In this paper, we study variational inequality systems with quasilinear degenerate parabolic operators in a bounded domain. As a series of penalty problems, the existence of the solutions in the weak sense is proved by a limit process. The uniqueness of the solution is also proved.
Citation: Jia Li, Changchun Bi. Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems[J]. AIMS Mathematics, 2022, 7(11): 19758-19769. doi: 10.3934/math.20221083
In this paper, we study variational inequality systems with quasilinear degenerate parabolic operators in a bounded domain. As a series of penalty problems, the existence of the solutions in the weak sense is proved by a limit process. The uniqueness of the solution is also proved.
[1] | X. S. Chen, F. H. Yi, L. H. Wang, American lookback option with fixed strike price—2-D parabolic variational inequality, J. Differ. Equ., 251 (2011), 3063–3089. https://doi.org/10.1016/j.jde.2011.07.027 doi: 10.1016/j.jde.2011.07.027 |
[2] | Y. Zhou, F. H. Yi, A free boundary problem arising from pricing convertible bond, Appl. Anal., 89 (2010), 307–323. |
[3] | X. S. Chen, Y. S. Chen, F. H. Yi, Parabolic variational inequality with parameter and gradient constraints, J. Math. Anal. Appl., 385 (2012), 928–946. https://doi.org/10.1016/j.jmaa.2011.07.025 doi: 10.1016/j.jmaa.2011.07.025 |
[4] | M. Jleli, B. Samet, Nonexistence criteria for systems of parabolic inequalities in an annulus, J. Math. Anal. Appl., 514 (2022), 126352. https://doi.org/10.1016/j.jmaa.2022.126352 doi: 10.1016/j.jmaa.2022.126352 |
[5] | E. Zhanpeisov, Blow-up rate of sign-changing solutions to nonlinear parabolic systems in domains, Nonlinear Anal., 222 (2022), 112975. https://doi.org/10.1016/j.na.2022.112975 doi: 10.1016/j.na.2022.112975 |
[6] | E. H. Hassnaoui, A. Q. El Idrissi, On a nonlinear parabolic system arising in modelling of a catalytic cracking reactor, Partial Differ. Equ. Appl. Math., 4 (2021), 100194. https://doi.org/10.1016/j.padiff.2021.100194 doi: 10.1016/j.padiff.2021.100194 |
[7] | J. Escher, P. Laurencot, B. V. Matioc, Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media, Ann. de l'Institut Henri Poincaré C, Analyse non linéaire, 28 (2011), 583–598. https://doi.org/10.1016/j.anihpc.2011.04.001 doi: 10.1016/j.anihpc.2011.04.001 |
[8] | M. Kubo, K. Shirakawa, N. Yamazaki, Variational inequalities for a system of elliptic-parabolic equations, J. Math. Anal. Appl., 387 (2012), 490–511. https://doi.org/10.1016/j.jmaa.2011.09.008 doi: 10.1016/j.jmaa.2011.09.008 |
[9] | Y. D. Sun, Y. M. Shi, X. Gu, An integro-differential parabolic variational inequality arising from the valuation of double barrier American option, J. Syst. Sci. Complex., 27 (2014), 276–288. https://doi.org/10.1007/s11424-014-2218-6 doi: 10.1007/s11424-014-2218-6 |
[10] | T. Chen, N. J. Huang, X. S. Li, Y. Z. Zou, A new class of differential nonlinear system involving parabolic variational and history-dependent hemi-variational inequalities arising in contact mechanics, Commun. Nonlinear Sci. Numer. Simulat., 101 (2021), 105886. https://doi.org/10.1016/j.cnsns.2021.105886 doi: 10.1016/j.cnsns.2021.105886 |
[11] | J. Dabaghi, V. Martin, M. Vohralík, A posteriori estimates distinguishing the error components and adaptive stopping criteria for numerical approximations of parabolic variational inequalities, Comput. Method. Appl. M., 367 (2020), 113105. https://doi.org/10.1016/j.cma.2020.113105 doi: 10.1016/j.cma.2020.113105 |
[12] | R. A. Mashiyev, O. M. Buhrii, Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity, J. Math. Anal. Appl., 377 (2011), 450–463. https://doi.org/10.1016/j.jmaa.2010.11.006 doi: 10.1016/j.jmaa.2010.11.006 |
[13] | Y. D. Sun, H. Wang, Study of weak solutions for a class of degenerate parabolic variational inequalities with variable exponent, Symmetry, 14 (2022), 1255. https://doi.org/10.3390/sym14061255 doi: 10.3390/sym14061255 |
[14] | G. S. Wang, G. J. Zheng, Unique continuation inequalities for the parabolic-elliptic chemotaxis system, J. Differ. Equ., 317 (2022), 524–560. https://doi.org/10.1016/j.jde.2022.02.018 doi: 10.1016/j.jde.2022.02.018 |
[15] | W. S. Zhou, Z. Q. Wu. Some results on a class of degenerate parabolic equations not in divergence form, Nonlinear Anal.-Theor., 60 (2005), 863–886. https://doi.org/10.1016/j.na.2004.09.053 doi: 10.1016/j.na.2004.09.053 |
[16] | H. Lu, J. Wu, W. Liu, Analysis of solutions to a parabolic system with absorption, Symmetry, 14 (2022), 1274. https://doi.org/10.3390/sym14061274 doi: 10.3390/sym14061274 |
[17] | D. Baleanu, H. D. Binh, A. T. Nguyen, On a fractional parabolic equation with regularized Hyper-Bessel operator and exponential nonlinearities, Symmetry, 14 (2022), 1419. https://doi.org/10.3390/sym14071419 doi: 10.3390/sym14071419 |