We consider a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences, which is of the form $\left( \left\lfloor{\alpha n^c + \beta}\right\rfloor \right)_{n = 1}^{\infty} $ with real numbers $ \alpha {\geqslant} 1, c > 1 $ and $ \beta $. In this paper, we prove that there are infinitely many $ R $-almost primes in sequences $ \left(\lfloor \alpha n^c + \beta \rfloor\right)_{n = 1}^{\infty} $ if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.
Citation: Jinyun Qi, Zhefeng Xu. Almost primes in generalized Piatetski-Shapiro sequences[J]. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
We consider a generalization of Piatetski-Shapiro sequences in the sense of Beatty sequences, which is of the form $\left( \left\lfloor{\alpha n^c + \beta}\right\rfloor \right)_{n = 1}^{\infty} $ with real numbers $ \alpha {\geqslant} 1, c > 1 $ and $ \beta $. In this paper, we prove that there are infinitely many $ R $-almost primes in sequences $ \left(\lfloor \alpha n^c + \beta \rfloor\right)_{n = 1}^{\infty} $ if $ c \in (1, c_R) $ and $ c_R $ is an explicit constant depending on $ R $.
[1] | R. C. Baker, W. D. Banks, V. Z. Guo, A. M Yeager, Piatetski-Shapiro primes from almost primes, Monatsh. Math., 174 (2014), 357–370. https://doi.org/10.1007/s00605-013-0552-8 doi: 10.1007/s00605-013-0552-8 |
[2] | G. Greaves, Sieves in number theory, Springer-Verlag, Berlin, 43 (2001). |
[3] | S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, Cambridge University Press, Cambridge, 126 (1991). |
[4] | V. Z. Guo, Almost primes in Piatetski-Shapiro sequences, AIMS Math., 6 (2021), 9536–9546. https://doi.org/10.3934/math.2021554 doi: 10.3934/math.2021554 |
[5] | I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form $\left\lfloor{f(n)}\right\rfloor$, Mat. Sb., 33 (1953), 559–566. https://doi.org/10.2307/2508708 doi: 10.2307/2508708 |
[6] | J. Rivat, J. Wu, Prime numbers of the form $\left\lfloor{n^c}\right\rfloor$, Glasg. Math. J., 43 (2001), 237–254. https://doi.org/10.1017/S0017089501020080 doi: 10.1017/S0017089501020080 |
[7] | O. Robert, P. Sargos, A third derivative test for mean values of exponential sums with application to lattice point problems, Acta Arith., 106 (2003), 27–39. https://doi.org/10.4064/aa106-1-2 doi: 10.4064/aa106-1-2 |
[8] | J. D. Vaaler, Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc., 12 (1985), 183–216. https://doi.org/10.1090/S0273-0979-1985-15349-2 doi: 10.1090/S0273-0979-1985-15349-2 |
[9] | I. M. Vinogradov, A new estimate of a certain sum containing primes (Russian), Rec. Math., 2 (1937), 783–792. |