In this paper, the solutions of some typical nonlinear fractional differential equations are discussed, and the implicit analytical solutions are obtained. The fractional derivative concerned here is the Caputo-Fabrizio form, which has a nonsingular kernel. The calculation results of different fractional orders are compared through images. In addition, by comparing the results obtained in this paper with those under Caputo fractional derivative, it is found that the solutions change relatively gently under Caputo-Fabrizio fractional derivative. It can be concluded that the selection of appropriate fractional derivatives and appropriate fractional order is very important in the modeling process.
Citation: Zhoujin Cui. Solutions of some typical nonlinear differential equations with Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2022, 7(8): 14139-14153. doi: 10.3934/math.2022779
In this paper, the solutions of some typical nonlinear fractional differential equations are discussed, and the implicit analytical solutions are obtained. The fractional derivative concerned here is the Caputo-Fabrizio form, which has a nonsingular kernel. The calculation results of different fractional orders are compared through images. In addition, by comparing the results obtained in this paper with those under Caputo fractional derivative, it is found that the solutions change relatively gently under Caputo-Fabrizio fractional derivative. It can be concluded that the selection of appropriate fractional derivatives and appropriate fractional order is very important in the modeling process.
[1] | Z. Cui, M. Shi, Z. Wang, Bifurcation in a new fractional model of cerebral aneurysm at the circle of Willis, Int. J. Bifurcat. Chaos, 31 (2021), 2150135. https://doi.org/10.1142/S0218127421501352 doi: 10.1142/S0218127421501352 |
[2] | Z. Cui, Z. Wang, Primary resonance of a nonlinear fractional model for cerebral aneurysm at the circle of Willis, Nonlinear Dyn., in press. https://doi.org/10.1007/s11071-022-07445-z |
[3] | G. Sales-Teodoro, J. Tenreiro Machado, E. Capelas De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008 |
[4] | R. Goyal, P. Agarwal, A. Parmentier, C. Cesarano, An extension of Caputo fractional derivative operator by use of Wiman's function, Symmetry, 13 (2021), 2238. https://doi.org/10.3390/sym13122238 doi: 10.3390/sym13122238 |
[5] | M. Ortigueira, J. Tenreiro Machado, What is a fractional derivative? J. Comput. Phys., 293 (2015), 4–13. https://doi.org/10.1016/j.jcp.2014.07.019 doi: 10.1016/j.jcp.2014.07.019 |
[6] | D. Labora, J. Nieto, R. Rodríguez-López, Is it possible to construct a fractional derivative such that the index law holds? Progr. Fract. Differ. Appl., 4 (2018), 1–3. https://doi.org/10.18576/pfda/040101 doi: 10.18576/pfda/040101 |
[7] | S. Momani, O. Abu Arqub, B. Maayah, Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienard's equation, Fractals, 28 (2020), 2040007. https://doi.org/10.1142/S0218348X20400071 doi: 10.1142/S0218348X20400071 |
[8] | S. Momani, B. Maayah, O. Abu Arqub, The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana-Baleanu fractional approach, Fractals, 28 (2020), 2040010. https://doi.org/10.1142/S0218348X20400101 doi: 10.1142/S0218348X20400101 |
[9] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[10] | A. Atangana, B. Alkahtani, New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arab. J. Geosci., 9 (2016), 8. https://doi.org/10.1007/s12517-015-2060-8 doi: 10.1007/s12517-015-2060-8 |
[11] | A. Atangana, J. Gomez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3 |
[12] | A. Atangana, J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1–7. https://doi.org/10.1177/1687814015613758 doi: 10.1177/1687814015613758 |
[13] | S. Ullah, M. Khan, M. Farooq, Z. Hammouch, D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete Cont. Dyn.-S, 13 (2020), 975–993. https://doi.org/10.3934/dcdss.2020057 doi: 10.3934/dcdss.2020057 |
[14] | A. Boudaoui, Y. El hadj Moussa, Z. Hammouch, S. Ullah, A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel, Chaos Soliton. Fract., 146 (2021), 110859. https://doi.org/10.1016/j.chaos.2021.110859 doi: 10.1016/j.chaos.2021.110859 |
[15] | M. ur Rahman, S. Ahmad, R. Matoog, N. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121 |
[16] | F. Mansal, N. Sene, Analysis of fractional fishery model with reserve area in the context of time-fractional order derivative, Chaos Soliton. Fract., 140 (2020), 110200. https://doi.org/10.1016/j.chaos.2020.110200 doi: 10.1016/j.chaos.2020.110200 |
[17] | M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1–11. https://doi.org/10.18576/pfda/020101 doi: 10.18576/pfda/020101 |
[18] | J. Losada, J. Nieto, Fractional integral associated to fractional derivatives with nonsingular kernels, Progr. Fract. Differ. Appl., 7 (2021), 137–143. https://doi.org/10.18576/pfda/070301 doi: 10.18576/pfda/070301 |
[19] | J. Losada, J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. https://doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202 |
[20] | H. Yépez-Martínez, J. Gómez-Aguilar, A new modified definition of Caputo-Fabrizio fractional order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comp. Appl. Math., 346 (2019), 247–260. https://doi.org/10.1016/j.cam.2018.07.023 doi: 10.1016/j.cam.2018.07.023 |
[21] | J. Nieto, Solution of a fractional logistic ordinary differential equation, Appl. Math. Lett., 123 (2022), 107568. https://doi.org/10.1016/j.aml.2021.107568 doi: 10.1016/j.aml.2021.107568 |
[22] | N. Tuan, R. Ganji, H. Jafari, A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel, Chinese J. Phys., 68 (2020), 308–320. https://doi.org/10.1016/j.cjph.2020.08.019 doi: 10.1016/j.cjph.2020.08.019 |
[23] | G. Nchama, Properties of Caputo-Fabrizio fractional operators, New Trends in Mathematical Sciences, 1 (2020), 1–25. https://doi.org/10.20852/ntmsci.2020.393 doi: 10.20852/ntmsci.2020.393 |
[24] | S. Roshan, H. Jafari, D. Baleanu, Solving FDEs with Caputo-Fabrizio derivative by operational matrix based on Genocchi polynomials, Math. Method. Appl. Sci., 41 (2018), 9134–9141. https://doi.org/10.1002/mma.5098 doi: 10.1002/mma.5098 |
[25] | M. Firoozjaee, H. Jafari, A. Lia, D. Baleanu, Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation, J. Comput. Appl. Math., 339 (2018), 367–373. https://doi.org/10.1016/j.cam.2017.05.022 doi: 10.1016/j.cam.2017.05.022 |
[26] | N. Djeddi, S. Hasan, M. Al-Smadi, S. Momani, Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative, Alex. Eng. J., 59 (2020), 5111–5122. https://doi.org/10.1016/j.aej.2020.09.041 doi: 10.1016/j.aej.2020.09.041 |
[27] | M. Khader, K. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146. https://doi.org/10.1016/j.apnum.2020.10.024 doi: 10.1016/j.apnum.2020.10.024 |
[28] | S. Abbas, M. Benchohra, J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Mathematics, 6 (2021), 2932–2946. https://doi.org/10.3934/math.2021177 doi: 10.3934/math.2021177 |
[29] | R. Adiguzel, Ü. Aksoy, E. Karapinar, İ. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.6652 |
[30] | R. Sevinik-Adıgüzel, Ü. Aksoy, E. Karapinar, İ. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM, 115 (2021), 155. https://doi.org/10.1007/s13398-021-01095-3 doi: 10.1007/s13398-021-01095-3 |
[31] | J. Lazreg, S. Abbas, M. Benchohra, E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Math., 19 (2021), 363–372. https://doi.org/10.1515/math-2021-0040 doi: 10.1515/math-2021-0040 |
[32] | H. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159 |
[33] | H. Khalil, M. Khalil, I. Hashim, P. Agarwal, Extension of operational matrix technique for the solution of nonlinear system of Caputo fractional differential equations subjected to integral type boundary constrains, Entropy, 23 (2021), 1154. https://doi.org/10.3390/e23091154 doi: 10.3390/e23091154 |
[34] | B. Anderson, J. Moore, Optimal control: linear quadratic methods, New Jersey: Prentice-Hall, 1990. |
[35] | Z. Odibat, S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Soliton. Fract., 36 (2008), 167–174. https://doi.org/10.1016/j.chaos.2006.06.041 doi: 10.1016/j.chaos.2006.06.041 |
[36] | M. Suarez, P. Schopf, A delayed action oscillator for ENSO, J. Atmos. Sci., 45 (1988), 3283–3287. https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2 doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2 |
[37] | J. Singha, D. Kumar, J. Nieto, Analysis of an El Ni$\widetilde {\rm{n}} $o-Southern Oscillation model with a new fractional derivative, Chaos Soliton. Fract., 99 (2017), 109–115. https://doi.org/10.1016/j.chaos.2017.03.058 doi: 10.1016/j.chaos.2017.03.058 |
[38] | A. Jhinga, V. Daftardar-Gejji, Dynamics and stability analysis of fractional model for El-Nino involving delay, Chaos Soliton. Fract., 151 (2021), 111233. https://doi.org/10.1016/j.chaos.2021.111233 doi: 10.1016/j.chaos.2021.111233 |
[39] | S. Allen, J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2 |
[40] | T. Hou, D. Xiu, W. Jiang, A new second-order maximum-principle preserving finite difference scheme for Allen-Cahn equations with periodic boundary conditions, Appl. Math. Lett., 104 (2020), 106265. https://doi.org/10.1016/j.aml.2020.106265 doi: 10.1016/j.aml.2020.106265 |
[41] | J. Jia, H. Zhang, H. Xu, X. Jiang, An efficient second order stabilized scheme for the two dimensional time fractional Allen-Cahn equation, Appl. Numer. Math., 165 (2021), 216–231. https://doi.org/10.1016/j.apnum.2021.02.016 doi: 10.1016/j.apnum.2021.02.016 |