The present study investigates a class of variational inequality problems under the framework of the parabolic Kirchhoff operator from the financial contract problem. This particular issue stems from the financial contract problem. By utilizing the energy inequality of the obtained solutions, the energy inequality of the solution gradients, and the Caffarelli–Kohn–Nirenberge inequality, an estimation of the infinite norm of the solution gradients is obtained.
Citation: Qingjun Zhao. The $ {L^\infty } $ estimate of the spatial gradient of the solution to a variational inequality problem originates from the financial contract problem with advanced implementation clauses[J]. AIMS Mathematics, 2024, 9(12): 35949-35963. doi: 10.3934/math.20241704
The present study investigates a class of variational inequality problems under the framework of the parabolic Kirchhoff operator from the financial contract problem. This particular issue stems from the financial contract problem. By utilizing the energy inequality of the obtained solutions, the energy inequality of the solution gradients, and the Caffarelli–Kohn–Nirenberge inequality, an estimation of the infinite norm of the solution gradients is obtained.
[1] | M. Shirzadi, M. Rostami, M. Dehghan, X. L. Li, American options pricing under regime-switching jump-diffusion models with meshfree finite point method, Chaos Soliton. Fract., 166 (2023), 112919. https://doi.org/10.1016/j.chaos.2022.112919 doi: 10.1016/j.chaos.2022.112919 |
[2] | D. Yan, X. P. Lu, Utility-indifference pricing of European options with proportional transaction costs, J. Comput. Appl. Math., 397 (2021), 113639. https://doi.org/10.1016/j.cam.2021.113639 doi: 10.1016/j.cam.2021.113639 |
[3] | S. Cuomo, F. Sica, G. Toraldo, Greeks computation in the option pricing problem by means of RBF-PU methods, J. Comput. Appl. Math., 376 (2020), 112882. https://doi.org/10.1016/j.cam.2020.112882 doi: 10.1016/j.cam.2020.112882 |
[4] | M. Guidolin, K. Wang, The empirical performance of option implied volatility surface-driven optimal portfolios, Physica A, 618 (2023), 128496. https://doi.org/10.1016/j.physa.2023.128496 doi: 10.1016/j.physa.2023.128496 |
[5] | Z. J. Peng, Y. N. Zhao, F. Z. Long, Existence and uniqueness of the solution to a new class of evolutionary variational hemivariational inequalities, Nonlinear Anal.-Real, 81 (2025), 104210. https://doi.org/10.1016/j.nonrwa.2024.104210 doi: 10.1016/j.nonrwa.2024.104210 |
[6] | Z. B. Wu, W. Li, Q. G. Zhang, Y. B. Xiao, New existence and stability results of mild solutions for fuzzy fractional differential variational inequalities, J. Comput. Appl. Math., 448 (2024), 115926. https://doi.org/10.1016/j.cam.2024.115926 doi: 10.1016/j.cam.2024.115926 |
[7] | Y. Bai, N. Costea, S. D. Zeng, Existence results for variational-hemivariational inequality systems with nonlinear couplings, Commun. Nonlinear Sci., 134 (2024), 108026. https://doi.org/10.1016/j.cnsns.2024.108026 doi: 10.1016/j.cnsns.2024.108026 |
[8] | H. Y. Wei, Y. L. Deng, F. Wang, Gradient recovery type a posteriori error estimates of virtual element method for an elliptic variational inequality of the second kind, Nonlinear Anal.-Real, 73 (2023), 103903. https://doi.org/10.1016/j.nonrwa.2023.103903 doi: 10.1016/j.nonrwa.2023.103903 |
[9] | S. S. Byun, K. Kim, D. Kumar, Gradient estimates for mixed local and nonlocal parabolic problems with measure data, J. Math. Anal. Appl., 538 (2024), 128351. https://doi.org/10.1016/j.jmaa.2024.128351 doi: 10.1016/j.jmaa.2024.128351 |
[10] | F. Yang, L. D. Zhang, Gradient estimates and Harnack inequalities for a nonlinear parabolic equation on smooth metric measure spaces, J. Differ. Equations, 268 (2020), 4577–4617. https://doi.org/10.1016/j.jde.2019.10.030 doi: 10.1016/j.jde.2019.10.030 |
[11] | A. Taheri, V. Vahidifar, Gradient estimates for a nonlinear parabolic equation on smooth metric measure spaces with evolving metrics and potentials, Nonlinear Analysis, 232 (2023), 113255. https://doi.org/10.1016/j.na.2023.113255 doi: 10.1016/j.na.2023.113255 |
[12] | H. T. Dung, Gradient estimates for a general type of nonlinear parabolic equations under geometric conditions and related problems, Nonlinear Analysis, 226 (2023), 113135. https://doi.org/10.1016/j.na.2022.113135 doi: 10.1016/j.na.2022.113135 |
[13] | V. M. Tam, J. S. Chen, Hölder continuity and upper bound results for generalized parametric elliptical variational-hemivariational inequalities, J. Nonlinear Var. Anal., 8 (2024), 315–332. https://doi.org/10.23952/jnva.8.2024.2.08 doi: 10.23952/jnva.8.2024.2.08 |
[14] | Y. L. Tang, Y. C. Hua, Variational discretization combined with fully discrete splitting positive definite mixed finite elements for parabolic optimal control problems, J. Nonlinear Funct. Anal., 2023 (2023), 11. https://doi.org/10.23952/jnfa.2023.11 doi: 10.23952/jnfa.2023.11 |
[15] | M. Sofonea, D. A. Tarzia, Well-posedness and convergence results for elliptic hemivariational inequalities, Appl. Set-Valued Anal. Optim., 7 (2025), 1–21. https://doi.org/10.23952/asvao.7.2025.1.01 doi: 10.23952/asvao.7.2025.1.01 |
[16] | P. Garain, J. Kinnunen, Weak Harnack inequality for a mixed local and nonlocal parabolic equation, J. Differ. Equations, 360 (2023), 373–406. https://doi.org/10.1016/j.jde.2023.02.049 doi: 10.1016/j.jde.2023.02.049 |
[17] | Y. Z. Wang, Local Hölder continuity of nonnegative weak solutions of degenerate parabolic equations, Nonlinear Anal.-Theor., 72 (2010), 3289–3302. https://doi.org/10.1016/j.na.2009.12.007 doi: 10.1016/j.na.2009.12.007 |
[18] | Y. D. Sun, T. Wu, Hölder and Schauder estimates for weak solutions of a certain class of non-divergent variation inequality problems in finance, AIMS Mathematics, 8 (2023), 18995–19003. https://doi.org/10.3934/math.2023968 doi: 10.3934/math.2023968 |
[19] | E. Henriques, R. Laleoglu, Local Hölder continuity for some doubly nonlinear parabolic equations in measure spaces, Nonlinear Anal.-Theor., 79 (2013), 156–175. https://doi.org/10.1016/j.na.2012.11.022 doi: 10.1016/j.na.2012.11.022 |
[20] | P. Cavaliere, A. Cianchi, L. Pick, L. Slavikov$\mathrm{\acute{a}}$, Higher-order Sobolev embeddings into spaces of Campanato and Morrey type, Nonlinear Analysis, 251 (2025), 113678. https://doi.org/10.1016/j.na.2024.113678 doi: 10.1016/j.na.2024.113678 |
[21] | J. Kinnunen, P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Annali di Matematica, 185 (2006), 411–435. https://doi.org/10.1007/s10231-005-0160-x doi: 10.1007/s10231-005-0160-x |