With the continuous development of the fuzzy set theory, neutrosophic set theory can better solve uncertain, incomplete and inconsistent information. As a special subset of the neutrosophic set, the single-valued neutrosophic set has a significant advantage when the value expressing the degree of membership is a set of finite discrete numbers. Therefore, in this paper, we first discuss the change values of single-valued neutrosophic numbers when treating them as variables and classifying these change values with the help of basic operations. Second, the convergence of sequences of single-valued neutrosophic numbers are proposed based on subtraction and division operations. Further, we depict the concept of single-valued neutrosophic functions (SVNF) and study in detail their derivatives and differentials. Finally, we develop the two kinds of indefinite integrals of SVNF and give the relevant examples.
Citation: Ning Liu, Zengtai Gong. Derivatives and indefinite integrals of single valued neutrosophic functions[J]. AIMS Mathematics, 2024, 9(1): 391-411. doi: 10.3934/math.2024022
With the continuous development of the fuzzy set theory, neutrosophic set theory can better solve uncertain, incomplete and inconsistent information. As a special subset of the neutrosophic set, the single-valued neutrosophic set has a significant advantage when the value expressing the degree of membership is a set of finite discrete numbers. Therefore, in this paper, we first discuss the change values of single-valued neutrosophic numbers when treating them as variables and classifying these change values with the help of basic operations. Second, the convergence of sequences of single-valued neutrosophic numbers are proposed based on subtraction and division operations. Further, we depict the concept of single-valued neutrosophic functions (SVNF) and study in detail their derivatives and differentials. Finally, we develop the two kinds of indefinite integrals of SVNF and give the relevant examples.
[1] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[2] | Z. H. Ai, Z. S. Xu, Q. Lei, Limit properties and derivative operations in the metric space of intuitionistic fuzzy numbers, Fuzzy Optim. Decis. Making, 16 (2017), 71–87. https://doi.org/10.1007/s10700-016-9239-7 doi: 10.1007/s10700-016-9239-7 |
[3] | Z. H. Ai, Z. S. Xu, X. Q. Shu, Limit theory and differential calculus of intuitionistic fuzzy functions with several sariables, IEEE Trans. Fuzzy Syst., 28 (2020), 3367–3375. https://doi.org/10.1109/TFUZZ.2019.2950881 doi: 10.1109/TFUZZ.2019.2950881 |
[4] | Z. X. Guo, F. F. Sun, Multi-attribute decision making method based on single-valued neutrosophic linguistic variables and prospect theory, J. Intell. Fuzzy Syst., 37 (2019), 5351–5362. https://doi.org/10.3233/JIFS-190509 doi: 10.3233/JIFS-190509 |
[5] | X. J. Gou, Z. S. Xu, P. J. Ren, The properties of continuous Pythagorean fuzzy information, Int. J. Intell. Syst., 31 (2016), 401–424. https://doi.org/10.1002/int.21788 doi: 10.1002/int.21788 |
[6] | P. D. Liu, The aggregation operators based on Archimedean t-conorm and t-norm for single-valued neutrosophic numbers and their application to decision making, Int. J. Fuzzy Syst., 18 (2016), 849–863. https://doi.org/10.1007/s40815-016-0195-8 doi: 10.1007/s40815-016-0195-8 |
[7] | Q. Lei, Z. S. Xu, Derivative and differential operations of intuitionistic fuzzy numbers, Int. J. Intell. Syst., 30 (2015), 468–498. https://doi.org/10.1002/int.21696 doi: 10.1002/int.21696 |
[8] | Q. Lei, Z. S. Xu, Fundamental properties of intuitionistic fuzzy calculus, Knowl.-Based. Syst., 76 (2015), 1–16. https://doi.org/10.1016/j.knosys.2014.11.019 doi: 10.1016/j.knosys.2014.11.019 |
[9] | Q. Lei, Z. S. Xu, H. Bustince, F. J. Fernandez, Intuitionistic fuzzy integrals based on Archimedean t-conorms and t-norms, Inform. Sci., 327 (2016), 57–70. https://doi.org/10.1016/j.ins.2015.08.005 doi: 10.1016/j.ins.2015.08.005 |
[10] | L. J. Peng, D. S. Xu, A multi-criteria decision-making with regret theory-based MULTIMOORA method under interval neutrosophic environment, J. Intell. Fuzzy Syst., 44 (2023), 4059–4077. https://doi.org/10.3233/JIFS-212903 doi: 10.3233/JIFS-212903 |
[11] | F. Smarandache, A unifying field in logics: Neutrosophy, neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999. |
[12] | F. Smarandache, The score, accuracy, and certainty functions determine a total order on the set of neutrosophic triplets (T, I, F), Neutrosophic Sets Syst., 38 (2020), 1–14. https://doi.org/10.5281/zenodo.4300354 doi: 10.5281/zenodo.4300354 |
[13] | F. Smarandache, Subtraction and division of neutrosophic numbers, Crit. Rev., 13 (2016), 103–110. |
[14] | C. Tian, J. J. Peng, Z. Q. Zhang, M. Goh, J. Q, Wang, A multi-criteria decision-making method based on single-valued neutrosophic partitioned Heronian mean operator, Mathematics, 8 (2020), 1189. https://doi.org/10.3390/math8071189 doi: 10.3390/math8071189 |
[15] | H. B. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct, 4 (2010), 410–413. |
[16] | J. Ye, Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making, Int. J. Fuzzy Syst., 16 (2014), 204–211. |
[17] | J. Ye, Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 2453–2462. https://doi.org/10.3233/IFS-141215 doi: 10.3233/IFS-141215 |
[18] | Z. L. Yang, H. Garg, X. Li, Differential calculus of Fermatean fuzzy functions: continuities, derivatives, and differentials, Int. J. Comput. Intell. Syst., 14 (2021), 282–294. https://doi.org/10.2991/ijcis.d.201215.001 doi: 10.2991/ijcis.d.201215.001 |
[19] | H. L. Yang, H. H. Ren, A three-way decision model on incomplete single-valued neutrosophic information tables, J. Intell. Fuzzy Syst., 44 (2023), 5179–5193. https://doi.org/10.3233/JIFS-221942 doi: 10.3233/JIFS-221942 |
[20] | S. Yu, Z. S. Xu, J. P. Xu, H. F. Liu, Indefinite integrals of generalized intuitionistic multiplicative functions, Fuzzy Optim. Decis. Making, 14 (2015), 459–476. https://doi.org/10.1007/s10700-015-9209-5 doi: 10.1007/s10700-015-9209-5 |
[21] | S. Yu, Z. S. Xu, S. S. Liu, Derivatives and differentials for multiplicative intuitionistic fuzzy information, Appl. Math., 32 (2017), 443–461. https://doi.org/10.1007/s11766-017-3479-3 doi: 10.1007/s11766-017-3479-3 |
[22] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[23] | H. Zhao, Z. S. Xu, Z. Q. Yao, Interval-valued intuitionistic fuzzy derivative and differential operations, Int. J. Comput. Intell. Syst., 9 (2016), 36–56. https://doi.org/10.1080/18756891.2016.1144152 doi: 10.1080/18756891.2016.1144152 |