A module represents a fundamental and complicated algebraic structure associated with a particular binary operation in algebraic theory. This paper introduces a new class of neutrosophic sub-module and neutrosophic R-sub-module. We extend the basic definitions in this area for the first time. Various properties of a neutrosophic R-sub-module are studied in different classes of rings. Moreover, various definitions of direct product and homomorphism of neutrosophic R-sub-modules are discussed, and results are provided.
Citation: Ali Yahya Hummdi, Amr Elrawy, Ayat A. Temraz. Neutrosophic modules over modules[J]. AIMS Mathematics, 2024, 9(12): 35964-35977. doi: 10.3934/math.20241705
A module represents a fundamental and complicated algebraic structure associated with a particular binary operation in algebraic theory. This paper introduces a new class of neutrosophic sub-module and neutrosophic R-sub-module. We extend the basic definitions in this area for the first time. Various properties of a neutrosophic R-sub-module are studied in different classes of rings. Moreover, various definitions of direct product and homomorphism of neutrosophic R-sub-modules are discussed, and results are provided.
[1] | M. M. Abed, N. Hassan, F. A. Sharqi, On neutrosophic multiplication module, Neutrosophic Sets Sy., 49 (2022), 198–208. https://doi.org/10.5281/zenodo.6426389 doi: 10.5281/zenodo.6426389 |
[2] | N. A. Alreshidi, Z. Shah, M. J. Khan, Similarity and entropy measures for circular intuitionistic fuzzy sets, Eng. Appl. Artif. Intel., 131 (2024), 107786. https://doi.org/10.1016/j.engappai.2023.107786 doi: 10.1016/j.engappai.2023.107786 |
[3] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[4] | A. Elrawy, M. Abdalla, M. A. Saleem, Some results on neutrosophic group, J. Math., 2023 (2023), 4540367. https://doi.org/10.1155/2023/4540367 doi: 10.1155/2023/4540367 |
[5] | A. Elrawy, M. Abdalla, Results on a neutrosophic sub-rings, AIMS Math., 8 (2023), 21393–21405. https://doi.org/10.3934/math.20231090 doi: 10.3934/math.20231090 |
[6] | A. Elrawy, F. Smarandache, A. A. Temraz, Investigation of a neutrosophic group, J. Intell. Fuzzy Syst., 46 (2024), 2273–2280. https://doi.org/10.3233/JIFS-232941 doi: 10.3233/JIFS-232941 |
[7] | H. Garg, A new exponential-logarithm-based single-valued neutrosophic set and their applications, Expert Syst. Appl., 238 (2024), 121854. https://doi.org/10.1016/j.eswa.2023.121854 doi: 10.1016/j.eswa.2023.121854 |
[8] | Y. H. Guo, A. I. Shahin, H. Garg, An indeterminacy fusion of encoder-decoder network based on neutrosophic set for white blood cells segmentation, Expert Syst. Appl., 246 (2024), 123156. https://doi.org/10.1016/j.eswa.2024.123156 doi: 10.1016/j.eswa.2024.123156 |
[9] | M. S. Hameed, Z. Ahmad, S. Ali, M. Kamran, A. R. L. Babole, An approach to ($\mu, \nu, \omega$)-single-valued neutrosophic submodules, Sci. Rep., 13 (2023), 751. https://doi.org/ 10.1038/s41598-022-18500-5 doi: 10.1038/s41598-022-18500-5 |
[10] | A. Hamza, M. N. Jafar, A. Habib, S. Farooq, E. Türkarslan, Cryptography in terms of triangular neutrosophic numbers with real life applications, Int. J. Neutrosophic Sci., 11 (2021), 39–52. https://doi.org/10.5281/zenodo.4127138 doi: 10.5281/zenodo.4127138 |
[11] | A. Y. Hummdi, M. Abdalla, A. Elrawy, Neutrosophic sub-group over t-norm and t-co-norm, Axioms, 13 (2024), 101. https://doi.org/10.3390/axioms13020101 doi: 10.3390/axioms13020101 |
[12] | N. Olgun, M. Bal, Neutrosophic modules, Neutrosophic Oper. Res., 2 (2017), 181–192. |
[13] | F. Smarandache, Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis, Rehoboth: American Research Press, 1998. |
[14] | F. Smarandache, Neutrosophic set–-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287. |
[15] | F. Smarandache, Neutrosophic perspectives: Triplets, duplets, multisets, hybrid operators, modal logic, hedge algebras, and applications, Brussels: Pons Publishing House, 2017. |
[16] | H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multisp. Multistruct., 4 (2010), 410–413. |
[17] | J. Q. Wang, X. H. Zhang, Intuitionistic fuzzy granular matrix: Novel calculation approaches for intuitionistic fuzzy covering-based rough sets, Axioms, 13 (2024), 411. https://doi.org/10.3390/axioms13060411 doi: 10.3390/axioms13060411 |
[18] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[19] | X. Zhang, C. Bo, F. Smarandache, J. Dai. New inclusion relation of neutrosophic sets with applications and related lattice structure, Int. J. Mach. Learn. Cyb., 9 (2018), 1753–1763. https://doi.org/10.1007/s13042-018-0817-6 doi: 10.1007/s13042-018-0817-6 |