S0218348X21500122 doi: 10.1142/S0218348X21500122 |
[13] | E. K. Akgül, A. Akgül, D. Baleanu, Laplace transform method for economic models with constant proportional Caputo derivative, Fractal Fract., 4 (2020), 30. https://doi.org/10.3390/fractalfract4030030 doi: 10.3390/fractalfract4030030 |
[14] | S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J. Funct. Space., 2021 (2021), 11. https://doi.org/10.1155/2021/8770488 doi: 10.1155/2021/8770488 |
[15] | K. M. Owolabi, A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos Soliton. Fract., 105 (2017), 111–119. https://doi.org/10.1016/j.chaos.2017.10.020 doi: 10.1016/j.chaos.2017.10.020 |
[16] | N. Heymans, J. C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior, Rheol. Acta, 33 (1994), 210–219. https://doi.org/10.1007/BF00437306 doi: 10.1007/BF00437306 |
[17] | F. B. Tatom, The relationship between fractional calculus and fractals, Fractals, 3 (1995), 217–229. |
[18] | M. Al-Refai, T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Differ. Equ., 2017 (2017), 315. https://doi.org/10.1186/s13662-017-1356-2 doi: 10.1186/s13662-017-1356-2 |
[19] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0 |
[20] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13. |
[21] | S. A. Khan, K. Shah, F. Jarad, G. Zaman, Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative, Chaos, 29 (2019), 013128. https://doi.org/10.1063/1.5079644 doi: 10.1063/1.5079644 |
[22] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9 |
[23] | S. Saifullah, A. Ali, M. Irfan, K. Shah, Time-fractional Klein-Gordon equation with solitary/shock waves solutions, Math. Probl. Eng., 2021 (2021), 15. https://doi.org/10.1155/2021/6858592 doi: 10.1155/2021/6858592 |
[24] | S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernel, AIMS Math., 6 (2021), 9981–9997. https://doi.org/10.3934/math.2021580 doi: 10.3934/math.2021580 |
[25] | E. J. Moore, S. Sirisubtawee, S. Koonprasert, A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ., 2019 (2019), 200. https://doi.org/10.1186/s13662-019-2138-9 doi: 10.1186/s13662-019-2138-9 |
[26] | J. Wang, Y. Zhou, M. Medved, Picard and weakly Picard operators technique for nonlinear differential equations in Banach spaces, J. Math. Anal. Appl., 389 (2012), 261–274. https://doi.org/10.1016/j.jmaa.2011.11.059 doi: 10.1016/j.jmaa.2011.11.059 |