The Stokes equation is fundamental in fluid mechanics. We used bivariate Bernstein polynomial bases to construct the function space for mixed finite element methods to solve the 2D Stokes equation. Our results show that the numerical accuracy and convergence order using bicubic and lower-order Lagrange interpolation polynomials are comparable to those achieved with Bernstein polynomial bases. However, high-order Lagrange interpolation functions often suffer from the Runge's phenomenon, which limits their effectiveness. By employing high-order Bernstein polynomial bases, we have significantly improved the numerical solutions, effectively mitigating the Runge phenomenon. This approach highlights the advantages of Bernstein polynomial bases in achieving stable and accurate solutions for the 2D Stokes equation.
Citation: Lanyin Sun, Siya Wen. Applications of mixed finite element method based on Bernstein polynomials in numerical solution of Stokes equations[J]. AIMS Mathematics, 2024, 9(12): 35978-36000. doi: 10.3934/math.20241706
The Stokes equation is fundamental in fluid mechanics. We used bivariate Bernstein polynomial bases to construct the function space for mixed finite element methods to solve the 2D Stokes equation. Our results show that the numerical accuracy and convergence order using bicubic and lower-order Lagrange interpolation polynomials are comparable to those achieved with Bernstein polynomial bases. However, high-order Lagrange interpolation functions often suffer from the Runge's phenomenon, which limits their effectiveness. By employing high-order Bernstein polynomial bases, we have significantly improved the numerical solutions, effectively mitigating the Runge phenomenon. This approach highlights the advantages of Bernstein polynomial bases in achieving stable and accurate solutions for the 2D Stokes equation.
[1] | B. J. Gireesha, K. J. Gowtham, Efficient hypergeometric wavelet approach for solving lane-emden equations, J. Comput. Sci., 82 (2024), 1–11. http://dx.doi.org/10.1016/j.jocs.2024.102392 doi: 10.1016/j.jocs.2024.102392 |
[2] | G. K. Ramesh, B. J. Gireesha, Non-linear radiative flow of nanofluid past a moving/stationary Riga plate, Front. Heat Mass Tran., 9 (2017), 1–7. http://dx.doi.org/10.5098/hmt.9.3 doi: 10.5098/hmt.9.3 |
[3] | W. Layton, Introduction to the numerical analysis of incompressible viscous flows, SIAM, 2008. |
[4] | Q. Du, X. Tian, Mathematics of smoothed particle hydrodynamics: A study via nonlocal Stokes equations, Found. Comput. Math., 20 (2020), 801–826. http://dx.doi.org/10.1007/s10208-019-09432-0 doi: 10.1007/s10208-019-09432-0 |
[5] | T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, Int. J. Numer. Meth. Fl., 41 (2003), 77–107. http://dx.doi.org/10.1002/fld.426 doi: 10.1002/fld.426 |
[6] | L. E. Payne, W. H. Pell, The Stokes flow problem for a class of axially symmetric bodies, J. Fluid Mech., 7 (1960), 529–549. http://dx.doi.org/10.1017/s002211206000027x doi: 10.1017/s002211206000027x |
[7] | B. Andrea, D. Alan, L. Martin, A divergence-conforming finite element method for the surface Stokes equation, SIAM J. Numer. Anal., 58 (2020), 2764–2798. http://dx.doi.org/10.1137/19M1284592 doi: 10.1137/19M1284592 |
[8] | P. B. Bochev, M. D. Gunzburger, Analysis of least squares finite element methods for the Stokes equations, Math. Comput., 63 (1994), 479–506. http://dx.doi.org/10.1090/s0025-5718-1994-1257573-4 doi: 10.1090/s0025-5718-1994-1257573-4 |
[9] | J. Wang, X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155–174. http://dx.doi.org/10.1007/s10444-015-9415-2 doi: 10.1007/s10444-015-9415-2 |
[10] | M. Shao, L. Song, P. Li, A generalized finite difference method for solving Stokes interface problems, Eng. Anal. Bound. Elem., 132 (2021), 50–64. http://dx.doi.org/10.1016/j.enganabound.2021.07.002 doi: 10.1016/j.enganabound.2021.07.002 |
[11] | R. Stenberg, M. Suri, Mixed finite element methods for problems in elasticity and Stokes flow, Numer. Math., 72 (1996), 367–389. http://dx.doi.org/10.1007/s002110050174 doi: 10.1007/s002110050174 |
[12] | A. Zeb, L. Elliott, D. B. Ingham, D. Lesnic, The boundary element method for the solution of Stokes equations in two-dimensional domains, Eng. Anal. Bound. Elem., 22 (1998), 317–326. http://dx.doi.org/10.1016/s0955-7997(98)00072-1 doi: 10.1016/s0955-7997(98)00072-1 |
[13] | B. Reidinger, O. Steinbach, A symmetric boundary element method for the Stokes problem in multiple connected domains, Math. Method. Appl. Sci., 26 (2003), 77–93. http://dx.doi.org/10.1002/mma.347 doi: 10.1002/mma.347 |
[14] | J. Walter, A. V. Salsac, D. B. Biesel, P. L. Tallec, Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, Int. J. Numer. Meth. Eng., 83 (2010), 829–850. http://dx.doi.org/10.1002/nme.2859 doi: 10.1002/nme.2859 |
[15] | P. Su, J. Chen, R. Yang, J. Xiang, A new isogeometric finite element method for analyzing structures, CMES-Comp. Model. Eng., 141 (2024), 1883–1905. http://dx.doi.org/10.32604/CMES.2024.055942 doi: 10.32604/CMES.2024.055942 |
[16] | A. Radu, C. Stan, D. Bejan, Finite element 3D model of a double quantum ring: Effects of electric and laser fields on the interband transition, New J. Phys., 25 (2023), 1–20. http://dx.doi.org/10.1088/1367-2630/AD0B5F doi: 10.1088/1367-2630/AD0B5F |
[17] | G. Wei, P. Lardeur, F. Druesne, Free vibration analysis of thin to thick straight or curved beams by a solid-3D beam finite element method, Thin Wall. Struct., 191 (2023), 1–16. http://dx.doi.org/10.1016/J.TWS.2023.111028 doi: 10.1016/J.TWS.2023.111028 |
[18] | R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, B. Am. Math. Soc., 49 (1943), 1–23. https://doi.org/10.1090/S0002-9904-1943-07818-4 doi: 10.1090/S0002-9904-1943-07818-4 |
[19] | [] K. Feng, Difference schemes based on variational principle, J. Appl. Comput. Math., 2 (1965), 238–262. |
[20] | [] H. Huang, J. Wang, J. Cui, Difference scheme based on displacement solution on the plane elasticity, J. Appl. Comput. Math., 3 (1966), 54–60. |
[21] | C. Guichard, E. H. Quenjel, Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations, Adv. Comput. Math., 48 (2022), 1–27. http://dx.doi.org/10.1007/s10444-022-09995-7 doi: 10.1007/s10444-022-09995-7 |
[22] | L. Zhang, S. Wang, G. Niu, Upwind finite element method for solving radiative heat transfer in graded index media, Adv. Mater. Res., 1601 (2012), 1655–1658. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1655 doi: 10.4028/www.scientific.net/amr.430-432.1655 |
[23] | M. Puthukkudi, C. G. Raja, Mollification of fourier spectral methods with polynomial kernels, Math. Method. Appl. Sci., 47 (2024), 4911–4931. http://dx.doi.org/10.1002/MMA.9845 doi: 10.1002/MMA.9845 |
[24] | Z. Csati, N. Moës, T. J. Massart, A stable extended/generalized finite element method with Lagrange multipliers and explicit damage update for distributed cracking in cohesive materials, Comput. Methods Appl. M., 369 (2020), 1–50. http://dx.doi.org/10.1016/j.cma.2020.113173 doi: 10.1016/j.cma.2020.113173 |
[25] | Y. Tang, Z. Yin, Hermite finite element method for a class of viscoelastic beam vibration problem, Engineering, 13 (2021), 463–471. https://doi.org/10.4236/eng.2021.138033 doi: 10.4236/eng.2021.138033 |
[26] | C. Carstensen, J. Hu, Hierarchical Argyris finite element method for adaptive and multigrid algorithms, Comput. Method. Appl. Math., 21 (2021), 529–556. http://dx.doi.org/10.1515/CMAM-2021-0083 doi: 10.1515/CMAM-2021-0083 |
[27] | M. I. Bhatti, P. Bracken, Solutions of differential equations in a Bernstein polynomial basis, J. Comput. Appl. Math., 205 (2007), 272–280. http://dx.doi.org/10.1016/j.cam.2006.05.002 doi: 10.1016/j.cam.2006.05.002 |
[28] | [] Z. Shi, On spline finite element method, Math. Numer. Sinica, 1 (1979), 50–72. |
[29] | [] R. Qin, Simple formula for calculating stress intensity factor of fracture toughness samples, Mech. Eng., 1 (1979), 52–53. |
[30] | T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Method. Appl. M., 194 (2005), 4135–4195. http://dx.doi.org/10.1016/j.cma.2004.10.008 doi: 10.1016/j.cma.2004.10.008 |
[31] | C. Zhu, W. Kang, Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation, Appl. Math. Comput., 216 (2010), 2679–2686. http://dx.doi.org/10.1016/j.amc.2010.03.113 doi: 10.1016/j.amc.2010.03.113 |
[32] | D. Dutykh, E. Pelinovsky, Numerical simulation of a solitonic gas in KdV and KdV-BBM equations, Phys. Lett. A, 378 (2014), 3102–3110. http://dx.doi.org/10.1016/j.physleta.2014.09.008 doi: 10.1016/j.physleta.2014.09.008 |
[33] | S. S. D. Pranta, H. Ali, M. S. Islam, On the numerical treatment of 2D nonlinear parabolic PDEs by the Galerkin method with bivariate Bernstein polynomial bases, J. Appl. Math. Comput., 6 (2022), 410–422. http://dx.doi.org/10.26855/JAMC.2022.12.003 doi: 10.26855/JAMC.2022.12.003 |
[34] | A. A. Rodríguez, L. B. Bruno, F. Rapetti, Whitney edge elements and the Runge phenomenon, J. Comput. Appl. Math., 427 (2023), 1–9. http://dx.doi.org/10.1016/j.cam.2023.115117 doi: 10.1016/j.cam.2023.115117 |
[35] | S. Sindhu, B. J. Gireesha, Entropy generation analysis of hybrid nanofluid in a microchannel with slip flow, convective boundary and nonlinear heat flux, Int. J. Numer. Meth. Fl., 31 (2021), 53–74. http://dx.doi.org/10.1108/hff-02-2020-0096 doi: 10.1108/hff-02-2020-0096 |
[36] | A. Felicita, B. J. Gireesha, B. Nagaraja, P. Venkatesh, M. R. Krishnamurthy, Mixed convective flow of Casson nanofluid in the microchannel with the effect of couple stresses: Irreversibility analysis, Int. J. Model. Simul., 44 (2024), 91–105. http://dx.doi.org/10.1080/02286203.2022.2156974 doi: 10.1080/02286203.2022.2156974 |
[37] | A. Rathi, D. K. Sahoo, B. V. R. Kumar, Variational multiscale stabilized finite element analysis of transient MHD Stokes equations with application to multiply driven cavity flow, Appl. Numer. Math., 198 (2024), 43–74. http://dx.doi.org/10.1016/j.apnum.2023.12.007 doi: 10.1016/j.apnum.2023.12.007 |
[38] | X. Li, T. Xie, Q. Wang, Z. Zhang, C. Hou, W. Guo, et al., Numerical study of the wave dissipation performance of two plate-type open breakwaters based on the Navier-Stokes equations, J. Braz. Soc. Mech. Sci., 43 (2021), 1–18. http://dx.doi.org/10.1007/s40430-021-02889-7 doi: 10.1007/s40430-021-02889-7 |
[39] | X. Zhou, Z. Meng, X. Fan, Z. Luo, Analysis of two low-order equal-order finite element pairs for Stokes equations over quadrilaterals, J. Comput. Appl. Math., 364 (2020), 1–12. http://dx.doi.org/10.1016/j.cam.2019.06.039 doi: 10.1016/j.cam.2019.06.039 |
[40] | S. K. Das, Extension of the boundary integral method for different boundary conditions in steady-state Stokes flows, Int. J. Numer. Meth. Fl., 33 (2023), 1–13. http://dx.doi.org/10.1108/hff-02-2022-0088 doi: 10.1108/hff-02-2022-0088 |
[41] | D. K. Jules, G. Hagos, K. Jonas, S. Toni, Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: A priori analysis, Calcolo, 61 (2024), 13. http://dx.doi.org/10.1007/s10092-023-00563-z doi: 10.1007/s10092-023-00563-z |
[42] | G. R. Barrenechea, M. Bosy, V. Dolean, F. Nataf, P. H. Tournier, Hybrid discontinuous Galerkin discretisation and domain decomposition preconditioners for the Stokes problem, Comput. Method. Appl. Math., 19 (2019), 703–722. http://dx.doi.org/10.1515/cmam-2018-0005 doi: 10.1515/cmam-2018-0005 |
[43] | V. Ervin, M. Kubacki, W. Layton, M. Moraiti, Z. Si, C. Trenchea, Partitioned penalty methods for the transport equation in the evolutionary Stokes-Darcy-transport problem, Numer. Meth. Part. D. E., 35 (2019), 349–374. http://dx.doi.org/10.1002/num.22303 doi: 10.1002/num.22303 |
[44] | O. A. Ladyzhenskaya, R. A. Silverman, J. T. Schwartz, J. E. Romain, The mathematical theory of viscous incompressible flow, AIP, 1964. https://doi.org/10.2307/3613759 |
[45] | C. Susanne, L. Brenner, L. R. Scott, The mathematical theory of finite element methods, Springer, 2008. https://doi.org/10.1016/s0898-1221 |
[46] | P. Moczo, J. Kristek, M. Gális, The finite-difference modelling of earthquake motions: Waves and ruptures, Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781139236911 |
[47] | H. Igel, Computational seismology: A practical introduction, Oxford University Press, 2017. https://doi.org/10.1007/s10950-017-9662-4 |
[48] | F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, 1991. http://dx.doi.org/10.1007/978-1-4612-3172-1 |