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Abstract: The Stokes equation is fundamental in fluid mechanics. We used bivariate Bernstein
polynomial bases to construct the function space for mixed finite element methods to solve the 2D
Stokes equation. Our results show that the numerical accuracy and convergence order using bicubic
and lower-order Lagrange interpolation polynomials are comparable to those achieved with Bernstein
polynomial bases. However, high-order Lagrange interpolation functions often suffer from the Runge’s
phenomenon, which limits their effectiveness. By employing high-order Bernstein polynomial bases,
we have significantly improved the numerical solutions, effectively mitigating the Runge phenomenon.
This approach highlights the advantages of Bernstein polynomial bases in achieving stable and accurate
solutions for the 2D Stokes equation.
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1. Introduction

The Stokes equation [1] is a fundamental tool used to describe viscous fluid flow [2] at low Reynolds
numbers (Re) [3], which typically indicates laminar flow conditions [4]. Re characterizes the ratio of
inertial forces to viscous forces in fluid dynamics. When Re is very small, the characteristic velocity
of the flow can be considered to approach zero. In this limit, the quadratic terms involving velocity in
the Navier-Stokes equations become negligible. Consequently, the Navier-Stokes equations simplify
the Stokes equations, helping to analyze more complicated fluid problems, with a very wide range of
applications [5, 6]. With the development of computer science, many numerical methods have been
developed to solve Stokes problems, such as finite element method (FEM) [7-9], finite difference
method [10], mixed FEM [11], boundary element method [12, 13], and coupling of FEM [14]. Among
them, the FEM has gradually become an important numerical computational method for approximating
partial differential equations (PDEs) because of its many advantages such as strong program versatility,
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high accuracy, flexible mesh selection, and ability to deal with complex boundaries and high-order
problems.

The FEM, as an important numerical method for solving mathematical [15] and physical
problems [16], has been widely applied in the field of engineering mechanics [17]. In 1943,
Courant [18] introduced the concept of FEM by using continuous functions on triangular regions to
solve the torsion problem of St. Venant. By the mid-1960s, Feng [19,20] had independently established
the mathematical foundation of FEM, making it a systematic and widely used numerical method. Since
then, the scope of FEM’s application has expanded from single structural analysis to various fields
such as sound field analysis, flow field analysis, and electromagnetic field analysis. Based on the
variational principle and subdivision interpolation, FEM uses interpolation functions in each element
to approximate the unknown function in the domain piece by piece.

With the continuous progress of computer science, the FEM has undergone remarkable
developments and improvements. Many new computational methods have emerged, including the
finite volume method [21], upwind FEM [22], and spectral methods [23]. These new methods not
only enrich the technical means of numerical simulation but also play a crucial role in improving
computational efficiency and enhancing model accuracy. In the FEM, the selection of finite element
basis functions is key, and appropriate test and trial function spaces ensure the accuracy and stability
of the solution. Common choices include Lagrange functions [24], Hermite functions [25], Argyris
functions [26], and Bernstein functions [27]. In 1979, Shi [28] used cubic B-spline variational methods
to solve equilibrium problems in composite elastic structures of plates and beams in regular domains,
introducing spline FEM. In the same year, Qin [29] proposed the spline finite point method based on
spline functions, beam vibration functions, and energy variation. In 2005, Hughes et al. [30] used spline
basis functions for approximate numerical calculations of field variables in physical problems in finite
element analysis. In 2007, Bhatti and Bracken [27] proposed applying Bernstein polynomial bases to
solve PDEs. Zhu and Kang [31], in 2010, used cubic B-spline quasi-interpolation to numerically solve
the Burgers-Fisher equation. Dutykh [32], in 2014, solved the KdV and KdV-BBM equations using
B-spline FEM. More recently in 2022, Pranta [33] solved 2D nonlinear parabolic PDEs using bicubic
Bernstein polynomial bases. These developments highlight the ongoing evolution and versatility of
FEM in addressing complex engineering and scientific challenges.

Lagrange interpolation functions are typically global, offering high accuracy in certain scenarios
but potentially leading to numerical instability, especially with high-degree polynomials or complex
boundary conditions. Although the Runge phenomenon [34] is less pronounced in FEM due to
the integral approximation approach, it can still occur in specific cases, particularly with high-
order polynomials or complex boundaries. Conversely, Bernstein polynomial functions have local
support, enhancing numerical stability. They facilitate the construction of higher-order test and trial
function spaces and are adept at handling complex boundary conditions. Additionally, Bernstein
polynomials are non-negative and shape-preserving, making them uniquely suitable for shape-
preserving approximations. Therefore, we have chosen Bernstein polynomial basis functions for our
FEM implementation to ensure enhanced numerical stability and accuracy. However, it is important to
note that Bernstein polynomials also have some limitations. While they offer stability and flexibility,
the computational cost can increase significantly with higher polynomial degrees, making them less
efficient for large-scale or real-time applications. Moreover, the theoretical foundation for certain
specific problems, such as those involving very-high-order polynomials or highly oscillatory functions,
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may still require further research and development.
Consider the boundary value problem of the 2D Stokes equation,

-V .-T(,p) =1, in Q,
V-u=0, a.e. in €, (1.1)
u=g, a.e. in 0Q,

where Q C R? is a bounded polygonal domain, u = u(x,y) is the velocity vector, p refers to fluid
pressure, V - u is the divergence of u, and T(u, p) = 2vD(u) — pl is the stress tensor. In more details,
the deformation tensor can be written as

Juy 1 (% %)
— 7 2\ 5
D(u) —( l(%(: [M) ‘y% o ] (1.2)
2\ dy ox ady
Hence, the stress tensor can be written as
2ydu _ v(2u 4 du
T(u, p) = [ o g‘%@ =) (1.3)
v(F+R) 25—
f describes the external force, g is the velocity on the domain boundary, and v = % represents

the kinematic viscosity of the fluid where U and L represent characteristic speed and characteristic
length, respectively. The Stokes equation is a basic equation of fluid mechanics, which simulates the
motion of low velocity or viscous fluid [35,36] and has important applications in fluid mechanics [37],
geophysics [38], telecommunication technology [39], and aerospace [40], among others [41-43]. We
use the mixed FEM based on Bernstein polynomial basis to solve Stokes equations, and calculate the
errors of the L™, L%, and H'-semi norms.

The traditional FEM is a versatile numerical technique that can handle both univariate and
multivariate equations. However, when applied to systems involving multiple physical quantities, such
as the Stokes equation (Eq (1.1)), traditional FEM requires careful consideration to ensure the existence
and uniqueness of the solution. The Stokes equation involves a tight coupling between velocity and
pressure, which necessitates precise numerical treatment. To guarantee the uniqueness [44] of the
solution to the variational problem, the finite element approximation space must satisfy the Lax-
Milgram theorem [45]. Additionally, to ensure the stability of the solution, especially for coupled
variables, the inf-sup condition [45] must be satisfied. While traditional FEM can theoretically meet
these requirements, the selection of appropriate finite element spaces for velocity and pressure is
crucial. If the selection is not appropriate, the solution can become unstable and lose accuracy.
Therefore, to ensure that the finite element approximation for the Stokes equation is both convergent
and stable, we have chosen the mixed FEM. The mixed FEM can better handle the coupling between
velocity and pressure by selecting suitable finite element spaces for these variables. This approach
more effectively satisfies the inf-sup condition, thereby providing a more stable and accurate solution.
Besides, we found that only the gradient term of pressure appeared in the Stokes equation, which
cannot guarantee that the solution of pressure is unique. Therefore, in the process of solving, we need
to impose additional conditions for pressure. In this article, we fix pressure at one point in the region.
Furthermore, the mixed FEM is not limited to the Stokes equation. It can be equally effective in other
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multivariate systems, such as the velocity-stress formulation of the wave equation [46,47]. By using
mixed FEM, we can achieve higher accuracy and stability in solving a wide range of coupled PDE:s.

This paper is organized as follows. In Section 2, we first review some basic contents of Bernstein
polynomial basis, Bézier curves, and surfaces. In Section 3, we use the mixed FEM based on the
Bernstein polynomial basis to derive the discrete scheme of Stokes equation. In Section 4, the error
result is obtained by some numerical examples. In Section 5, we summarize the work.

2. Bernstein basis functions, curves, and surfaces

In this section, we will recall the definitions and properties of Bernstein polynomial bases, Bézier
curves, and surfaces.

Definition 1. Bernstein polynomial bases of degree n are defined by
B/(x) = ( .)X’(l -x)"i=12,--,n, (2.1)
i

where, (’l‘) =2 _;=0,1,---,n For simplicity, when i<0 or i>n, let B!(x) = 0,x € [0,1].

il(n-i)!”?

Definition 2. Given control points Pi(x,y) € R*(i = 0,1,---,n), the Bézier curve of n degrees is
defined by

P(x) = ) PiBj(x),x € [0,1],
i=0

where B! (x)(i = 0, 1,--- ,n) is defined as Eq (2.1), and the n-edge polygon obtained by connecting two
adjacent control points with straight line segments is called the control polygon.

Bernstein polynomial bases of tensor product type can be obtained by tensor product from Bernstein
polynomial bases of one variable.

Definition 3. The tensor product type Bernstein polynomial bases of m X n degree are defined by
BT}”(S, 7) = B/'(s)Bj(1),i =0,1,--- ,m, j=0,1,--- ,n. (2.2)

Definition 4. For a continuous function f(s, ) defined on [0, 1] X [0, 1], the tensor product Bernstein
polynomial interpolation operator By, is defined as

n

Bi(f,5,7) = ). > fB(s,7). (2.3)
i=0

/=0

Next, we prove that B, is a bounded interpolation operator.
Since f is a continuous function, it is bounded on [0, 1] X [0, 1]. Therefore, there exists a constant
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M such that |f(s,7)| < M for all (s,7) € [0, 1] X [0, 1]. Hence

Bi(f, 5,0l =1 " FB(5,7)

i=0 j=0

< Zn: an [f1B7" (s, 7) 2.4)

i=0 j=0

< Mi an BZLJ’."(S, T) = M.

i=0 j=0

So we can get that B), is a bounded interpolation operator.
Since Bj, is a bounded interpolation operator, by the Bramble-Hilbert Lemma [45], we can
conclude that
Ila — B,(Wlwer < CAE M allwer, k=0,1,---,L.

3. Mixed finite element algorithm based on Bernstein polynomial basis for Stokes equations

In this section, we first construct function spaces of the mixed FEM with Bernstein polynomial
basis, and the discrete scheme of Stokes equation in Eq (1.1) is derived.

3.1. Galerkin formulation

First of all, consider the subspace Hcl) () of Sobolev space H'(Q):
Hy(Q) = {u € H'(Q): ulsq = 0}.

Multiplying the first equation of Eq (1.1) by test vector function v(x,y) € Hé (QQ) x Hé (©2) and then
integrating on Q yields

f(—V - T(u, p)) - vdxdy = ff -V dxdy.
Q Q
Second, by multiplying the divergence-free equation by a test function g(x, y), we get

f(V -u)qg dxdy = 0.
Q
Then, applying Green’s identity,
f 2vD(u) : D(v) dxdy — f p(V - V) dxdy = f f-vdxdy,¥v € Hy(Q) x Hy(Q),
Q Q Q
- f (V-u)gdxdy = 0,Yq € L*(Q),
Q
where,

D(u) : D(v)
_%@ 6u2% 10u;dvi  10u;0va  10u; dvy 1 0uy 0vs

“Ox ox By dy 20y dy 20y ox  20x dy | 20x ox
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Introducing bilinear form,

a(u,v) = f 2vD(u) : D(v) dxdy,
Q

b(u,q) = — f(V -u)q dxdy.
Q

Then, the variational formulation of the mixed FEM of Eq (1.1) is to find u € Hé (Q) x Hé(Q) and
p € L*(Q), satisfying the following equation

{a(u, V) + b(v, p) = (£, V), (3.1)

b(u,q) =0,

for any v € H)(Q) x H)(Q) and g € L*(Q), where (f,v) = fg f-vdxdy.
Then, we consider the discrete form of variational Eq (3.1).

3.2. Finite element discretization

Let Q, be a uniform rectangle partition of Q, h = [h,hy] = [Nll, Niz] is the mesh size, where N;
and N, represent the number of subintervals on the x-axis and y-axis of quasi-uniform subdivision.
For each T € Q, the local finite element space Q(T,m, n) is spanned by Bernstein polynomial basis
definedon 7, i.e.,

o(T,m,n) = {v, V € span {BTJ’.H(S, T)}} .

Consider a finite element space U,(m,n) C H'(Q) for the velocity u and a finite element space
Wy (h,1) ¢ L*(Q) for the pressure p. Assume that the polynomial space in the construction of U,
contains Py, k > 1 and that of W), contains P,_;, where,

Uym,n) ={r,re Q(T,m,n),¥T € Q,},
Wy(h, D) = {w,we O(T,h,),VT € Q,}.

Define U to be the space that consists of the functions of U;, with vanishing boundary values.
Subsequently, the discrete scheme of Eq (3.1) is to find uw, € U, X U, and p, € W), where u;, =
(I/llh, I/lzh) such that
a(ay, vy) + b(vy, pp) = (£, vy),
{ (ap, Vi) + b(Vi, pi) = (£, Vi) (32)

b(uy, q) =0,

for any vy € Upo X Uy and qn € Wwy,.

In order to verify if v, and g, satisfy the inf-sup condition, we now define an interpolation 7, so
that it is a modification of B, that is, satisfying m,u = Bj,(u). From (2.4), we know 7, is bounded.
Discrete compatibility is similar to that proved in [48], that is, b(u — m,u, g) = 0. So, v, and g, satisty
the following inf-sup condition:

b(Vi, qn)

inf sup @ ——>f
0¢thWh 0#vpeUpoXUpo ”Vvh”() ”th|0 ’

where 8 > 0 is a constant independent of mesh size A.
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In the scalar format, Eq (3.2) is to find uy;, € Uy, uy;, € Uy, and p;, € W), such that
fv(zaulh Ov1n + 25u2h Ovap + Ouyy, Ovyy,
ox 0x dy Oy ady Oy
+8M1h Ovap + Ouyy, Ovyy, 4 Ouyy, vy, dxd
X
dy 0x 0x Ody ox Ox

6v1h 6\/2;,
- — —— |dxd 33
L(phax Pha)xy (3.3)
:f(flvlh"'fzvzh)dXdY
Q

Ouyp, Ouyy,
— —_— —q, | dxd 0,
L(E)x% 8y61h)xy

for any vy, € Up,vo, € Uy, qn € Wh

Since uy;, uy, € U, = span{r,} —,and p, € W), = span{w]} flf, then

Nbp
Uip _Zuljr]’ ulh_ZMZﬂﬁj’ ph—ZP]W],
for some coeflicients u;, up;(j =1,--- ,N,), and pj(] =1,--- ,Nbp).
Now, we set up a linear algebraic system for u;;,u;(j = 1,--+- ,N,) and p;(j = 1,---,Np,). Then

we can solve it to obtain the finite element solution w;, = (1, uy,)" and p;,.
For the first equation in the Eq (3.3), in the first set of test functions, we set v, = (r;,0)’, namely,
vip=ri(i=1,---,Np) and v, = 0. Then

Np Np
Jr; | or; or; | or;
2LV(;M1ja)adxdy+LV(;uljay]a_d dy
th

L arj 67‘,’ 8rl~
+ v Zuzja a—ydxdy— ) ijwj adxdy

J=1

After that, we let v, = (O, r),ie,vip=0and vy, = r(i=1,--- ,Np),
Np Np
or; | or; orj | or;
ZLV(;sza )8 dxdy+‘fQ (;uua ]axdxdy

Npp

N,
N Orj)| 0
+fv[2u2]a ] —dxdy — L[Zp]w}] dxdy
1
ferthdy

Lastly, set g, = w;(i = 1,- -+, Npp) in the second equation of the Eq (3.3), getting

Np Np

fZ o dxd fZ o, dxdy = 0.
. ,1”“5 widxdy — |2 uzjaywxy

J= J=1
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Simplify the above three sets of equations, obtaining

Np
Or; or; Or; r;
(2 | vE—dxdy+ | v—=—dxd
Zl( o oxox Y fgvay " y)
Np Noyp
arj or; or;
+ ]Z:; Upj (L Vaa—ydxdy) + ;pj (—ijadxdy) = Lflridxdy,
Np
Zull,-(fv—/—rd d )
= q Oy 0x
Np
Or; or; or; or;
+ (2 | v —dxdy + f — Ldxd
;sz( Lvayay ey Qvaxax ray
Nbp a
T
+ Di —fw~—dxdy): ffridxdy,
; J( Q ]3)’ Q ?
Np Np Nbp
0}’]' 6rj
Define the stiffness matrix as
2A1 + A, Aj As
A= Ay 24, + Ay A |,
Ay Ag O
where O = [0]7"",
a a , Np [ (9 a , Np
Al = [f Vi—rdxdy] , Ay = fvj—rdxdy] ,
o Ox 0x =1 [Jo dy Oy i,j=1
a (9 . Ny [ a a ; Np
Az = [ vj—rdxdy] , A4= vi—rdxdy] ,
o Ox dy =1 o Oy Ox i1
a : Nh,Nbp a , Nbvap
AS — [f _Wj_rdxdy] s A6 = f—WJ—rdXdy] )
Q 0 i=1,j=1 |Jo dy i=1,j=1
Orj Nop:Ny [ orj Nop-Ny
A7 = f——w,-dxdy s Ag = f——WidXdy
o Ox i=1,j=1 [Jo Oy i=1,j=1
Define the load vector .
1
b=| b |,
0

Nbp
=1

where 0 = [0]

2:
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Define the unknown vector

X,
X=| X% |,
(s
where,
Xi =l Ly, X = lnjIi2y, X5 = [pj]yﬁ’{-
Then, we get a linear system of ordinary differential equations for u;;,u,;(j = 1,--- ,N,) and p;(j =
1, e Nbp),

AX = b, (3.4)

so we can solve system (3.4) and obtain the unknown vector group X.

4. Numerical examples

In this section, we verify the feasibility and effectiveness of this method using several numerical
examples. Tensor product Bernstein polynomial bases are used to construct the trial function space
and test function space of the mixed FEM, the approximate solutions are solved by MATLAB2022b,
and the error and convergence order of the exact solution and the finite element solution under L,
L?, and H'-semi norms are obtained. The numerical results obtained by solving Stokes equation with
bilinear, biquadratic, and bicubic Lagrange basis functions are consistent with those obtained by using
Bernstein polynomial basis with corresponding orders. Since using Lagrange basis functions of higher
than bicubic order leads to the Runge phenomenon when solving the Stokes equations, we only present
the error results of Bernstein polynomial basis.

Example 1. Consider the following two-dimensional stokes equation with Dirichlet boundary in
rectangular domain Q = [0, 1] x [0, 1].
= V- T(u(x,y), px,y)) = f(x,y), (x,y) € Q,
V.ulx,y) =0, (x,y) € Q, 4.1)
u(x, y)lga = 0,
where the exact solutiona = (uy, uy)" is
i (x,y) = (1= 02y = 6y + 4y,
ur(x,y) = =y*(1 = y)*(2x = 6x° + 4x%),

the exact solution p(x,y) is

P(x,)’) =X- x2,

and the body force £ = (fi, )" is
fi(x,y) =v2y(y — D*(12x% — 12x + 2) — x*(24y — 12)(x — 1)?
+ 922y = 2)(12x% = 12x + 2)) — 2x — 2v(2(x — 1)*(4y* — 6% + 2y)
+2x2(4y° — 6y + 2y) + 4x(2x — 2)(4y* — 6y* + 2y)) + 1,
H(x,y) =2v(2(>y — 1)*(4x° — 6x% + 2x) + 2y*(4x> — 6x% + 2x)
+4y(2y — 2)(4x° — 6x% + 2x)) — v(2x(x — 1)*(12y* — 12y + 2)
— v (24x — 12)(y = 1)* + X*(2x — 2)(12y* — 12y + 2)),
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where we set v = 1.

The domain Q is partitioned into uniform rectangles. Here, we use biquadratic, bicubic, and
biguartic Bernstein polynomial basis to solve the Stokes Eq (4.1), and calculate the L™, L?* and
H'-semi norms between the approximate solution and the exact solution. Tables 1 and 2 show the
numerical errors for these kinds of basis functions in L*, L?, and H'-semi norms; the corresponding
convergence orders are shown in Tables 3 and 4. The comparison of errors are shown in Figures 1

and 2.

Table 1. The comparison of numerical errors of u in L, L?, and H'-semi norms.

basis hy hy llee — upll llue — unllr2 |t — up| i

i % 2.5683e — 04 2.2975¢ — 04 1.3000e — 03

% % 3.3051e — 05 2.9674e—-05 1.710le —04

biquadratic Bernstein € = 4.4028¢ — 06 3.7355¢ — 06 2.1478e — 05
31—2 31—2 5.5386e¢ — 07 4.6772¢ — 07 2.6875¢ — 06

% 41_1 7.3008¢ — 06 4.9632¢ — 06 2.3383¢ —04

% % 4.4274e — 07 3.0623e¢ — 07 2.8934e — 05

bicubic Bernstein % % 2.6941e — 08 1.9059¢ — 08 3.6060e — 06
3l2 3% 1.6506e — 09 1.1897¢ —09 4.5039¢ — 07

i i 2.1182¢ — 12 6.8916e¢ — 13  2.2454e¢ — 11

biquartic Bernstein é % 7.6057¢ —13 3.5117e—-13 2.3499¢ - 11
11_6 11—6 3.5179¢ — 13 1.7482¢ — 13  2.3665¢ — 11

% % 1.6601e — 13 8.7608¢ — 14 2.3789¢ — 11

AIMS Mathematics
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Table 2. The comparison of numerical errors of p in L, L?, and H'-semi norms.

basis hy hy lp = palle lp = pullr2 lp = Pul
‘ll 41'1 1.0700e — 02 1.0400e — 02 1.4430e — 01
% é 2.6000e — 03 2.6000e — 03 7.2200e — 02
bilinear Bernstein % % 6.530le — 04 6.5104e — 04 3.6100e — 02
3L2 3l2 1.6289¢ — 04 1.6276e — 04 1.8000e — 02
}L i 2.3900e — 05 7.1260e — 06 1.5554¢ — 04
é % 1.2875¢ — 06 1.8008e —07 8.0360e — 06
biquadratic Bernstein 1‘—6 11—6 6.6020e — 08 4.9431e — 09 4.8683¢ — 07
% % 3.5086e¢ — 09 1.8548¢ —10 4.8902¢ — 08
}L % 2.8915¢ - 10 1.2332¢ —-10 4.8600e — 09
icubic Bernstcin % % 2.6243¢ — 10 1.1638e — 10 9.6834¢ — 09
% % 2.4346e — 10 1.1637¢ — 10 1.9344¢ — 08
% é 1.5440e — 09 1.2847¢—-09 3.8696¢ — 08
Table 3. Convergence order under three norms of u.
basis h/(%h) L® —order L?>—order H'—order

}‘/é 2.9580 2.9528 2.9264

biquadratic Bernstein 5/ 2.9082 2.9898 2.9931

%/% 2.9908 2.9976 2.9985

‘—1‘/% 4.0435 3.6940 3.0146

bicubic Bernstein 5/ 4.0386 4.0061 3.0043

%/% 4.0287 4.0018 3.0012

AIMS Mathematics
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Table 4. Convergence order under three norms of p.

basis h/(%h) L® —order L?>—order H' - order
i3 2.0410 2.0000 0.9990
bilinear Bernstein /= 1.9933 1.9977 1.0000
+/5 2.0032 2.0000 1.0040
13 42144 5.3064 4.2747
biquadratic Bernstein &/ 4.2855 5.1871 4.0450
=/ 4.2339 4.7361 3.3154
107t = E 1o S E 107 S e E 1

Figure 1. Error comparison of u — u;, under L, L?, and H' norm.

o
10° 10° 10
i / 1077 ¢ °
-4 [ -4 = 3
2 10 = - 10
S - FEorg =
= . = ~ T -
; .
= , - = = = P
= 410°%F /,-’ — It - 106k - ]
- 10°¢ ¢ 1 -
- ”/
8L - -8 - " ]
10 - —=—bilinear Bernstein 10 *
- e E:SSZ;’;‘:&‘T‘Q’T‘:‘Q'” 108} —=—bilinear Bernstein —=—bilinear Bernstein
- - e biquadratic Bernstein - e biquadratic Bernstein
- - - +  bicubic Bernstein * bicubic Bernstein
107'° 107'°
4 3 2 -1 -4 -3 -2 -1 -4 -3 -2 -1
log(h) log(h) log(h)

Figure 2. Error comparison of p — p, under L*, L2, and H' norm.

When solving 2D Stokes equations, with equal mesh sizes, for velocity u, the numerical accuracy
of the bicubic Bernstein polynomial basis is 1 and 2 orders of magnitude higher than that of the
biquadratic Bernstein polynomial basis, while the biquartic Bernstein polynomial basis is 4—7 orders
of magnitude higher than the bicubic. For pressure p, the numerical accuracy of the biquadratic
Bernstein polynomial basis is 3-5 orders of magnitude higher than that of the bilinear Bernstein
polynomial basis, and the bicubic Bernstein polynomial basis is 1-5 orders of magnitude higher than

AIMS Mathematics Volume 9, Issue 12, 35978-36000.



35990

the biquadratic.

When solving Eq (4.1) using biquartic Bernstein polynomial basis for velocity w and bicubic
Bernstein polynomial basis for pressure p, we attempted many methods, including adjusting the
accuracy setting of MATLAB2022b to improve the accuracy and convergence order of the mixed FEM,
but the effect was not obvious due to the limitation of computer hardware, so the convergence order
could not be computed. In the future, we will continue to explore ways to improve performance.

Example 2. Consider the following Stokes equation

-V T(u(x»)’), P(x,)’)) = f(x,}’)’ (-x9y) € Q,
V.ulx,y) =0, (x,y) € Q, 4.2)

u(x, y)laa =0,
where Q = [0, 1] X [0, 1], the exact solution u = (uy, u,)" is

u(x,y) = —cos2nxsin2my + sin2ny,

ur(x,y) = sin2nxcos2ny — sin2nx,

the exact solution p(x,y) is
plx,y) = x* +y?,
and the body force £ = (fi, )" is

fi(x,y) =2x + dva’sin2ny) — 8vn*cos(2mx)sin(2ny),
Hx,y) =2y — 4yn*sin(2nx) + 8v7rzcos(27ry)sin(27rx),

where we set v = 1.

Analogous to Example 1, mixed FEM with bivariate Bernstein polynomial basis are used to solve
the above problems. The numerical errors in L, L*, and H'-semi norms are listed in Tables 5 and 6.
The corresponding convergence orders are shown in Tables 7 and 8. Figures 3 and 4 display the
error image.
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Table 5. The comparison of numerical errors of w in L, L?, and H'-semi norms.

basis hy hy llu — up|| [l = wpll 2 |t = uplp

: : 1.6174e — 01 1.5937¢ —01 2.3473¢ — 00

: : 5.0100e — 02 3.8000e — 02 3.2450e — 01

biquadratic Bernstein % % 7.6000e — 03  5.3000e — 03  4.2000e — 02
= = 9.7064e — 04 6.8074e — 04 5.3000e — 03

: ! 6.4761e — 02 3.8419¢—-02 9.7374e — 01

: i 4.6000e — 03  2.2000e — 03 1.0640e — 01

bicubic Bernstein % % 3.8009¢ — 04 1.4194e —04 1.3500e — 02
= = 2.5417¢ — 05 8.9279¢ — 06 1.7000e — 03

: 3 5.8918¢ — 03 3.8720e — 03 1.1391e - 01

biquartic Bemstein : : 4.4542¢ — 04 2.9417¢ - 04 2.3000e — 03
5 5 1.4655¢ — 05 9.4296e — 06 7.2741e — 05

= = 4.5821e — 07 2.9652¢ — 07 2.2833e — 06

: 3 1.1305¢ - 03 7.5132¢ — 04 3.0851e — 02

Dmite Daser : : 2.7425¢ — 05 1.9000e — 05 1.4613e —04
3 % 6.3294e — 07 3.0283¢ — 07 2.3289%¢ — 06

= = 1.0992¢ — 08 4.7554e — 09 3.7396e — 08
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Table 6. The comparison of numerical errors of p in L, L?, and H'-semi norms.

basis hy hy lp = palle lp = pullr2 lp = Pul

% % 1.1055¢ - 01 8.7401e — 02 4.0825e — 01

% i 5.2700e — 02 2.6300e — 02 2.7690¢ — 01

bilinear Bernstein % % 1.3800e — 02 6.3000e — 03 1.0890¢ — 01
% % 2.0000e — 03 1.3000e — 03 5.1100e — 02

% % 3.0446e¢ — 01 1.5070e — 01 1.7746e — 00

j—t % 1.6700e — 02 6.5000¢ — 03 1.7270e — 01

biquadratic Bernstein % % 9.8603¢ —04 4.0417¢ - 04 2.3900e — 02
% % 7.6837¢ — 05 2.6949¢ — 05 3.3000e — 03

% % 2.0060e — 02 7.7363¢ — 03 1.4123¢ - 01

icubic Bernstcin “-L 41'; 5.0825¢ - 04 2.2814e - 04 7.5000e — 03
% % 1.0791e — 05 3.8490e — 06 2.4536¢ — 04

% % 1.8552¢ — 07 6.3212¢ — 08 7.9160e — 06

% % 3.9974e — 03 2.3690e — 03 7.2008e — 02

N }l i 29541e - 05 1.1172¢e — 05 6.0166¢ — 04
é % 2.1714e — 07 7.5228e — 08 8.0550e — 06

1‘—6 lié 1.2925¢ — 08 3.3008e — 09 8.7917e — 07

fJu = up[|

—=-biquadratic Bernstein
—-® -bicubic Bernstein

10710
-3
log(h)

1 0—10
-3

—=—biquadratic Bernstein
- -bicubic Bernstein

* biquartic Bernstein
-4-biquintic Bernstein

-2 -1

log(h)

o

e
o
%

—=—biquadratic Bernstein
—® bicubic Bernstein

* biquartic Bernstein
-#-biquintic Bernstein

-3 -2

-1 (0]

log(h)

Figure 3. Error comparison of u — u;, under L, L?, and H' norm.
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Table 7. Convergence order under three norms of u.

basis h/(%h) L® —order L?>—order H' - order

%/% 1.6908 2.0683 2.8547

biquadratic Bernstein /% 2.7207 2.8419 2.9498
%/% 2.9690 2.9608 2.7866

%/% 3.8154 4.1262 3.1940

bicubic Bernstein /3 3.5972 3.9542 2.9785
é/l—% 3.9025 3.9908 2.9894

%/71; 3.7255 3.7184 5.6301

biquartic Bernstein i3 4.9257 4.9633 4.9827
%/1—16 4.9992 4.9910 4.9936

%/Alr 5.7603 6.1691 5.2112

biquintic Bernstein i3 5.6375 5.9800 4.9813
%/1—16 5.9043 5.9930 4.9953
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Table 8. Convergence order under three norms of p.

basis h/(%h) L® —order L?>—order H' - order

1% 1.0688 1.7326 0.5601

bilinear Bernstein /% 1.9331 2.0616 1.3464
2/ 2.7866 2.2768 1.0916

1% 4.1883 4.5351 3.3612

biquadratic Bernstein /3 4.0821 4.0074 2.8532
£/ 3.6818 3.9067 2.8565

3% 5.3026 5.0837 4.2350

bicubic Bernstein i3 5.5576 5.8893 4.9339
/= 5.8621 5.9281 4.9540

3% 5.5209 6.2951 5.0997

biquartic Bernstein i3 5.8011 5.9533 4.8669
/= 5.1332 5.3535 4.4198

00 r |o;h> - o 107 .g(h) o % > |g<h) o

Figure 4. Error comparison of p — p, under L, L?, and H' norm.

It can be observed from the error line in Figures 3 and 4, and the error convergence order in Tables 7
and 8 that when the mesh size is equal, the higher the degree of Bernstein polynomial basis, not only
the higher the numerical accuracy of the error norm, but also the higher the error convergence order.

Example 3. Consider the following non-homogenous 2D Stokes equation

-V T(U(X,)’),p(X,)’)) = f(x’y)’ (x,}’) € Q,
V.ux,y) =0, (x,y) € Q, 4.3)

u(x, Yoo = &,

AIMS Mathematics Volume 9, Issue 12, 35978-36000.
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where Q = [0, 1] X [0, 1], the exact solution u = (uy, u,)" is
uy(x,y) = mwsinwxcosmny,
Ur(x,y) = —mCcoSTXSinmy,

the exact solution p(x,y) is
p(x,y) = sinmxsinmy,

and the body force f = (f1, f»)" is

filx,y) :2v7r3cos(7ry)sin(7rx) + mcosnmxsinmy,

Hx,y) =— v cos(nx)sin(my) + mcosmysinnx,

where we set v = 1.
We continue to use the above method to solve Stokes Eq (4.3). The numerical errors are shown in
Tables 9 and 10.

Table 9. The comparison of numerical errors of u in L, L?, and H'-semi norms.

Bernstein basis h h llee — wp||p [l — w2 o — |
‘ . i i 7.1700e — 02 4.5300e — 02 3.0170e — 01
biquadratic for u
% é 1.8600e — 02 1.0600¢ — 02 7.6200e — 02
B % 1—16 4.8000e — 03 2.6000e —03 1.9100e — 02
bilinear for p
31—2 é 1.2000e — 03 6.4904¢ — 04 4.8000e — 03
o 41'1 }L 5.8200e — 02 2.7800e — 02 2.4340¢ — 01
bicubic for u
% % 1.5600e — 02 6.9000e — 03 7.9500e — 02
B % 1—16 4.0000e — 03 1.7000e — 03 2.6800e — 02
bilinear for p
3L2 3—12 1.0000e — 03 4.3277¢— 04 9.2000e — 03

As can be seen from Tables 9 and 10, the Bernstein basis function shows good convergence under
the three norms as the grid size decreases, which further verifies its advantages in numerical stability.
In particular, the cubic or higher-degree Lagrange interpolation shows unstable oscillations, while
the Bernstein basis function can provide a stable and consistent solution, while maintaining good
geometric properties and flexible boundary condition processing capabilities. The numerical stability
and global approximation characteristics of Bernstein polynomial make the results more reliable than
Lagrange interpolation.

The Stokes equations are primarily used to describe fluid flow phenomena at low Re, where the
inertial forces are significantly smaller compared to the viscous forces and can thus be neglected. This
results in a flow that is smooth and orderly. Through the three numerical experiments presented above,
we observe that as the mesh size decreases, the errors also gradually diminish. This indicates that our
numerical solutions are progressively approaching the true laminar flow state. This trend demonstrates
the effectiveness and accuracy of our numerical method in handling low Re fluid dynamics problems.
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Table 10. The comparison of numerical errors of p in L™, L?, and H'-semi norms.

Bemsteinbasis ki b lp-pilee lp-pille =il
biquadratic for u 41‘; % 9.5200e — 02 4.5800e — 02 5.7360e — 01
% % 2.7400e — 02 1.0700e — 02 1.6570e — 01

bilinearforp T % 75000e=03 2.6000¢-03  6.0500e -02
% L 20000e-03 6.6176¢ —04 2.6800¢ — 02

bicubic for u % zlt 8.7900e — 02 3.0400e — 02 4.0270e — 01

% é 2.1600e — 02 7.3000e — 03 1.3450e — 01

bilinear for p 11_6 %6 5.5000e — 03 1.8000e — 03 5.5500e — 02
> L 14000 -03 4.5304¢ —04 2.6100¢ — 02

In this study, we use tensor product Bernstein polynomial basis function and Lagrange basis
function to solve Stokes equation and verify the basis functions of different orders in detail. The results
show that the solutions obtained by using bicubic or low-order Lagrange basis functions are basically
the same as those obtained by using Bernstein polynomial basis functions in numerical accuracy and
convergence order, with slight differences only after the decimal point of some p values, but the
performance of Bernstein basis functions is slightly better overall. This shows that the performance
of the two basis functions is equivalent in the case of lower order, but Bernstein basis function shows
better stability in detail processing.

However, when the biquartic Lagrange basis function is used to solve the problem, the situation has
changes significantly. In Example 1, the error result of biquartic Lagrange basis function is not as good
as that of biquartic Lagrange basis function. In Examples 2 and 3, the solution of biquartic Lagrange
basis function appears an obvious oscillation phenomenon, which leads to unreliable numerical results.
This phenomenon shows that with the increase of the order of the basis function, and with Lagrange
basis function being prone to numerical instability when dealing with complex problems, especially in
the case of high order, this instability will be aggravated. In contrast, Bernstein basis functions show
excellent numerical stability and higher accuracy in high-order cases. By using high-order Bernstein
polynomial basis, we not only effectively alleviate the oscillation problem caused by high-order
Lagrange basis function, but also generate more stable and accurate numerical solutions. Therefore, in
order to ensure the reliability and stability of numerical results, we only show the solution results using
Bernstein polynomial basis functions.

5. Conclusions

We review the Bernstein polynomial basis and use it to construct the mixed finite element function
space. Then, the Galerkin mixed FEM based on the bivariate Bernstein polynomial basis is used
to solve the 2D Stokes equation, and the L*, L?, and H'-semi norms of the error and convergence
order between the exact solution and the finite element solution are calculated. At the same time,
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compared with the Lagrange basis function, the numerical accuracy and convergence order of solving
Stokes equation with bicubic and below Lagrange interpolation polynomial basis and Bernstein
polynomial basis are the same. High-order Lagrange interpolation function is often limited by Runge’s
phenomenon, so we use high-order Bernstein polynomial basis to effectively overcome this problem
and obtain significantly better numerical results.
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