Research article

Non-resonance with one-sided superlinear growth for indefinite planar systems via rotation numbers

  • Received: 27 February 2022 Revised: 18 May 2022 Accepted: 19 May 2022 Published: 30 May 2022
  • MSC : 34C25, 34B15, 34D15

  • We consider the non-resonance with one-sided superlinear growth conditions for the indefinite planar system $ z' = f(t, z) $ from a rotation number viewpoint, and obtain the existence of $ 2\pi $-periodic solutions by applying a rotation number approach together with the Poincaré-Bohl theorem. We allow that the angular velocity of solutions of $ z' = f(t, z) $ is controlled by the angular velocity of solutions of two positively homogeneous and oddly symmetric systems $ z' = L_i(t, z), i = 1, 2 $ on the left half-plane, which have rotation numbers that satisfy $ \rho(L_1) > n/2 $ and $ \rho(L_2) < (n+1)/2 $, and allow $ f(t, z) $ to grow superlinearly on the right half-plane. In order to estimate the rotation angle difference of solutions, we develop a system methodology of "tracking" the angle difference of solutions of the system $ z' = f(t, z) $ on each small interval on the given side under sign-varying conditions.

    Citation: Chunlian Liu. Non-resonance with one-sided superlinear growth for indefinite planar systems via rotation numbers[J]. AIMS Mathematics, 2022, 7(8): 14163-14186. doi: 10.3934/math.2022781

    Related Papers:

  • We consider the non-resonance with one-sided superlinear growth conditions for the indefinite planar system $ z' = f(t, z) $ from a rotation number viewpoint, and obtain the existence of $ 2\pi $-periodic solutions by applying a rotation number approach together with the Poincaré-Bohl theorem. We allow that the angular velocity of solutions of $ z' = f(t, z) $ is controlled by the angular velocity of solutions of two positively homogeneous and oddly symmetric systems $ z' = L_i(t, z), i = 1, 2 $ on the left half-plane, which have rotation numbers that satisfy $ \rho(L_1) > n/2 $ and $ \rho(L_2) < (n+1)/2 $, and allow $ f(t, z) $ to grow superlinearly on the right half-plane. In order to estimate the rotation angle difference of solutions, we develop a system methodology of "tracking" the angle difference of solutions of the system $ z' = f(t, z) $ on each small interval on the given side under sign-varying conditions.



    加载中


    [1] E. N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations, Bull. Aust. Math. Soc., 15 (1976), 321–328. https://doi.org/10.1017/S0004972700022747 doi: 10.1017/S0004972700022747
    [2] S. Fučík, Solvability of nonlinear equations and boundary value problems, Reidel, Dordrecht, 1981.
    [3] J. Mawhin, Resonance and nonlinearity: A survey, Ukraïn. Mat. Zh., 59 (2007), 197–214. https://doi.org/10.1007/s11253-007-0016-1 doi: 10.1007/s11253-007-0016-1
    [4] P. Drábek, S. Invernizzi, On the periodic BVP for the forced Duffing equation with jumping nonlinearity, Nonlinear Anal., 10 (1986), 643–650. https://doi.org/10.1016/0362-546X(86)90124-0 doi: 10.1016/0362-546X(86)90124-0
    [5] J. Mawhin, J. R. Ward, Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math., 41 (1983), 337–351. https://doi.org/10.1007/bf01371406 doi: 10.1007/bf01371406
    [6] A. Fonda, F. Zanolin, Periodic solutions to second order differential equations of Liénard type with jumping nonlinearities, Comment. Math. Univ. Carolin., 28 (1987), 33–41.
    [7] C. Fabry, P. Habets, Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities, Arch. Math., 60 (1993), 266–276. https://doi.org/10.1007/BF01198811 doi: 10.1007/BF01198811
    [8] D. Qian, Periodic solutions of Liénard equations with superlinear asymmetric nonlinearities, Nonlinear Anal., 43 (2001), 637–654. https://doi.org/10.1016/S0362-546X(99)00225-4 doi: 10.1016/S0362-546X(99)00225-4
    [9] A. Fonda, A. Sfecci, A general method for the existence of periodic solutions of differential equations in the plane, J. Differ. Equations, 252 (2012), 1369–1391. https://doi.org/10.1016/j.jde.2011.08.005 doi: 10.1016/j.jde.2011.08.005
    [10] A. Fonda, A. Sfecci, Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differ. Integral Equ., 25 (2011), 993–1010.
    [11] M. Garrione, Resonance at the first eigenvalue for first-order systems in the plane: Vanishing Hamiltonians and the Landesman-Lazer condition, Differ. Integral Equ., 25 (2012), 505–526.
    [12] C. Fabry, A. Fonda, A systematic approach to nonresonance conditions for periodically forced planar Hamiltonian systems, Ann. Mat. Pura Appl., 201 (2022), 1033–1074. https://doi.org/10.1007/s10231-021-01148-9 doi: 10.1007/s10231-021-01148-9
    [13] C. Liu, S. Wang, Asymmetric non-resonance for indefinite planar systems via rotation numbers, Preprint.
    [14] C. Fabry, Landesman-Lazer conditions for periodic boundary value problems with asymmetric nonlinearities, J. Differ. Equations, 116 (1995), 405–418. https://doi.org/10.1006/jdeq.1995.1040 doi: 10.1006/jdeq.1995.1040
    [15] M. Y. Jiang, A landesman-lazer type theorem for periodic solutions the resonant asymmetric p-laplacian equation, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1219–1228.
    [16] Z. H. Wang, Existence and multiplicity of periodic solutions of the second-order differential equations with jumping nonlinearities, Acta Math. Sin. (Engl. Ser.), 18 (2002), 615–624. https://doi.org/10.1007/s10114-002-0190-x doi: 10.1007/s10114-002-0190-x
    [17] A. Fonda, Positively homogeneous hamiltonian systems in the plane, J. Differ. Equations, 200 (2004), 162–184. https://doi.org/10.1016/j.jde.2004.02.001 doi: 10.1016/j.jde.2004.02.001
    [18] A. Fonda, M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations, J. Differ. Equations, 250 (2011), 1052–1082. https://doi.org/10.1016/j.jde.2010.08.006 doi: 10.1016/j.jde.2010.08.006
    [19] A. Fonda, J. Mawhin, Planar differential systems at resonance, Adv. Differ. Equations, 10 (2006), 1111–1133.
    [20] A. Sfecci, Double resonance for one-sided superlinear or singular nonlinearities, Ann. Mat. Pura Appl., 195 (2016), 2007-2025. https://doi.org/10.1007/s10231-016-0551-1 doi: 10.1007/s10231-016-0551-1
    [21] A. Fonda, Playing around resonance: An invitation to the search of periodic solutions for second order ordinary differential equations, Birkhäuser, Basel, 2016.
    [22] K. Schmitt, Periodic solutions of a forced nonlinear oscillator involving a onesided restoring force, Arch. Math., 31 (1978), 70–73. https://doi.org/10.1007/BF01226417 doi: 10.1007/BF01226417
    [23] R. Reissig, Periodic solutions of a second order differential equation including a onesided restoring term, Arch. Math., 33 (1979), 85–90. https://doi.org/10.1007/BF01222730 doi: 10.1007/BF01222730
    [24] L. Fernandes, F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math., 51 (1988), 151–163. https://doi.org/10.1007/BF01206473 doi: 10.1007/BF01206473
    [25] C. Fabry, A. Fonda, Nonlinear resonance in asymmetric oscillators, J. Differ. Equations, 147 (1998), 58–78. https://doi.org/10.1006/jdeq.1998.3441 doi: 10.1006/jdeq.1998.3441
    [26] P. Omari, G. Villari, F. Zanolin, Periodic solutions of the Liénard equation with one-sided growth restrictions, J. Differ. Equations, 67 (1987), 278–293. https://doi.org/10.1016/0022-0396(87)90151-3 doi: 10.1016/0022-0396(87)90151-3
    [27] P. Omari, G. Villari, On a continuation lemma for the study of a certain planar system with applications to Liénard and Rayleigh equations, Results Math., 14 (1988), 156–173. https://doi.org/10.1007/BF03323223 doi: 10.1007/BF03323223
    [28] C. Rebelo, F. Zanolin, Multiple periodic solutions for a second order equation with one-sided superlinear growth, Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 2 (1996), 1–27.
    [29] C. Rebelo, F. Zanolin, Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349–2389. https://doi.org/10.1090/S0002-9947-96-01580-2 doi: 10.1090/S0002-9947-96-01580-2
    [30] B. Liu, Multiplicity results for periodic solutions of a second order quasilinear ODE with asymmetric nonlinearities, Nonlinear Anal., 33 (1998), 139–160. https://doi.org/10.1016/S0362-546X(97)00522-1 doi: 10.1016/S0362-546X(97)00522-1
    [31] C. Zanini, F. Zanolin, A multiplicity result of periodic solutions for parameter dependent asymmetric non-autonomous equations, Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 12 (2005), 343–361.
    [32] J. M. Alonso, R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator, J. Differ. Equations, 143 (1998), 201–220. https://doi.org/10.1006/jdeq.1997.3367 doi: 10.1006/jdeq.1997.3367
    [33] C. Fabry, J. Mawhin, Oscillations of a forced asymmetric oscillator at resonance, Nonlinearity, 13 (2000), 493–505. https://doi.org/10.1088/0951-7715/13/3/302 doi: 10.1088/0951-7715/13/3/302
    [34] A. Boscaggin, W. Dambrosio, D. Papini, Unbounded solutions to a system of coupled asymmetric oscillators at resonance, arXiv preprint, 2021. https://doi.org/10.48550/arXiv.2103.06699
    [35] Q. Liu, D. Qian, X. Sun, Coexistence of unbounded solutions and periodic solutions of a class of planar systems with asymmetric nonlinearities, Bull. Belg. Math. Soc. Simon Stevin, 17 (2010), 577–591. https://doi.org/10.36045/bbms/1290608188 doi: 10.36045/bbms/1290608188
    [36] A. Capietto, W. Dambrosio, T. Ma, Z. Wang, Unbounded solutions and periodic solutions of perturbed isochronous hamiltonian systems at resonance, Discrete Contin. Dyn. Syst., 33 (2013), 1835–1856. https://doi.org/10.3934/dcds.2013.33.1835 doi: 10.3934/dcds.2013.33.1835
    [37] C. Liu, D. Qian, P. J. Torres, Non-resonance and double resonance for a planar system via rotation numbers, Results Math., 76 (2021), 1–23. https://doi.org/10.1007/s00025-021-01401-w doi: 10.1007/s00025-021-01401-w
    [38] C. Liu, D. Qian, A new fixed point theorem and periodic solutions of nonconservative weakly coupled systems, Nonlinear Anal., 192 (2020), 111668. https://doi.org/10.1016/j.na.2019.111668 doi: 10.1016/j.na.2019.111668
    [39] A. Boscaggin, M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: Multiplicity results via the Poincaré-Birkhoff theorem, Nonlinear Anal., 74 (2011), 4166–4185. https://doi.org/10.1016/j.na.2011.03.051 doi: 10.1016/j.na.2011.03.051
    [40] M. Garrione, A. Margheri, C. Rebelo, Nonautonomous nonlinear ODEs: Nonresonance conditions and rotation numbers, J. Math. Anal. Appl., 473 (2019), 490–509. https://doi.org/10.1016/j.jmaa.2018.12.063 doi: 10.1016/j.jmaa.2018.12.063
    [41] S. Gan, M. Zhang, Resonance pockets of Hill's equations with two-step potentials, SIAM J. Math. Anal., 32 (2000), 651–664. https://doi.org/10.1137/S0036141099356842 doi: 10.1137/S0036141099356842
    [42] A. Margheri, C. Rebelo, P. J. Torres, On the use of Morse index and rotation numbers for multiplicity results of resonant BVPs, J. Math. Anal. Appl., 413 (2014), 660–667. https://doi.org/10.1016/j.jmaa.2013.12.005 doi: 10.1016/j.jmaa.2013.12.005
    [43] D. Qian, P. J. Torres, P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differ. Equations, 266 (2019), 4746–4768. https://doi.org/10.1016/j.jde.2018.10.010 doi: 10.1016/j.jde.2018.10.010
    [44] M. Zhang, The rotation number approach to the periodic Fučík spectrum, J. Differ. Equations, 185 (2002), 74–96. https://doi.org/10.1006/jdeq.2002.4168 doi: 10.1006/jdeq.2002.4168
    [45] H. Jacobowitz, Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equations, 20 (1976), 37–52. https://doi.org/10.1016/0022-0396(76)90094-2 doi: 10.1016/0022-0396(76)90094-2
    [46] P. Hartman, On boundary value problems for superlinear second order differential equation, J. Differ. Equations, 26 (1977), 37–53. https://doi.org/10.1016/0022-0396(77)90097-3 doi: 10.1016/0022-0396(77)90097-3
    [47] T. R. Ding, R. Iannacci, F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differ. Equations, 105 (1993), 364–409. https://doi.org/10.1006/jdeq.1993.1093 doi: 10.1006/jdeq.1993.1093
    [48] A. Fonda, R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583–602. https://doi.org/10.1515/anona-2017-0040 doi: 10.1515/anona-2017-0040
    [49] A. Capietto, J. Mawhin, F. Zanolin, A continuation approach to superlinear periodic boundary value problems, J. Differ. Equations, 88 (1990), 347–395. https://doi.org/10.1016/0022-0396(90)90102-U doi: 10.1016/0022-0396(90)90102-U
    [50] A. Capietto, J. Mawhin, F. Zanolin, A continuation theorem for periodic boundary value problems with oscillatory nonlinearities, NoDEA, 2 (1995), 133–163. https://doi.org/10.1007/BF01295308 doi: 10.1007/BF01295308
    [51] J. K. Hale, Ordinary differential equations, R. E. Krieger P. Co. Huntington, New York, 1980.
    [52] S. Wang, D. Qian, Subharmonic solutions of indefinite Hamiltonian systems via rotation numbers, Adv. Nonlinear Stud., 21 (2021), 557–578. https://doi.org/10.1515/ans-2021-2134 doi: 10.1515/ans-2021-2134
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1339) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog