Research article

Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm

  • Received: 24 July 2022 Revised: 22 August 2022 Accepted: 26 August 2022 Published: 06 September 2022
  • MSC : 33B15, 34A34, 35A20, 35A22, 44A10

  • With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.

    Citation: M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh. Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm[J]. AIMS Mathematics, 2022, 7(11): 19739-19757. doi: 10.3934/math.20221082

    Related Papers:

  • With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.



    加载中


    [1] S. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Model., 23 (2012), 228–237. https://doi.org/10.1007/s10598-012-9133-2 doi: 10.1007/s10598-012-9133-2
    [2] N. Shah, E. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a novel transform, J. Funct. Space., 2022 (2022), 2754507. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507
    [3] A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 4935809. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [4] K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [5] M. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. Abdo, Analytical investigation of Noyes field model for time-fractional Belousov Zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [6] D. Robinson, The use of control systems analysis in the neurophysiology of eye movements, Annu. Rev. Neurosci., 4 (1981), 463–503. https://doi.org/10.1146/annurev.ne.04.030181.002335 doi: 10.1146/annurev.ne.04.030181.002335
    [7] R. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
    [8] J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377. https://10.1016/j.jmaa.2007.06.023 doi: 10.1016/j.jmaa.2007.06.023
    [9] A. Prakash, M. Goyal, S. Gupta, $q$-homotopy analysis method for fractional Bloch model arising in nuclear magnetic resonance via the Laplace transform, Indian J. Phys., 94 (2020), 507–520. https://doi.org/10.1007/s12648-019-01487-7 doi: 10.1007/s12648-019-01487-7
    [10] M. Goyal, V. Bhardwaj, A. Prakash, Investigating new positive, bounded and convergent numerical solution for the nonlinear time-dependent breast cancer dynamic competition model, Math. Meth. Appl. Sci., 44 (2021), 4636–4653. https://doi.org/10.1002/mma.7057 doi: 10.1002/mma.7057
    [11] A. Prakash, M. Goyal, S. Gupta, Numerical simulation of space-fractional Helmholtz equation arising in seismic wave propagation, imaging and inversion, Pramana, 93 (2019), 28. https://doi.org/10.1007/s12043-019-1773-8 doi: 10.1007/s12043-019-1773-8
    [12] D. M. Chen, N. Wang, Z. Y. Chen, Y. Yu, Parametrically excited vibrations in a nonlinear damped triple-well oscillator with resonant frequency, J. Vib. Eng. Technol., 10 (2022), 781–788. https://doi.org/10.1007/s42417-021-00408-5 doi: 10.1007/s42417-021-00408-5
    [13] Y. Yu, C. Zhang, Z. Y. Chen, C. W. Lim, Relaxation and mixed mode oscillations in a shape memory alloy oscillator driven by parametric and external excitations, Chaos Solitons Fractals, 140 (2020), 110145. https://doi.org/10.1016/j.chaos.2020.110145 doi: 10.1016/j.chaos.2020.110145
    [14] Y. Yu, Z. D. Zhang, Q. S. Bi, Multistability and fast-slow analysis for van der Pol Duffing oscillator with varying exponential delay feedback factor, Appl. Math. Model., 57 (2018), 448–458. https://doi.org/10.1016/j.apm.2018.01.010 doi: 10.1016/j.apm.2018.01.010
    [15] N. Dinh, S. Lee, J. Kim, K. Choi, Study on seismic performance of a mold transformer through shaking table tests, Appl. Sci., 10 (2020), 361. https://doi.org/10.3390/app10010361 doi: 10.3390/app10010361
    [16] J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ., 2018 (2018), 231. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1
    [17] P. Zhou, W. Zhu, Function projective synchronization for fractional-order chaotic systems, Nonlinear Anal.: Real World Appl., 12 (2011), 811–816. https://doi.org/10.1016/j.nonrwa.2010.08.008 doi: 10.1016/j.nonrwa.2010.08.008
    [18] F. Guo, H. Peng, B. J. Zou, R. C. Zhao, X. Y. Liu, Localisation and segmentation of optic disc with the fractional-order Darwinian particle swarm optimisation algorithm, IET Image Process., 12 (2018), 1303–1312. https://doi.org/10.1049/iet-ipr.2017.1149 doi: 10.1049/iet-ipr.2017.1149
    [19] M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos Solitons Fractals, 138 (2020), 110007. https://doi.org/10.1016/j.chaos.2020.110007 doi: 10.1016/j.chaos.2020.110007
    [20] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. https://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
    [21] P. Veeresha, D. Prakasha, H. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29 (2019), 013119. https://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
    [22] T. Stefanski, J. Gulgowski, Electromagnetic-based derivation of fractional-order circuit theory, Commun. Nonlinear Sci., 79 (2019), 104897. https://doi.org/10.1016/j.cnsns.2019.104897 doi: 10.1016/j.cnsns.2019.104897
    [23] Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, J. Mech. Med. Biol., 12 (2012), 1240008. https://doi.org/10.1142/s0219519412400088 doi: 10.1142/s0219519412400088
    [24] M. Altaf Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos Solitons Fractals, 116 (2018), 227–238. https://doi.org/10.1016/j.chaos.2018.09.039 doi: 10.1016/j.chaos.2018.09.039
    [25] D. Prakasha, P. Veeresha, H. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 134 (2019), 241. https://doi.org/10.1140/epjp/i2019-12590-5 doi: 10.1140/epjp/i2019-12590-5
    [26] M. Khan, S. Ullah, K. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo Fabrizio derivative, Adv. Differ. Equ., 2018 (2018), 410. https://doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4
    [27] Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [28] Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
    [29] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936-6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [30] H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. https://doi.org/10.3390/en13082002 doi: 10.3390/en13082002
    [31] E. Hernandez-Balaguera, Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus, Chaos Solitons Fractals, 145 (2021), 110787. https://doi.org/10.1016/j.chaos.2021.110787 doi: 10.1016/j.chaos.2021.110787
    [32] S. Das, A numerical solution of the vibration equation using modified decomposition method, J. Sound Vib., 320 (2009), 576–583. https://doi.org/10.1016/j.jsv.2008.08.029 doi: 10.1016/j.jsv.2008.08.029
    [33] S. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Model., 23 (2012), 228–237. https://doi.org/10.1007/s10598-012-9133-2 doi: 10.1007/s10598-012-9133-2
    [34] S. Das, Solution of fractional vibration equation by the variational iteration method and modified decomposition method, Int. J. Nonlinear Sci. Numer. Simul., 9 (2008), 361–366. https://doi.org/10.1515/ijnsns.2008.9.4.361 doi: 10.1515/ijnsns.2008.9.4.361
    [35] S. Das, P. Gupta, Application of homotopy perturbation method and homotopy analysis method to fractional vibration equation, Int. J. Comput. Math., 88 (2010), 430–441. https://doi.org/10.1080/00207160903474214 doi: 10.1080/00207160903474214
    [36] H. Srivastava, D. Kumar, J. Singh, An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., 45 (2017), 192–204. https://doi.org/10.1016/j.apm.2016.12.008 doi: 10.1016/j.apm.2016.12.008
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1560) PDF downloads(93) Cited by(9)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog