Research article

Neutrosophic modules over modules

  • Received: 03 November 2024 Revised: 11 December 2024 Accepted: 19 December 2024 Published: 25 December 2024
  • MSC : 20K27, 08A72, 20N25

  • A module represents a fundamental and complicated algebraic structure associated with a particular binary operation in algebraic theory. This paper introduces a new class of neutrosophic sub-module and neutrosophic R-sub-module. We extend the basic definitions in this area for the first time. Various properties of a neutrosophic R-sub-module are studied in different classes of rings. Moreover, various definitions of direct product and homomorphism of neutrosophic R-sub-modules are discussed, and results are provided.

    Citation: Ali Yahya Hummdi, Amr Elrawy, Ayat A. Temraz. Neutrosophic modules over modules[J]. AIMS Mathematics, 2024, 9(12): 35964-35977. doi: 10.3934/math.20241705

    Related Papers:

    [1] Rajab Ali Borzooei, Hee Sik Kim, Young Bae Jun, Sun Shin Ahn . MBJ-neutrosophic subalgebras and filters in $ BE $-algebras. AIMS Mathematics, 2022, 7(4): 6016-6033. doi: 10.3934/math.2022335
    [2] M. Mohseni Takallo, Rajab Ali Borzooei, Seok-Zun Song, Young Bae Jun . Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets. AIMS Mathematics, 2021, 6(10): 11029-11045. doi: 10.3934/math.2021640
    [3] Abdelaziz Alsubie, Anas Al-Masarwah . MBJ-neutrosophic hyper $ BCK $-ideals in hyper $ BCK $-algebras. AIMS Mathematics, 2021, 6(6): 6107-6121. doi: 10.3934/math.2021358
    [4] Dongsheng Xu, Huaxiang Xian, Xiewen Lu . Interval neutrosophic covering rough sets based on neighborhoods. AIMS Mathematics, 2021, 6(4): 3772-3787. doi: 10.3934/math.2021224
    [5] Sumyyah Al-Hijjawi, Abd Ghafur Ahmad, Shawkat Alkhazaleh . A generalized effective neurosophic soft set and its applications. AIMS Mathematics, 2023, 18(12): 29628-29666. doi: 10.3934/math.20231517
    [6] Ning Liu, Zengtai Gong . Derivatives and indefinite integrals of single valued neutrosophic functions. AIMS Mathematics, 2024, 9(1): 391-411. doi: 10.3934/math.2024022
    [7] D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, P. Hammachukiattikul . Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM. AIMS Mathematics, 2022, 7(5): 9424-9442. doi: 10.3934/math.2022523
    [8] Amr Elrawy, Mohamed Abdalla . Results on a neutrosophic sub-rings. AIMS Mathematics, 2023, 8(9): 21393-21405. doi: 10.3934/math.20231090
    [9] D. Jeni Seles Martina, G. Deepa . Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making. AIMS Mathematics, 2023, 8(10): 24132-24152. doi: 10.3934/math.20231230
    [10] Dongsheng Xu, Xiangxiang Cui, Lijuan Peng, Huaxiang Xian . Distance measures between interval complex neutrosophic sets and their applications in multi-criteria group decision making. AIMS Mathematics, 2020, 5(6): 5700-5715. doi: 10.3934/math.2020365
  • A module represents a fundamental and complicated algebraic structure associated with a particular binary operation in algebraic theory. This paper introduces a new class of neutrosophic sub-module and neutrosophic R-sub-module. We extend the basic definitions in this area for the first time. Various properties of a neutrosophic R-sub-module are studied in different classes of rings. Moreover, various definitions of direct product and homomorphism of neutrosophic R-sub-modules are discussed, and results are provided.



    Uncertainty affects all aspects of human life. Zadeh [18] introduced the concept of a fuzzy set to overcome the limitations of classical set theory in dealing with such uncertainties. This approach defined a fuzzy set using a membership function with values ranging in a unit interval. However, further analysis showed that this definition fell short when addressing degrees of both membership and non-membership. To resolve this issue, Atanassov [3] developed intuitionistic fuzzy theory as an enhancement of the fuzzy set model. Although it provided a broader framework and found real-world applications [2,17], it faced challenges in practical use. In response, Smarandache [13] introduced the concept of a neutrosophic set to handle problems involving ambiguous and inconsistent data. Since then, research has explored neutrosophic sets in various areas, including the study of algebraic structures [5,6,10,15] and real-world applications, as seen in [7,8].

    The definitions of intersection and union in neutrosophic sets have been examined from three distinct angles. The initial interpretations, proposed by Smarandache [13,15], are represented as 1 and 1. The second set of definitions, found in [16], are denoted as 2 and 2. The third approach, introduced in [19], is symbolized by 3 and 3. Additionally, Elrawy et al. [4] developed and explored an alternative neutrosophic sub-group and level sub-group concept, based on the first perspective.

    Recently, Bal and Olgun [12] introduced neutrosophic modules using an indeterminate element, I. Also, Abed et al. [1] studied some results of the neutrosophic multiplication module. While Hameed et al.[9] introduced an approach of single-valued neutrosophic sub-modules based on the second perspective.

    The investigation into the concepts of modules within the framework of neutrosophic sets is driven by three main objectives. The first is to define the neutrosophic sub-module as an algebraic structure without incorporating the indeterminate element I and based on the first perspective. The second is to examine how classical module theory can be extended to neutrosophic modules, where elements satisfy module conditions with varying levels of truth, indeterminacy, and falsity. The third objective is to establish a more adaptable framework through neutrosophic modules to address uncertain, incomplete, or conflicting information, which is crucial in fields such as artificial intelligence, economics, social sciences, and decision-making, where data often exhibit uncertainty.

    Unlike classical modules, which require strict membership conditions, neutrosophic modules permit partial and uncertain membership. This flexibility results in more prosperous and versatile algebraic structures that better capture the complexity of real-world situations. Additionally, this paper introduces a novel approach to neutrosophic modules, altering the conventional perspective [12].

    The study also includes the definition of neutrosophic modules over a ring and neutrosophic rings, along with an analysis of their properties. Furthermore, various properties of the direct product and homomorphism between neutrosophic modules are derived and explored.

    The remainder of this article is organized as follows: Section 2 introduces essential definitions and preliminary results, laying the foundation for the paper's main contributions. Section 3 presents the concept of a neutrosophic R-sub-module along with its properties. We also derive various properties related to the direct product and homomorphism of neutrosophic modules. Finally, Section 4 summarizes the essential findings and conclusions of the study.

    Table 1.  Symbols and description of this article.
    Symbol Description Symbol Description
    NS neutrosophic set G,H classical group
    R classical ring M classical module over R
    D universe set M(R) the set of R-module
    R neutrosophic sub-ring over R M module over neutrosophic sub-ring
    NSM(R) the set of all neutrosophic R-sub-module MM neutrosophic R-sub-module

     | Show Table
    DownLoad: CSV

    Here, we give important concepts and outcomes as follows:

    Definition 2.1. [14,16] An NS Ξ on a universe set D is defined as:

    Ξ={<,μ(),γ(),ζ()>:D},

    with μ,γ,ζ:D[0,1].

    Definition 2.2. [4] A neutrosophic subset M={<ω,μ(ω),γ(ω),ζ(ω)>:ωG} of a group G is said to be a neutrosophic subgroup of G if the next axioms are met:

    (i) μ(ωb)min(μ(ω),μ(b)),

    (ii) μ(ω1)μ(ω),

    (iii) γ(ωb)max(γ(ω),γ(b)),

    (iv) γ(ω1)γ(ω),

    (v) ζ(ωb)max(ζ(ω),ζ(b)),

    (vi) ζ(ω1)ζ(ω),

    where ω,bG.

    Definition 2.3. [13] Consider N1 and N2 are two NSs on D. Then:

    1. N11N2={<ω,μ1(ω)μ2(ω),γ1(ω)γ2(ω),ζ1(ω)ζ2(ω)>:ωD},

    2. N11N2={<ω,μ1(ω)μ2(ω),γ1(ω)γ2(ω),ζ1(ω)ζ2(ω)>:ωD}.

    Definition 2.4. [11] Presume G and H are a group and M1 and M2 define on G and H, respectively. Then

    Γ(μ1)(ρ)={sup{μ1(δ):δG,Γ(δ)=ρ},ifΓ1(ρ)ϕ,0,ifΓ1(ρ)=ϕ.
    Γ(γ1)(ρ)={inf{γ1(δ):δG,Γ(δ)=ρ},ifΓ1(ρ)ϕ,0,ifΓ1(ρ)=ϕ.
    Γ(ζ1)(ρ)={inf{ζ1(δ):δG,Γ(δ)=ρ},ifΓ1(ρ)ϕ,0,ifΓ1(ρ)=ϕ,

    where ρH. Also, Γ1(μ2)(δ)=μ2(Γ(δ)), Γ1(γ2)(δ)=γ2(Γ(δ)), and Γ1(ζ2)(δ)=ζ2(Γ(δ)).

    Let us now present the notion of a neutrosophic module defined over a neutrosophic ring and module.

    First, we define a neutrosophic module over a neutrosophic ring. Consider M is a module over a ring R, and M is a module over a neutrosophic sub-ring R.

    Definition 3.1. An NS MM={<,μM(),γM(),ζM()>:M} over M is say a neutrosophic sub-module if the next axioms are met:

    (i) {μM(+u)min(μM(),μM(u)),γM(+u)max(γM(),γM(u)),ζM(+u)max(ζM(),ζM(u)).

    (ii) {μM(λ)min(μM(λ),μM()),γM(λ)max(γM(λ),γM()),ζM(λ)max(ζM(λ),ζM()).

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0,

    where uM,μM(),γM(),ζM():M[0,1] and λR.

    Now, we introduce the neutrosophic module over module.

    Definition 3.2. An NS MM={<,μM(),γM(),ζM()>:M} over M is say a neutrosophic R-sub-module if the next axioms are met:

    (i) {μM(+u)min(μM(),μM(u)),γM(+u)max(γM(),γM(u)),ζM(+u)max(ζM(),ζM(u)).

    (ii) {μM(λ)min(μM(λ),μM()),γM(λ)max(γM(λ),γM()),ζM(λ)max(ζM(λ),ζM()).

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0,

    where uM, μM(),γM(),ζM():M[0,1] and λR.

    Example 3.3. Presume R=Z is a ring and M=Z over itself. Then, define a neutrosophic subset MM={<ϱ,μ(ϱ),γ(ϱ),ζ(ϱ)>:ϱZ} by:

    μ(ϱ)={1ifϱ=0,0.2ifϱ0 is even ,0.3ifϱ is odd.
    γ(ϱ)={0ifϱ=0,0.5ifϱ0 is even ,0.8ifϱ is odd.
    ζ(ϱ)={0ifϱ=0,0.4ifϱ0 is even ,0.7ifϱ is odd.

    Thus, MM is a neutrosophic module.

    The following assertions describe the characteristics of the system of condition (i) and (ii) for different classes of rings.

    Proposition 3.4. Let R be a ring with identity, then μM(λ)=μM(), γM(λ)=γM(), and ζM(λ)=ζM().

    Proof. Assume that MM is a neutrosophic sub-module; then we have

    μM()=μM((1λ)+λ)min(μM((1λ)),μM(λ))min(min(μM(),μM(λ)),μM(λ))min(min(μM(),μM(λ)),μM())min(μM(),μM(λ)).γM()=γM((1λ)+λ)max(γM((1λ)),γM(λ))max(max(γM(),γM(λ)),γM(λ))max(max(γM(),γM(λ)),γM())max(γM(),γM(λ)).ζM()=ζM((1λ)+λ)max(ζM((1λ)),ζM(λ))max(max(ζM(),ζM(λ)),ζM(λ))max(max(ζM(),ζM(λ)),ζM())max(ζM(),ζM(λ)).

    From the above and Definition 3.2, (ii) we obtain μM(λ)=μM(), γM(λ)=γM(), and ζM(λ)=ζM().

    Proposition 3.5. Let R be a field and 0λR, then μM(λ)=μM(), γM(λ)=γM(), and ζM(λ)=ζM().

    Proof. Assume that 0λR and R is a field, then

    μM(λ)μM()=μM(1λλ)μM(λ),γM(λ)γM()=γM(1λλ)γM(λ),ζM(λ)ζM()=ζM(1λλ)ζM(λ).

    From the above and Definition 3.2, (ii) we follow that μM(λ)=μM(), γM(λ)=γM(), and ζM(λ)=ζM().

    Proposition 3.6. A neutrosophic R-sub-module MM, then M1={:M,μM()=1,γM()=ζM()=0} is an R-sub-module of the module M; also MM1 is a neutrosophic R-sub-module.

    Proof. Suppose that ,M1 and λR, then

    μM(+)min(μM(),μM())=1,γM(+)max(γM(),γM())=0,ζM(+)max(ζM(),ζM())=0,

    so μM(+)=1 and γM(+)=ζM(+)=0, thus +M1. Since

    μM(λ)μM()=1,γM(λ)γM()=0,ζM(λ)ζM()=0,

    thus we obtain μM(λ)=1, and γM(λ)=ζM(λ)=0. This follows that λM1. Finally, since μM(0)=1, γM(0)=0, and ζM(0)=0. Therefore 0M1. So M1 is an R-sub-module of the module M. The last part of the proposition's statement is self-evident.

    Proposition 3.7. Let R be a ring with unity and MM be a neutrosophic R-sub-module, then MM is a neutrosophic sub-group of M.

    Proof. Suppose that M, then

    μM()=μM((1).)γM(),γM()=γM((1).)γM(),ζM()=ζM((1).)ζM(),

    and since MM is a neutrosophic R-sub-module, this leads to MM being a neutrosophic sub-group of M.

    Proposition 3.8. A neutrosophic R-sub-module MM, then Mϑ={:M,μM()ϑ,γM()ϑ,ζM()ϑ} is an R-sub-module of the module M also MMϑ is a neutrosophic R-sub-module, where 0ϑ1.

    Proof. Assume that ,κM and λR, then

    (i) {μM(+κ)min(μM(),μM(κ))=ϑ,γM(+κ)max(γM(),γM(κ))=ϑ,ζM(+κ)max(ζM(),ζM(κ))=ϑ,

    (ii) {μM(λ)min(μM(λ),μM())=μM()ϑ,γM(λ)max(γM(λ),γM())=γM()ϑ,ζM(λ)max(ζM(λ),ζM())=ζM()ϑ,

    (iii) {μM(0)=1ϑ,γM(0)=0ϑ,ζM(0)=0ϑ.

    Therefore, +κMϑ, λMϑ and 0Mϑ.

    Here we suppose that NM and M is an R-module; then we define a neutrosophic subset on N as follows: MN={<,μN(),γN(),ζN()>:N} and μN,γN,ζN:N[0,1].

    Proposition 3.9. MM is a neutrosophic R-sub-module iff N is a sub-module of M.

    Proof. Suppose that MM is a neutrosophic R-sub-module, then for any η,κN and λR, we obtain

    (i) {μM(η+κ)min(μM(η),μM(κ))=1,γM(η+κ)max(γM(η),γM(κ))=0,ζM(η+κ)max(ζM(η),ζM(κ))=0,

    (ii) {μM(λη)min(μM(λ),μM(η))=μM(η)=1,γM(λη)max(γM(λ),γM(η))=γM(η)=0,ζM(λη)max(ζM(λ),ζM(η))=ζM(η)=0,

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0.

    So η+κN, ληN and 0N. Therefore, N is sub-module of M.

    The other direction, assume that N is a sub-module of M. Now, we show some cases:

    Case 1. For any 0,η,κN and λR, we obtain:

    (i) {min(μM(η),μM(κ))=11=μM(η+κ),max(γM(η),γM(κ))=00=γM(η+κ),max(ζM(η),ζM(κ))=00=ζM(η+κ),

    (ii) {μM(λη)=1min(μM(λ),μM(η))=μM(η),γM(λη)=0max(γM(λ),γM(η))=γM(η),ζM(λη)=0max(ζM(λ),ζM(η))=ζM(η),

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0.

    Case 2. For any 0,ηN,κN and λR, we obtain:

    (i) {min(μM(η),μM(κ))=min(1,0)=0μM(η+κ),max(γM(η),γM(κ))=max(1,0)=10=γM(η+κ),max(ζM(η),ζM(κ))=max(1,0)=10=ζM(η+κ),

    (ii) {μM(λη)=1min(μM(λ),μM(η))=μM(η),γM(λη)=0max(γM(λ),γM(η))=γM(η),ζM(λη)=0max(ζM(λ),ζM(η))=ζM(η),

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0.

    Case 3. For any 0,ηN,κN and λR, we obtain:

    (i) {min(μM(η),μM(κ))=min(0,1)=0μM(η+κ),max(γM(η),γM(κ))=max(0,1)=10=γM(η+κ),max(ζM(η),ζM(κ))=max(0,1)=10=ζM(η+κ),

    (ii) {μM(η)=0μM(λη),γM(η)=1γM(λη),ζM(η)=1ζM(λη)

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0.

    Case 4. For any 0,ηN,κN and λR, we obtain:

    (i) {min(μM(η),μM(κ))=min(0,0)=0μM(η+κ),max(γM(η),γM(κ))=max(0,0)=00=γM(η+κ),max(ζM(η),ζM(κ))=max(0,0)=00=ζM(η+κ),

    (ii) {μM(η)=0μM(λη),γM(η)=1γM(λη),ζM(η)=1ζM(λη)

    (iii) {μM(0)=1,γM(0)=0,ζM(0)=0.

    Thus, MM is a neutrosophic R-sub-module.

    In what follows, the set of all neutrosophic R-sub-modules of MM is denoted by NSM(R).

    Proposition 3.10. Let MM,PMNSM(R), then MM1PMNSM(R).

    Proof. Assume that ,κM and λR, then

    (i) {(μMμM)(+κ)=μM(+κ)μM(+κ)min(μM(),μM(κ))min(μM(),μM(κ))=min((μMμM)(),(μMμM)(κ)),(γMγM)(+κ)=γM(+κ)γM(+κ)max(γM(),γM(κ))max(γM(),γM(κ))=max((γMγM)(),(γMγM)(κ)),(ζMζM)(+κ)=ζM(+κ)ζM(+κ)max(ζM(),ζM(κ))max(ζM(),ζM(κ))=max((ζMζM)(),(ζMζM)(κ)),

    (ii) {(μMμM)(λ)=μM(λ)μM(λ)μM()μM()=(μMμM)(),(γMγM)(λ)=γM(λ)γM(λ)γM()γM()=(γMγM)(),(ζMζM)(λ)=ζM(λ)ζM(λ)ζM()ζM()=(ζMζM)(),

    (iii) {(μMμM)(0)=1,(γMγM)(0)=0,(ζMζM)(0)=0.

    Example 3.11. Let R=Z2 be a ring; then we have a module M=Z2. Define NS M={<0,1,0,0>,<1,0.3,0.4,0.5>} and B={<0,1,0,0>,<1,0.2,0.6,0.7>} over M. It is clear that M,BNSM(R). Also, M1B={<0,1,0,0>,<1,0.3,0.6,0.7>}NSM(R).

    Now, we show the generalization of Proposition 3.10.

    Corollary 3.12. Let MiMNSM(R) with i=1,2,,n, then i1MiMNSM(R).

    Next, we introduce the definition of direct product of NSM(R).

    Corollary 3.13. Let MiMNSM(R) with i=1,2,,n, then the direct product of MiM is defined as MM=ni=1MiM with

    μM(1,2,,n)=(ni=1μiM)(1,2,,n)=min(μ1M(1),μ2M(2),,μnM(n)),
    γM(1,2,,n)=(ni=1γiM(1,2,,n)=max(γ1M(1),γ2M(2),,γnM(n)),
    ζM(1,2,,n)=(ni=1ζiM(1,2,,n)=max(ζ1M(1),ζ2M(2),,ζnM(n)).

    The set of R-modules is denoted by M(R). Also, M=ni=1Mi is a direct product where MiM(R).

    Theorem 3.14. MM=ni=1MiM is a neutrosophic R-sub-module.

    Proof. Suppose that ,κM and λR, where =(1,2,,n) and κ=(κ1,κ2,,κn). Then

    (i) {μM(+κ)=μM(1+κ1,2+κ2,,n+κn)=min(μ1M(1+κ1),μ2M(2+κ2),,μnM(n+κn))min(min(μ1M(1),μ1M(κ1)),min(μ2M(2),μ2M(κ2)),,min(μnM(n),μnM(κn)))=min(min(μ1M(1),μ2M(2),,μnM(n)),min(μ1M(κ1),μ2M(κ2),,μnM(κn)))=min(μM(),μM(κ)),γM(+κ)=γM(1+κ1,2+κ2,,n+κn)=max(γ1M(1+κ1),γ2M(2+κ2),,γnM(n+κn))max(max(γ1M(1),γ1M(κ1)),max(γ2M(2),γ2M(κ2)),,max(γnM(n),γnM(κn)))=max(max(γ1M(1),γ2M(2),,γnM(n)),max(μ1M(κ1),γ2M(κ2),,γnM(κn)))=max(γM(),γM(κ)),ζM(+κ)=ζM(1+κ1,2+κ2,,n+κn)=max(ζ1M(1+κ1),ζ2M(2+κ2),,ζnM(n+κn))max(max(ζ1M(1),ζ1M(κ1)),max(ζ2M(2),ζ2M(κ2)),,max(ζnM(n),ζnM(κn)))=max(max(ζ1M(1),ζ2M(2),,ζnM(n)),max(μ1M(κ1),ζ2M(κ2),,ζnM(κn)))=max(ζM(),ζM(κ)),

    Proof. (ii) {μM(λ)=μM(λ1,λ2,,λn)=min(μ1M(λ1),μ2M(λ2),,μnM(λn))min(μ1M(1),μ2M(2),,μnM(n))=μM(),γM(λ)=γM(λ1,λ2,,λn)=max(γ1M(λ1),γ2M(λ2),,γnM(λn))max(γ1M(1),γ2M(2),,γnM(n))=γM(),ζM(λ)=ζM(λ1,λ2,,λn)=max(ζ1M(λ1),ζ2M(λ2),,ζnM(λn))max(ζ1M(1),ζ2M(2),,ζnM(n))=ζM(),

    (iii) {μM(0)=μM(0,0,,0)=min(μ1M(0),μ2M(0),,μnM(0))=min(1,1,,1)=1,γM(0)=γM(0,0,,0)=max(γ1M(0),γ2M(0),,γnM(0))=max(0,0,,0)=0,ζM(0)=ζM(0,0,,0)=max(ζ1M(0),ζ2M(0),,ζnM(0))=max(0,0,,0)=0.

    Proposition 3.15. Let Γ be an epimorphism from M into N R-modules. When MMNSM(R), then Γ(MM) NSN(R).

    Proof. Suppose that ρ1,ρ2N and λR, then

    (i) {Γ(μM)(ρ1+ρ2)=sup{μM(ϱ1+ϱ2):ϱ1,ϱ2M,Γ(ϱ1)=ρ1,Γ(ϱ2)=ρ2}sup{min(μM(ϱ1),μM(ϱ2)):ϱ1,ϱ2M,Γ(ϱ1)=ρ1,Γ(ϱ2)=ρ2}=min(sup{μM(ϱ1):Γ(ϱ1)=ρ1},sup{μM(ϱ2):Γ(ϱ2)=ρ2})=min(Γ(μM)(ρ1),Γ(μM)(ρ2)),Γ(γM)(ρ1+ρ2)=inf{γM(ϱ1+ϱ2):ϱ1,ϱ2M,Γ(ϱ1)=ρ1,Γ(ϱ2)=ρ2}inf{max(γM(ϱ1),γM(ϱ2)):ϱ1,ϱ2M,Γ(ϱ1)=ρ1,Γ(ϱ2)=ρ2}=max(inf{γM(ϱ1):Γ(ϱ1)=ρ1},inf{γM(ϱ2):Γ(ϱ2)=ρ2})=max(Γ(γM)(ρ1),Γ(γM)(ρ2))Γ(ζM)(ρ1+ρ2)=inf{ζM(ϱ1+ϱ2):ϱ1,ϱ2M,Γ(ϱ1)=ρ1,Γ(ϱ2)=ρ2}inf{max(ζM(ϱ1),ζM(ϱ2)):ϱ1,ϱ2M,Γ(ϱ1)=ρ1,Γ(ϱ2)=ρ2}=max(inf{ζM(ϱ1):Γ(ϱ1)=ρ1},inf{ζM(ϱ2):Γ(ϱ2)=ρ2})=max(Γ(ζM)(ρ1),Γ(ζM)(ρ2)),

    Proof. (ii) {Γ(μM)(λρ1)=sup{μM(λϱ1):λϱ1M,Γ(λϱ1)=λρ1}sup{μM(ϱ1):ϱ1M,Γ(ϱ1)=ρ1}=Γ(μM)(ρ1),Γ(γM)(λρ1)=inf{γM(λϱ1):λϱ1M,Γ(λϱ1)=λρ1}inf{γM(ϱ1):ϱ1M,Γ(ϱ1)=ρ1}=Γ(γM)(ρ1),Γ(ζM)(λρ1)=inf{ζM(λϱ1):λϱ1M,Γ(λϱ1)=λρ1}inf{ζM(ϱ1):ϱ1M,Γ(ϱ1)=ρ1}=Γ(ζM)(ρ1),

    (iii) {Γ(μM)(0)=sup{μM(0):0M,Γ(0)=0}=1,Γ(γM)(0)=inf{γM(0):0M,Γ(0)=0}=0,Γ(ζM)(0)=inf{ζM(0):0M,Γ(0)=0}=0.

    Therefore, Γ(MM) NSN(R).

    Proposition 3.16. Let Γ be an epimorphism from M into N R-modules. When PNNSN(R), then Γ1(PN) NSM(R).

    Proof. Suppose that ϱ1,ϱ2M and λR, then

    (i) {Γ1(μN)(ϱ1+ϱ2)=μN(Γ(ϱ1+ϱ2))=μN(Γ(ϱ1)+Γ(ϱ2))min(μN(Γ1(ϱ1)),μN(Γ1(ϱ2))=min(Γ1(μN)(ϱ1),Γ1(μN)(ϱ2)),Γ1(γN)(ϱ1+ϱ2)=γN(Γ(ϱ1+ϱ2))=γN(Γ(ϱ1)+Γ(ϱ2))max(γN(Γ1(ϱ1)),γN(Γ1(ϱ2))=max(Γ1(γN)(ϱ1),Γ1(γN)(ϱ2))Γ1(ζN)(ϱ1+ϱ2)=ζN(Γ(ϱ1+ϱ2))=ζN(Γ(ϱ1)+Γ(ϱ2))max(ζN(Γ1(ϱ1)),ζN(Γ1(ϱ2))=max(Γ1(ζN)(ϱ1),Γ1(ζN)(ϱ2)),

    Proof. (ii) {Γ1(μN)(λϱ1)=μN(Γ(λϱ1))=μN(λΓ(ϱ1))μN(Γ(ϱ1))=Γ1(μN)(ϱ1),Γ1(γN)(λϱ1)=γN(Γ(λϱ1))=γN(λΓ(ϱ1))γN(Γ(ϱ1))=Γ1(γN)(ϱ1),Γ1(ζN)(λϱ1)=ζN(Γ(λϱ1))=ζN(λΓ(ϱ1))ζN(Γ(ϱ1))=Γ1(ζN)(ϱ1),

    (iii) {Γ1(μN)(0)=μN(Γ(0))=μN(0)=1,Γ1(γN)(0)=γN(Γ(0))=γN(0)=0,Γ1(ζN)(0)=ζN(Γ(0))=ζN(0)=0.

    Therefore Γ1(PN) NSM(R).

    Remark 3.17. We have enhanced the definition of a neutrosophic sub-module by building on the foundation established in [9,12] and using the methodology applied by the researchers in [4,5,6]. This revised approach offers significant advantages as it is consistent with the qualitative properties of the components. In particular, the component μ is treated as a measure of positive quality, while γ and ζ are associated with negative qualities. This distinction justifies the consistent application of operations, with γ and ζ being subjected to the same operations, such as max/max and /. By refining the structure in this way, the new definition better reflects the underlying theoretical framework and provides a more coherent and practical perspective on the properties and behavior of neutrosophic sub-modules.

    This study has significantly extended the theoretical framework of neutrosophic algebra by exploring the structure and properties of neutrosophic modules over rings and their associated systems. By systematically analyzing the fundamental properties of neutrosophic modules, the research has shed light on their behavior in direct product operations and homomorphism and provided a deeper understanding of their algebraic nature.

    The results provide a solid foundation for further study extensions and variations of neutrosophic modules. They could open new avenues of research in the field of algebraic structures dealing with uncertainty and indeterminacy, such as the neutrosophic Artinian multiplication module and the neutrosophic Jacobson radical. Moreover, these findings could have wider implications for applied mathematics, as they could improve decision-making methods, artificial intelligence, and system modeling, where dealing with uncertain and inconsistent data is crucial by opening up possibilities for practical applications.

    Ali Yahya Hummdi: Writing-review and editing; Amr Elrawy: Conceptualization, formal analysis, investigation, methodology; Ayat A. Temraz: Visualisation, writing-original and editing, draft acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Large Research Project under grant number RGP2/293/45.

    This work does not have any conflict of interest.



    [1] M. M. Abed, N. Hassan, F. A. Sharqi, On neutrosophic multiplication module, Neutrosophic Sets Sy., 49 (2022), 198–208. https://doi.org/10.5281/zenodo.6426389 doi: 10.5281/zenodo.6426389
    [2] N. A. Alreshidi, Z. Shah, M. J. Khan, Similarity and entropy measures for circular intuitionistic fuzzy sets, Eng. Appl. Artif. Intel., 131 (2024), 107786. https://doi.org/10.1016/j.engappai.2023.107786 doi: 10.1016/j.engappai.2023.107786
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [4] A. Elrawy, M. Abdalla, M. A. Saleem, Some results on neutrosophic group, J. Math., 2023 (2023), 4540367. https://doi.org/10.1155/2023/4540367 doi: 10.1155/2023/4540367
    [5] A. Elrawy, M. Abdalla, Results on a neutrosophic sub-rings, AIMS Math., 8 (2023), 21393–21405. https://doi.org/10.3934/math.20231090 doi: 10.3934/math.20231090
    [6] A. Elrawy, F. Smarandache, A. A. Temraz, Investigation of a neutrosophic group, J. Intell. Fuzzy Syst., 46 (2024), 2273–2280. https://doi.org/10.3233/JIFS-232941 doi: 10.3233/JIFS-232941
    [7] H. Garg, A new exponential-logarithm-based single-valued neutrosophic set and their applications, Expert Syst. Appl., 238 (2024), 121854. https://doi.org/10.1016/j.eswa.2023.121854 doi: 10.1016/j.eswa.2023.121854
    [8] Y. H. Guo, A. I. Shahin, H. Garg, An indeterminacy fusion of encoder-decoder network based on neutrosophic set for white blood cells segmentation, Expert Syst. Appl., 246 (2024), 123156. https://doi.org/10.1016/j.eswa.2024.123156 doi: 10.1016/j.eswa.2024.123156
    [9] M. S. Hameed, Z. Ahmad, S. Ali, M. Kamran, A. R. L. Babole, An approach to (μ,ν,ω)-single-valued neutrosophic submodules, Sci. Rep., 13 (2023), 751. https://doi.org/ 10.1038/s41598-022-18500-5 doi: 10.1038/s41598-022-18500-5
    [10] A. Hamza, M. N. Jafar, A. Habib, S. Farooq, E. Türkarslan, Cryptography in terms of triangular neutrosophic numbers with real life applications, Int. J. Neutrosophic Sci., 11 (2021), 39–52. https://doi.org/10.5281/zenodo.4127138 doi: 10.5281/zenodo.4127138
    [11] A. Y. Hummdi, M. Abdalla, A. Elrawy, Neutrosophic sub-group over t-norm and t-co-norm, Axioms, 13 (2024), 101. https://doi.org/10.3390/axioms13020101 doi: 10.3390/axioms13020101
    [12] N. Olgun, M. Bal, Neutrosophic modules, Neutrosophic Oper. Res., 2 (2017), 181–192.
    [13] F. Smarandache, Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis, Rehoboth: American Research Press, 1998.
    [14] F. Smarandache, Neutrosophic set–-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287.
    [15] F. Smarandache, Neutrosophic perspectives: Triplets, duplets, multisets, hybrid operators, modal logic, hedge algebras, and applications, Brussels: Pons Publishing House, 2017.
    [16] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multisp. Multistruct., 4 (2010), 410–413.
    [17] J. Q. Wang, X. H. Zhang, Intuitionistic fuzzy granular matrix: Novel calculation approaches for intuitionistic fuzzy covering-based rough sets, Axioms, 13 (2024), 411. https://doi.org/10.3390/axioms13060411 doi: 10.3390/axioms13060411
    [18] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [19] X. Zhang, C. Bo, F. Smarandache, J. Dai. New inclusion relation of neutrosophic sets with applications and related lattice structure, Int. J. Mach. Learn. Cyb., 9 (2018), 1753–1763. https://doi.org/10.1007/s13042-018-0817-6 doi: 10.1007/s13042-018-0817-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(421) PDF downloads(28) Cited by(0)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog