Processing math: 92%
Research article Special Issues

On single-valued neutrosophic soft uniform spaces

  • In this paper, we introduce the notion of single-valued neutrosophic soft uniform spaces as a view point of the entourage approach. We investigate the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and single-valued neutrosophic soft interior operators. Also, we study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform space.

    Citation: Yaser Saber, Hanan Alohali, Tawfik Elmasry, Florentin Smarandache. On single-valued neutrosophic soft uniform spaces[J]. AIMS Mathematics, 2024, 9(1): 412-439. doi: 10.3934/math.2024023

    Related Papers:

    [1] Sumyyah Al-Hijjawi, Abd Ghafur Ahmad, Shawkat Alkhazaleh . A generalized effective neurosophic soft set and its applications. AIMS Mathematics, 2023, 18(12): 29628-29666. doi: 10.3934/math.20231517
    [2] Ning Liu, Zengtai Gong . Derivatives and indefinite integrals of single valued neutrosophic functions. AIMS Mathematics, 2024, 9(1): 391-411. doi: 10.3934/math.2024022
    [3] Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, Mazin Abed Mohammed, Karrar Hameed Abdulkaree, Abed Saif Alghawli, Mohammed AA Al-qaness . An innovative decision-making framework for supplier selection based on a hybrid interval-valued neutrosophic soft expert set. AIMS Mathematics, 2023, 8(9): 22127-22161. doi: 10.3934/math.20231128
    [4] Majdoleen Abu Qamar, Abd Ghafur Ahmad, Nasruddin Hassan . An approach to Q-neutrosophic soft rings. AIMS Mathematics, 2019, 4(4): 1291-1306. doi: 10.3934/math.2019.4.1291
    [5] Saba Al-Kaseasbeh, Madeline Al Tahan, Bijan Davvaz, Mariam Hariri . Single valued neutrosophic $ (m, n) $-ideals of ordered semirings. AIMS Mathematics, 2022, 7(1): 1211-1223. doi: 10.3934/math.2022071
    [6] Amr Elrawy, Mohamed Abdalla . Results on a neutrosophic sub-rings. AIMS Mathematics, 2023, 8(9): 21393-21405. doi: 10.3934/math.20231090
    [7] Jie Ling, Mingwei Lin, Lili Zhang . Medical waste treatment scheme selection based on single-valued neutrosophic numbers. AIMS Mathematics, 2021, 6(10): 10540-10564. doi: 10.3934/math.2021612
    [8] Hatice Tasbozan . Near neutrosophic soft set. AIMS Mathematics, 2024, 9(4): 9447-9454. doi: 10.3934/math.2024461
    [9] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
    [10] Xiaoyan Zhou, Mingwei Lin, Weiwei Wang . Statistical correlation coefficients for single-valued neutrosophic sets and their applications in medical diagnosis. AIMS Mathematics, 2023, 8(7): 16340-16359. doi: 10.3934/math.2023837
  • In this paper, we introduce the notion of single-valued neutrosophic soft uniform spaces as a view point of the entourage approach. We investigate the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and single-valued neutrosophic soft interior operators. Also, we study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform space.



    There are many theories that have been suggested for dealing with uncertainties in an efficient way such as the theory of fuzzy sets[1], the theory of intuitionistic fuzzy sets[2], the theory of rough sets[3], and the theory of neutrosophic sets[4]. However, the idea of fuzzy sets, intuitionistic fuzzy sets, and neutrosophic sets are not sufficient to cope with parametrization tools. In 1999, Molodtsov[5] proposed the idea of a soft set that has the ability to deal with this difficulty. The idea of fuzzy soft (FS) sets and neutrosophic soft sets was proposed by Maji et al.[6,7], and some properties of FS sets were discussed by Ahmad and Kharal[8]. Wang et al. [9] proposed the idea of single-valued neutrosophic sets. Saber et al. [10,11,12,13] introduced several concepts including, r-single-valued neutrosophic compact modulo, and r-single-valued neutrosophic connected sets in single-valued neutrosophic topological spaces, single-valued neutrosophic ideal open local function, single-valued neutrosophic θ£-separated. Single-valued neutrosophic fuzzy set and multi-attribute decision-making were introduced by Sasirekha et al. [14]. Masri et al. [15] introduced the idea of a single-valued trapezoidal neutrosophic number.

    Šostak's single-valued neutrosophic soft topological spaces and single-valued neutrosophic soft sets were constructed by Saber et al. [16]. The concept of single-valued neutrosophic soft has been thoroughly explored and advanced by numerous researchers, such as (Shahzadi et al. [17], Cano et al. [18], Özkan et al. [19], Al-Hijjawi et al. [20], Jana et al. [21] and Kamal et al. [22]) There are three alternative approaches to uniformity in the fuzzy case: Lowen's [23] entourage approach based on power sets of the form ζX×X, Kotzé's [24] uniform covering approach, and Hutton's [25] uniform operator approach.

    It is well known that the theory of neutrosophic sets has been regarded as a generalization of the theory of fuzzy sets, the theory of intuitionistic fuzzy sets and the theory of rough sets. Furthermore, this is an important mathematical tool to deal with uncertainty. One of the main contributions of this paper is to introduce the concepts of single-valued neutrosophic uniformity in the sense of entourage, which is a generalization of the concepts introduced in Lowen[23], Kotzé[24], Hutton[25] and Abbas et al. [26].

    Motivated by the above discussion, the present work deals with the single-valued neutrosophic uniformity in the sense of entourage. We introduce the notions of single-valued neutrosophic soft uniform spaces and single-valued neutrosophic soft uniform bases. The notion of this single-valued neutrosophic soft uniformities to be stratified is ensured. We investigate the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and single-valued neutrosophic soft interior operators. We study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform structure. Finally, we introduce the product single-valued neutrosophic soft uniformity of a given family of single-valued neutrosophic soft uniform spaces.

    In this section, we give all the basic definitions and results that we need to go through our work. First, we give the definition of a single-valued neutrosophic set (svn-set) and a single-valued neutrosophic soft set (svns-set). For more details about svn-set theory and svns-set theory, we refer to [9,16]. As usual, ^(X,E) denotes the family of all svns-sets on X, and E is the set of all parameters. Additionally, X indicates an initial universe and ζX are the sets of all svn-sets on X (where, ζ=[0,1] and ζ0=(0,1]).

    Definition 1. [4]. Let X be a universe set. A neutrosophic set (n-set) Θ on X defined as

    Θ={y,γΘ(y),πΘ(y),ςΘ(y)yX,γΘ(y),πΘ(y),ςΘ(y)0,1+},

    where γΘ(y), πΘ(y) and ςΘ(y) are the truth, the indeterminacy, and the falsity membership functions respectively.

    Definition 2. [9]. Let X be a non-null set. Then, svn-set Θ on X is defined as

    Θ={y,γΘ(y),πΘ(y),ςΘ(y)yX,γΘ(y),πΘ(y),ςΘ(y)ζ},

    where γΘ,πΘ,ςΘ:Xζ and 0γΘ(y)+πΘ(y)+ςΘ(y)3.

    Remark 1. To clarify the relationship between intuitionistic fuzzy sets if-set, neutrosophic sets n-set, and single-valued neutrosophic sets svn-set, let us confirm that both neutrosophic sets and single-valued neutrosophic sets are a generalization of the concept of intuitionistic fuzzy sets, as follows:

    In IFS, paraconsistent, dialtheist and incomplete information cannot be characterized. This most important distinction between if-set and n-set is shown in the below neutrosophic cube A' B' C' D' E' F' G' H' introduced by J. Dezert [27].

    Because only the classical interval [0, 1]is used as a range for the neutrosophic parameters in technical applications (truth, indeterminacy and falsity), we call the cube ABCDEDGH the technical neutrosophic cube and its extension A' B' C' D' E' F' G' H' the neutrosophic cube or nonstandard neutrosophic cube, used in the fields where we need to differentiate between absolute and relative notions like philosophy.

    Figure 1.  Neutrosophic cube.

    Definition 3. [16]. fA is an svns-set on X, where f:EζX; i.e., fef(e) is an svn-set on X, for all eA and f(e)=0,1,1, if eA.

    The svn-set f(e) is termed as an element of the svnssetfA. Thus, an svnssetfE on X can be defined as:

    (f,E)={(e,f(e))eE,f(e)ζX}={e,γf(e),πf(e),ςf(e))eE,f(e)ζX},

    where γf:Eζ (γf is termed as a membership function), πf:Eζ (πf is termed as indeterminacy function) and ςf:Eζ (ςf is termed as a nonmembership function) of svnsset.

    An svns-set fE on X is termed as a null svns-set (for short, ˆΦ), if γf(e)=0,πf(e)=1 and ςf(e)=1, for any eE.

    An svnssetfE on X is termed as an absolute svns-set (for short, ˜ˆE), if γf(e)=1,πf(e)=0 and ςf(e)=0, for any eE.

    Definition 4. [16]. Let fA,gB^(X,E) be an svns-sets on X. Then,

    (1) Inclusion of two sets (for short, fAgB) defined as:

    γf(e)γg(e),πf(e)πg(e),ςf(e)ςg(e).

    (2) The complemented of the set fA denoted by (for short, fcA) defined as:

    fcA={(e,ςf(e),˜πfc(e),γf(e))eE}.

    Definition 5. [16]. A mapping Tγ,Tπ,Tς:Eζ^(X,E) is said to be a single-valued neutrosophic soft topology (svnst) on X if it meets the next criteria, for every eE:

    (T1)Tγe(ˆΦ)=1, Tπe(ˆΦ)=0, Tςe(ˆΦ)=0 and Tγe(ˆE)=1Tπe(ˆE)=0, Tςe(ˆE)=0,

    (T2)Tγe(fAgB)Tγe(fA)Tγe(gB), Tπe(fAgB)Tπe(fA)Tπe(gB),

    Tςe(fAgB)Tςe(fA)Tςe(gB),  fA,gB^(X,E),

    (T3)Tγe(jΓ(fA)j)jΓTγe((fA)j),   Tπe(jΓ(fA)j)jΓTπe((fA)j),

    Tςe(jΓ(fA)j)jΓTςe((fA)j),   (fA)j^(X,E), jΓ.

    (Note that and in the definition are clarified in Molodtsov [5]). The quadruple (X,Tγ,Tπ,Tς) is said to be a single-valued neutrosophic soft topological space (svnst-space), where (Tγe(fA)) representing the degree of openness, (Tπe(fA)) the degree of indeterminacy and (Tςe(fA)) the degree of non-openness; of a svns-set with respect to that parameter eE. Sometimes, we will write Tγπς for (Tγ,Tπ,Tς).

    Let (X,Tγπς) and (G,Tγπς) be svnst-space. An svns-mapping ψφ:^(X,E)^(G,R) is said to be a single-valued neutrosophic soft continuous mapping (svnsc-map) if

    Tγe(ψ1φ(gB))Tγφ(e)(gB),Tπe(ψ1φ(gB))Tπφ(e)(gB),
    Tςe(ψ1φ(gB))Tςφ(e)(gB),

    for all gB^(G,R) and eE [Saber et al. (2022)[16].

    Definition 6. A map I:E×^(X,E)×ζ0^(X,E) is said to be single-valued neutrosophic soft interior operator (svnsi-operator) on X if it meets the next criteria, , eE, fA,gB^(X,E) and r,sζ:

    (I1) I(e,ˆE,r)=ˆE,

    (I2) I(e,fA,r)fA,

    (I3) if fAgB and rs then I(e,fA,r)I(e,gB,s),

    (I4) I(e),fAgB,rs)I(e,fA,r)I(e,gB,s),

    (I5) I(e,I(e,fA,r),r)=I(e,fA,r).

    Definition 7. [16]. A map C:E×^(X,E)×ζ0^(X,E) is said to be single-valued neutrosophic soft closure operator (svnsc-operator) on X if it meets the next criteria, , eE, fA,gB^(X,E) and r,sζ:

    (C1) C(e,ˆΦ,r)=ˆΦ,

    (C2) C(e,fA,r)fA,

    (C3) if fAgB and rs then C(e,fA,r)C(e,gB,s),

    (C4) C(e,fAgB,rs)C(e,fA,r)C(e,gB,s),

    (C5) C(e,C(e,fA,r),r)C(e,fA,r),

    (C6) C(e,fA,r)=[I(e,fcA,r)]c.

    The main objective of this section is to define and discuss the concepts of single-valued neutrosophic soft uniformity (svns-uniformity), single-valued neutrosophic soft uniform base (svns-uniform base) and stratified single-valued neutrosophic soft uniform space (ssvns-uniform space). Several basic properties and theorems related to these concepts are explored.

    In this section, we indicate that ^(X×X,E) is the family of all svns-sets on X×X and ζX×X are the sets of all svn-sets on X×X. Additionally, for ϱζ, ˉϱ(x,y)=ϱ for any (x,y)X×X.

    Definition 8. Let X be a set. A mappings £γ,£π,£ς:Eζ^(X×X,E) is called an svns-uniformity on X if it meets the next criteria:

    (£1) for any eE, there exists υA^(X×X,E) such that £γe(υA)=1, £πe(υA)=0, £ςe(υA)=0,

    (£2) if υAμB, then £γe(υA)£γe(μB), £πe(υA)£πe(μB), £ςe(υA)£ςe(μB),

    (£3) for every υA,μB^(X×X,E), then

    £γe(υAμB)£γe(υA)£γe(μB),£πe(υAμB)£πe(υA)£πe(μB)
    £ςe(υAμB)£ςe(υA)£ςe(μB),

    (£4)()CυA implies that £γe(υA)=0, £πe(υA)=1, £ςe(υA)=1, where, eE,

    ()e(x,y)={1,0,0,ifx=y,0,1,1,otherwise,

    (£5)£γe(υA)£γe(υsA), £πe(υA)£πe(υsA), £ςe(υA)£ςe(υsA), where υse(x,y)=υe(y,x) for every eE,

    (£6) for each υA^(X×X,E), eE,

    £γe(υA){£γe(μB):(μBμB)υA},£πe(υA){£πe(μB):(μBμB)υA},
    £ςe(υA){£ςe(μB):(μBμB)υA},

    where (υBμB)=zX{υe(x,z)μe(z,y)} for each x,yX.

    A svns-uniformity £γ,£π,£ς:Eζ^(X×X,E) is called stratified if

    (£st)£γe(ˆEϱ)=1, £πe(ˆEϱ)=0, £ςe(ˆEϱ)=0, where υE=ˆEϱ if υe=ˉϱ, eE.

    After adding the last condition (X,£γ,£π,£ς) is called ssvns-uniform space. Sometimes, we will write £γπςE for (£γ,£π,£ς).

    Let £γπςE and £γπςE be two svns-uniformities on X. £γπςE is finer than £γπςE (£γπςE is coarser than £γπςE), indicated by £γπςE£γπςE provided

    £γe(υA)£γE(υA),£πe(υA)£πe(υA),£ςe(υA)£ςe(υA),eE,υA^(X×X,E).

    Remark 2. Suppose that (X,£γπςE) is an svns-uniform space. Then, by using the two conditions (£1) and (£2), we obtain, £γe(ˆE)=1, £πe(ˆE)=0, £ςe(ˆE)=0 because υAˆE for every eE, υA^(X×X,E).

    Theorem 1. Let (X,£γπςE) be an svns-uniform space. Define for any eE, υA^(X×X,E).

    (£γst)e(υA)={£γe((μB)):μBˆEϱυA,ϱζ},
    (£πst)e(υA)={£πe((μB)):μBˆEϱυA,ϱζ},
    (£ςst)e(υA)={£ςe((μB)):μBˆEϱυA,ϱζ}.

    Then, (£γπςst)E is the coarsest ssvns-uniformity which is finer than £γπςE.

    Proof. (£1) There exists υA^(X×X,E) such that £γe(υA)=1, £πe(υA)=0, £ςe(υA)=0 for every eE. Since υAˆEϱυA,then(£γst)e(υA)=1,(£πst)e(υA)=0,(£ςst)e(υA)=0.

    (£2) Direct from the definition.

    (£3) Let there exist (υ1)A,(υ2)B^(X×X,E) such that for every eE,

    (£γst)e((υ1)A(υ2)B)(£γst)e((υ1)A)(£γst)e((υ2)B),
    (£πst)e((υ1)A(υ2)B)(£πst)e((υ1)A)(£πst)e((υ2)B),
    (£ςst)e((υ1)A(υ2)B)(£ςst)e((υ1)A)(£ςst)e((υ2)B).

    By using the definition of (£γπςst)E, then there exists (μ1)C,(μ2)D^(X×X,E), ϱ1,ϱ2ζ with (μ1)CˆEϱ1(υ1)A, (μ2)DˆEϱ2(υ2)B such that

    (£γst)e((υ1)A(υ2)B)£γe((μ1)C)£γe((μ2)D),
    (£πst)e((υ1)A(υ2)B)£πe((μ1)C)£πe((μ2)D),
    (£ςst)e((υ1)A(υ2)B)£ςe((μ1)C)(£ςe((μ2)D).

    Otherwise, (μ1)C(μ2)DˆEϱ1ˆEϱ2(υ1)A(υ2)B. Then, we have

    (£γst)e((υ1)A(υ2)B)£γe((μ1)C(μ2)D)£γe((μ1)C)£γe((μ2)D),
    (£πst)e((υ1)A(υ2)B)£πe((μ1)C(μ2)D)£πe((μ1)C)£πe((μ2)D),
    (£ςst)e((υ1)A(υ2)B)£ςe((μ1)C(μ2)D)£ςe((μ1)C)(£ςe((μ2)D).

    This is a contradiction. Consequently, (£3) holds.

    (£4) Direct from the definition.

    (£5) Let

    (£γst)e(υsA)(£γst)e(υA),(£πst)e(υsA)(£πst)e(υA),(£ςst)e(υsA)(£ςst)e(υA),

    , eE, υA^(X×X,E). By using the definition of (£γπςst)E, there exists μB^(X×X,E), ϱζ with μBˆEϱυA, such that

    (£γst)e(υsA)£γe(μB),(£πst)e(υsA)£πe(μB),(£ςst)e(υsA)£ςe(μB).

    Since £γπςE is svns-uniformity, then

    £γe(μB)£γe(μsB),£πe(μB)£πe(μsB),£ςe(μB)£ςe(μsB),

    It follows that

    (£γst)e(υsA)£γe(μsB),(£πst)e(υsA)£πe(μsB),(£ςst)e(υsA)£ςe(μsB).

    On the other hand, μsBˆEϱυsA. Hence, for each eE

    (£γst)e(υsA)£γe(μsB),(£πst)e(υsA)£πe(μsB),(£ςst)e(υsA)£ςe(μsB).

    This is a contradiction. Therefore, (£5) holds.

    (£6) Suppose that

    (£γst)e(υA){(£γst)e((υ1)C):(υ1)C(υ1)CυA},
    (£πst)e(υA){(£πst)e((υ1)C):(υ1)C(υ1)CυA},
    (£ςst)e(υA){(£ςst)e((υ1)C):(υ1)C(υ1)CυA}.

    for any υA^(X×X,E). From the definition of (£γπςst)E, there exists μB^(X×X,E), ϱζ with μBˆEϱυA such that

    £γe(μB){(£γst)e((υ1)C):(υ1)C(υ1)CυA},
    £πe(μB){(£πst)e((υ1)C):(υ1)C(υ1)CυA},
    £ςe(μB){(£ςst)e((υ1)C):(υ1)C(υ1)CυA}.

    Since £γπςE is svns-uniformity on X, then

    £γe(μB){£γe(σD):σDσDμB},
    £πe(μB){£πe(σD):σDσDμB},
    £ςe(μB){£ςe(σD):σDσDμB}.

    That means, there is σD^(X×X,E) such that σDσDμB and that

    £γe(σD){(£γst)e((υ1)C):(υ1)C(υ1)CυA},
    £πe(σD){(£πst)e((υ1)C):(υ1)C(υ1)CυA},
    £ςe(σD){(£ςst)e((υ1)C):(υ1)C(υ1)CυA}.

    On the other hand,

    (σDˆEϱ)(σDˆEϱ)(σDσD)ˆEϱμBˆEϱυA,

    which means that there is (υ1)C=σDˆEϱ with (υ1)C(υ1)CυA,

    £γe(σD)(£γst)e((υ1)C){(£γst)e((υ1)C):(υ1)C(υ1)CυA},
    £πe(σD)(£πst)e((υ1)C){(£πst)e((υ1)C):(υ1)C(υ1)CυA},
    £ςe(σD)(£ςst)e((υ1)C){(£ςst)e((υ1)C):(υ1)C(υ1)CυA}.

    It is a contradiction. Thus, (£6) holds.

    (£st) Since ˆEϱˆE1=ˆEϱ for each ϱζ, then (£γst)ˆE=1, (£πst)ˆE=0 and (£ςst)ˆE=0. Therefore, (£γπςst)e is stratified.

    For each υA^(X×X,E), υAˆE1=υA, we have for each eE

    (£γst)e(υA)£γe(υA),(£πst)e(υA)£πe(υA),(£ςst)e(υA)£ςe(υA).

    Hence, (£γπςst)E is finer than £γπςE.

    Finally, consider £γπςE is an ssvns-uniformity finer than £γπςE. Let there exists υA^(X×X,E) such that

    (£γst)e(υA)£γe(υA),(£πst)e(υA)£πe(υA),(£ςst)e(υA)£ςe(υA).

    From the definition of {(£γst)e(υA),(£πst)e(υA),(£ςst)e(υA)}, there exists μB^(X×X,E), ϱζ with μBˆEϱυA and

    £γe(μB)£γe(υA),£πe(μB)£πe(υA),£ςe(μB)£ςe(υA).

    Since £γπςE is stratified, then

    £γe(μB)£γe(μB)=£γe(μB)£γe(ˆEϱ)£γe(μBˆEϱ)£γe(υA),
    £πe(μB)£πe(μB)=£πe(μB)£πe(ˆEϱ)£πe(μBˆEϱ)£πe(υA),
    £ςe(μB)£ςe(μB)=£ςe(μB)£ςe(ˆEϱ)£ςe(μBˆEϱ)£ςe(υA).

    It is a contradiction. Hence,

    (£γst)e(υA)£γe(υA),(£πst)e(υA)£πe(υA),(£ςst)e(υA)£ςe(υA),

    for each υA^(X×X,E), eE. Hence, (£γπςst)E is the coarsest ssvns-uniformity which is finer than £γπςE.

    Remark 3. Let γ,π,ς:Eζ^(X×X,E) be a mapping and υA^(X×X,E). Let us define γe, πe and ςe as follows for each eE:

    γe(υA)=υAυBγe(υB),πe(υA)=υAυBπe(υB),ςe(υA)=υAυBςe(υB).

    Definition 9. A mappings γ,π,ς:Eζ^(X×X,E) is called a svns-uniform base on X if it meets the next criteria:

    (1) There exists υA^(X×X,E) such that γe(υA)=1, πe(υA)=0, ςe(υA)=0, for all eE,

    (2) for each υA,μB^(X×X,E), eE, such that

    γe(υAμB)γe(υA)γe(μB),πe(υAμB)πe(υA)πe(μB),
    ςe(υAμB)ςe(υA)ςe(μB),

    (3) If ()AυB, then γe(υB)=0, πe(υB)=1, ςe(υB)=1.

    (4) For every υA^(X×X,E), γe(υsA)γe(υA), πe(υsA)πe(υA) and ςe(υsA)ςe(υA),

    (5) For every υA^(X×X,E),

    {γe(μB):(μBμB)υA}γe(υA),;{πe(μB):(μBμB)υA}πe(υA),
    {ςe(μB):(μBμB)υA}ςe(υA).

    A svns-uniform base (γ,π,ς) is said to be stratified if and only if (γ,π,ς) satisfies

    (st)γe(ˆEϱ)=1, πe(ˆEϱ)=0, ςe(ˆEϱ)=0, ϱζ, eE.

    In this case (γ,π,ς) is stratified single-valued neutrosophic soft uniform base (for short, ssvns-uniform base). Sometimes, we will write γπςE for (γ,π,ς).

    Let γπςE and γπςE be two svns-uniform bases on X. Then, γπςE is finer than γπςE (γπςE is coarser than γπςE), denoted by γπςEγπςE provided

    γe(υA)γe(υA),πe(υA)πe(υA),ςe(υA)ςe(υA),

    for each eE, υA^(X×X,E). Obviously, all svns-uniformity £γπςE on X is a svns- uniform base with £γπςE=£γπςE.

    Theorem 2. Let γπςE be a svns-uniform base on X, define the mappings γ,π,ς:Eζ^(X×X,E), for any υA^(X×X,E), eE as follows:

    (γst)e(υA)={γe((μB)):μBˆEϱυA,ϱζ},
    (πst)e(υA)={πe((μB)):μBˆEϱυA,ϱζ},
    (ςst)e(υA)={ςe((μB)):μBˆEϱυA,ϱζ}.

    Then,

    (1)(γπςst)E is the coarsest ssvns-uniform base which is finer than γπςE,

    (2)(γπςst)E=γπςEst.

    Proof. (1) Similar to Theorem 1.

    (2) It becomes clear to us from (1), that

    γEst(γst)E,πEst(πst)E,γEst(γst)E.

    Conversely, let

    (γst)e(υA)γest(υA),(πst)e(υA)πest(υA),(ςst)e(υA)ςest(υA),

    for some υA^(X×X,E). By the concept of (γπςst)E, there exists μB^(X×X,E) with μBυA such that

    (γst)e(μB)γest(υA),(πst)e(μB)πest(υA),(ςst)e(μB)ςest(υA).

    By the concept of γπςEst, there exists σC^(X×X,E), ϱζ with σCˆEϱμB such that

    γe(σC)γest(υA),πe(σC)πest(υA),ςe(σC)ςest(υA).

    On the other hand, σCˆEϱυA implies that

    γest(υA)γe(σC)γe(σC),πest(υA)πe(σC)γe(σC),
    ςest(υA)ςe(σC)γe(σC).

    It is a contradiction. Hence, γest(υA)(γst)e(υA), πest(υA)(πst)e(υA), ςest(υA)(ςst)e(υA), and (γπςst)E=γπςEst.

    Theorem 3. Let (X,£γπςE) be an svns-uniform space. For all fB^(X,E) and υA^(X×X,E), the image υA[fB] of fB with respect to υA is the svns of X defined by

    (υe[fe])(x)=yX[fe(y)υe(y,x)],,eABandxX.

    For fC,(fD)j^(X,E), υA,μB^(X×X,E), we have:

    (1)fCυA[fC] whenever £γe(υA)>0, £πe(υA)<1, £ςe(υA)<1,

    (2)υAυAυA whenever £γe(υA)>0, £πe(υA)<1, £ςe(υA)<1,

    (3)(μBυA)[fC]=μB[υA[fC]],

    (4)υA[j(fD)j]=jυA[(fD)j],

    (5)(υAμB)[(fD)1(fD)2]υA[(fD)1]μB[(fD)2],

    (6)(υAμB)[(fD)1(fD)2]υA[(fD)1]μB[(fD)2],

    (7)υA[(υsA[fC])c]fcC.

    Proof. Obvious.

    Theorem 4. Let γπςE be a svns-uniform base on X. define the operator Iγπς:E×^(X,E)×ζ0^(X,E) as next for every eE, rζ, fB^(X,E),

    Iγπς(e,fB,r)={RC:υA[RC]fB,γe(υA)r,πe(υA)1r,ςe(υA)1r}.

    Then, Iγπς is an svnsi-operator on X.

    Proof. (I1) Since ˆE=υE[ˆE], for all γe(υE)r,πe(υE)1r,ςe(υE)1r, then Iγπς(e,ˆE,r)=ˆE.

    (I2) Whenever RCυA[RC]fB, γe(υA)r,πe(υA)1r,ςe(υA)1r, we get that Iγπς(e,fB,r)fB for all fB^(X,E).

    (I3) Clearly, Iγπς(e,fB,r)Iγπς(e,RD,s) for every fBRD, fB,RD^(X,E) and rs.

    (I4) Assume that

    Iγπς(e,(fC)1,r)Iγπς(e,(fC)2,s)Iγπς(e,(fC)1(fC)2,rs).

    Then, there exists (RD)1,(RD)2^(X,E) with υA[(RD)1](fC)1μB[(RD)2](fC)2 and

    γe(υA)r,πe(υA)1r,ςe(υA)1r,
    γe(μB)s,πe(μB)1s,ςe(μB)1s,

    such that

    (RD)1(RD)2Iγπς(ˆe,(fC)1(fC)2,rs).

    Since

    γe(υAμB)γe(υA)γe(μB),πe(υAμB)πe(υA)πe(μB),
    ςe(υAμB)ςe(υA)ςe(μB),

    we get than

    (υAμB)[(RD)1(RD)2]υA[(RD)1]μB[(RD)2](fC)1(fC)2.

    Then,

    (RD)1(RD)2Iγπς(ˆe,(fC)1(fC)2,rs).

    This is a contradiction. Consequently, (I4) holds.

    (I5) Assume that Iγπς(e,fC,r)Iγπς(e,Iγπς(e,fC,r),r). By using the definition of Iγπς(e,fC,r), there exists υA^(X×X,E) and RD^(X,E), such that

    γe(υA)r,πe(υA)1r,ςe(υA)1r,υA[RD]fC,

    and RDIγπς(e,Iγπς(e,fC,r),r). Otherwise, since

    {γe(μB):μBμBυA}γe(υA)r,
    {πe(μB):μBμBυA}πe(υA)1r,
    {ςe(μB):μBμBυA}ςe(υA)1r,

    there exists μB^(X×X,E) with μBμBυA such that

    γe(μB)r,πe(μB)1r,ςe(μB)1r,μB[μB[RD]]υA[RD]fC.

    By using the definition of Iγπς(e,fC,r), we obtain μB[RD]Iγπς(e,fC,r). By the concept of Iγπς(e,Iγπς(e,fC,r),r), it follows that

    RDIγπς(e,Iγπς(e,fC,r),r).

    This is a contradiction. Consequently, (I5) holds.

    Theorem 5. Let γπςE be a svns-uniform base on X. Define the operator Cγπς:E×^(X,E)×ζ0^(X,E) as next for every eE, fB^(X,E), rζ,

    Then, Cγπς is a svnsc-operator on X.

    Proof. (C1) Since ˆΦ=υA[ˆΦ], for all γe(υA)r,πe(υA)1r,ςe(υA)1r, then Cγπς(e,ˆΦ,r)=ˆΦ.

    (C2) Whenever RCυA[RC]fB, for all γe(υA)r,πe(υA)1r,ςe(υA)1r, we get that Cγπς(e,fB,r)fB for each fB^(X,E).

    (C3) It is established that Cγπς(e,fB,r)Cγπς(e,RD,s) for every fBRD, fB,RD^(X,E) and rs.

    (C4) Assume that

    Cγπς(e,fC,r)Cγπς(e,RD,s)Cγπς(e,fCRD,rs).

    Then, there exists r,sζ0, υA,μB^(X×X,E) with

    γe(υA)rs,πe(υA)1(rs),ςe(υA)1(rs),
    γe(μB)ss,πe(μB)1(ss),ςe(μB)1(rs),

    such that

    υsA[fC]μsB[RD]Cγπς(e,fCRD,rs).

    Since γe(υAμB)γe(υA)γe(μB)rs, πe(υAμB)πe(υA)πe(μB)1(rs), ςe(υAμB)ςe(υA)ςe(μB)1(rs) and (υAμB)s[fCRD]υsA[fC]μsB[RD], then Cγπς(e,fCRD,rs)υsA[fC]μsB[RD]. It is a contradiction. Thus, (C4) holds.

    (C5) Assume that there exists rζ0, eE, fC^(X,E), such that

    Cγπς(e,fC,r)Cγπς(e,Cγπς(e,fC,r),r).

    Using the concept of Cγπς(e,fC,r), there exist υA^(X×X,E) with

    γe(υA)r,πe(υA)1r,ςe(υA)1r,

    such that Cγπς(e,Cγπς(e,fC,r),r)υsA[fC]. Otherwise, from (5), we have

    {γe(μB):(μBμB)υA}γe(υA)r,{πe(μB):(μBμB)υA}πe(υA)1r,
    {ςe(μB):(μBμB)υA}ςe(υA)1r,

    which leads to the existence of μB^(X×X,E) with μBμBυA and

    γe(μB)r,πe(μB)1r,ςe(μB)1r.

    It follows that

    Cγπς(e,Cγπς(e,fC,r),r)μsB[Cγπς(e,fC,r)]μsB[μsB[fC]]υsA[fC].

    It is a contradiction. Thus, (C5) holds.

    (C6) We want, for each eE, fC^(X,E), rζ0, to verify that Cγπς(e,fC,r)=(Iγπς(e,fcC,r))c. This means that we need to prove it:

    Since υA[(υsA[fC])c]fcC, from (7) in Theorem 3, we obtain

    Since (υA[RD])cfC, we obtain υsA[fC]υsA[(υA[RD])c]. Then,

    Thus, (C6) holds.

    In this section, we study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform structure. We have proved that single-valued neutrosophic soft uniform base and single-valued neutrosophic soft uniform space are single-valued neutrosophic soft topological spaces.

    Theorem 6. Let γπςE be an svns-uniform base on X, define the mappings Tγ:Eζ^(X,E), Tπ:Eζ^(X,E), Tς:Eζ^(X,E) as follows for each eE, rζ0, fA^(X,E),

    (Tγ)e(fA)={r:fAIγπς(e,fA,r)},
    (Tπ)e(fA)={1r:fAIγπς(e,fA,r)},
    (Tς)e(fA)={1r:fAIγπς(e,fA,r)}.

    Then, Tγπς is an svnst on X.

    Proof. (T1) Since Iγπς(e,ˆE,r)=ˆE and Iγπς(e,ˆΦ,r)=ˆΦ for each rζ0, eE, then

    Tγe(ˆΦ)=1,Tπe(ˆΦ)=0,=Tςe(ˆΦ)=0,
    Tγe(ˆE)=1,Tπe(ˆE)=0,=Tςe(ˆE)=0.

    (T2) To prove the second condition, we follow as follows:

    (Tγ)e(fA)(Tγ)e(gB)={rfAIγπς(e,fA,r)}{sgBIγπς(e,gB,s)}{rsfAgBIγπς(e,fA,r)Iγπς(e,gB,s)}{rsfAgBIγπς(e,fAgB,rs)}(Tγ)e(fAgB),
    (Tπ)e(fA)(Tπ)e(gB)={1rfAIγπς(e,fA,r)}{1sgBIγπς(e,gB,s)}{1r1s)fAgBIγπς(e,fA,r)Iγπς(e,gB,s)}{1(rs)fAgBIγπς(e,fAgB,rs)}{1(rs)fAgBIγπς(e,fAgB,rs)}(Tπ)e(fAgB),
    (Tς)e(fA)(Tς)e(gB)={1rfAIγπς(e,fA,r)}{1sgBIγπς(e,gB,s)}{1r1s)fAgBIγπς(e,fA,r)Iγπς(e,gB,s)}{1(rs)fAgBIγπς(e,fAgB,rs)}{1(rs)fAgBIγπς(e,fAgB,rs)}(Tς)e(fAgB).

    (T3) Assume that there exists a collection {(fA)j:jΓ} such that

    Tγe(jΓ(fA)j)jΓTγe((fA)j),Tπe(jΓ(fA)j)jΓTπe((fA)j),
    Tςe(jΓ(fA)j)jΓTςe((fA)j).

    For every jΓ, there exist rjζ0 such that (fA)jIγπς(e,fA,r) and that

    Tγe(jΓ(fA)j)jΓrj,Tπe(jΓ(fA)j)jΓ(1r)j,Tςe(jΓ(fA)j)jΓ(1r)j.

    Putting r=jΓrj and 1r=jΓ(1r)j, from Theorem 4, we get that

    jΓ(fA)jjΓIγπς(e,(fA)j,rj)jΓIγπς(e,(fA)j,r)Iγπς(e,jΓ(fA)j,r).

    It follows that

    Tγe(jΓ(fA)j)jΓrj=r,Tπe(jΓ(fA)j)jΓ(1r)j=1r,
    Tςe(jΓ(fA)j)jΓ(1r)j=1r.

    It is a contradiction. Thus, T3 holds.

    Definition 10. Let fB^(X,E) and υA^(X×X,E). Define υfBA^(X×X,E), for each eAB related with fB by

    (υfBA)e(x,y)={1,0,0,ifx=y,γfe(x)fe(y),πfe(x)fe(y),ςfe(x)fe(y),otherwise.

    Theorem 7. Let (X,£γπςE) be an svns-uniform space, define the mappings Tγ£,Tπ£,Tς£:Eζ^(X,E) as follows:

    (Tγ£)e(fB)={1,iffB=ˆΦ,£γe(υfBA),iffB^(X,E)ˆΦ,
    (Tπ£)e(fB)={0,iffB=ˆΦ,£πe(υfBA),iffB^(X,E)ˆΦ,
    (Tς£)e(fB)={0,iffB=ˆΦ,£ςe(υfBA),iffB^(X,E)ˆΦ.

    Then, Tγπς£ is an svnst on X.

    Proof. (T1)(Tγ£)e(ˆΦ)=1, (Tπ£)e(ˆΦ)=0, (Tς£)e(ˆΦ)=0 and (Tγ£)e(ˆE)=£γe(υˆEe)=1, (Tπ£)e(ˆE)=£πe(υˆEe)=0, (Tς£)e(ˆE)=£ςe(υˆEe)=0.

    (T2) Since υfBAυRCA=υfBRCA for every fB,RC^(X,E), by (£3), we have

    £γe(υfBRCA)=£γe(υfBAυRCA)£γe(υfBA)£γe(υRCA),
    £πe(υfBRCA)=£πe(υfBAυRCA)£πe(υfBA)£πe(υRCA),
    £ςe(υfBRCA)=£ςe(υfBAυRCA)£ςe(υfBA)£ςe(υRCA).

    Thus,

    (Tγ£)e(fBRC)=£γe(υfBRCA)£γe(υfBA)£γe(υRCA)=(Tγ£)e(fB)(Tγ£)e(RC),
    (Tπ£)e(fBRC)=£πe(υfBRCA)£πe(υfBA)£πe(υRCA)=(Tπ£)e(fB)(Tπ£)e(RC),
    (Tς£)e(fBRC)=£ςe(υfBRCA)£ςe(υfBA)£ςe(υRCA)=(Tς£)e(fB)(Tς£)e(RC).

    (T3) Similar to the proof in (T3) from Theorem 6.

    Theorem 8. Let (X,£γπςE) be a svns-uniform space, define the mappings Tγ£,Tπ£,Tς£:Eζ^(X,E) as follows:

    (Tγ£)e(fB)=xX[(fe)c(x)υA[x]fA£γe(υA)],
    (Tπ£)e(fB)=xX[(fe)c(x)υA[x]fA£πe(υA)],
    (Tς£)e(fB)=xX[(fe)c(x)υA[x]fA£ςe(υA)].

    Then, Tγπς£ is an svnst on X, where (υA[x])(y)υA(y,x) for all eA.

    Proof. (T1) Obvious.

    (T2) Assume that

    υA[x](fD)1£γe(υA)μB[x](fD)2£γe(μB)κC[x](fD)1(fD)2£γe(κC),
    υA[x](fD)1£πe(υA)μB[x](fD)2£πe(μB)κC[x](fD)1(fD)2£πe(κC),
    υA[x](fD)1£ςe(υA)μB[x](fD)2£ςe(μB)κC[x](fD)1(fD)2£ςe(κC).

    Then, there exists υA,μB with υA[x](fD)1, μB[x](fD)2 such that

    £γe(υA)£γe(μB)κC[x](fD)1(fD)2£πe(κC),£πe(υA)£πe(μB)κC[x](fD)1(fD)2£πe(κA),
    £ςe(υA)£ςe(μB)κC[x](fD)1(fD)2£ςe(κC).

    This results in (υAμB)[x](fD)1(fD)2 such that

    κC[x](fD)1(fD)2£γe(κC)£γe(υAμB)£γe(υA)£γe(μB),
    κC[x](fD)1(fD)2£πe(κC)£πe(υAμB)£πe(υA)£πe(μB),
    κC[x](fD)1(fD)2£ςe(κC)£ςe(υAμB)£ςe(υA)£ςe(μB).

    It is a contradiction. Thus,

    (Tγ£)e((fD)1)(Tγ£)e((fD)2)=(xX[(fce)1(x)υA[x](fD)1£γe(υA)])(xX[(fce)2(x)μB[x](fD)2£γe(μB)])(xX[(fce)1(x)υA[x](fD)1£γe(υA)][(fce)2(x)μB[x](fD)2£γe(μB)])xX[((fce)1(fce)2)(x)υA[x](fD)1£γe(υA)μB[x](fD)2£γe(μB)]xX[((fce)1(fce)2)(x)(υAμB)[x](fD)1(fD)2£γe(υAμB)](Tγ£)e((fD)1(fD)2),
    (Tπ£)e((fD)1)(Tπ£)e((fD)2)=(xX[(fce)1(x)υA[x](fD)1£πe(υA)])(xX[(fce)2(x)μB[x](fD)2£πe(μB)])xX([(fce)1(x)υA[x](fD)1£πe(υA)][(fce)2(x)μB[x](fD)2£πe(μB)])xX[((fce)1(fce)2)(x)υA[x](fD)1£πe(υA)μB[x](fD)2£πe(μB)]xX[((fce)1(fce)2)(x)(υAμB)[x](fD)1(fD)2£πe(υAμB)](Tπ£)e((fD)1(fD)2).

    Likewise, we can establish through a similar line of reasoning that

    (Tς£)e((fD)1)(Tς£)e((fD)2)(Tς£)e((fD)1(fD)2).

    (T3) For eE

    (Tγ£)e(jΓ(fB)j)=xX[(jΓ(fe)j)c(x)][υA[x]j(fB)j£γe(υA)]=xX[jΓ(fce)j(x)υA[x]j(fB)j£γe(υA)]=jΓ[xX(fce)j(x)υA[x]j(fB)j£γe(υA)]jΓ[xX(fce)j(x)υA[x](fB)j£γe(υA)]=jΓ(Tγ£)e((fB)j),
    (Tπ£)e(jΓ(fB)j)=xX[(jΓ(fe)j)c(x)][υA[x]j(fB)j£πe(υA)]=xX[jΓ(fce)j(x)υA[x]j(fB)j£πe(υA)]xX[jΓ(fce)j(x)υA[x]j(fB)j£πe(υA)]=jΓ[xX(fce)j(x)υA[x]j(fB)j£πe(υA)]jΓ[xX(fce)j(x)υA[x](fB)j£πe(υA)]=jΓ(Tπ£)e((fB)j).

    In a similar vein, we can demonstrate through a parallel line of reasoning that

    (Tς£)e(jΓ(fB)j)jΓ(Tς£)e((fB)j).

    Therefore, Tγπς£ is an svnst on X.

    In this section, we obtain crucial results in introducing and characterizing single-valued neutrosophic soft uniformly continuous, on single-valued neutrosophic soft uniformly topological spaces. Moreover, the relationship between single-valued neutrosophic soft uniformly continuous and single-valued neutrosophic soft continuous is studied.

    Definition 11. Let (X,£γπςE) and (G,£γπςR) be two svns-uniform spaces and ψ:XG and ϑ:ER be two mappings. Then, an svns-map ψϑ:^(X×X,E)^(G×G,R) is called single-valued neutrosophic soft uniformly continuous (svns-uniformly continuous) if

    £γe((ψ×ψ)1ϑ(μB))£γϑ(e)(μB),£πe((ψ×ψ)1ϑ(μB))£πϑ(e)(μB),
    £ςe((ψ×ψ)1ϑ(μB))£ςϑ(e)(μB),

    for each μB^(G×G,R), eE.

    Proposition 1. Let (X,£γπςE) and (G,FγπςR) be svns-uniform spaces. If ψϑ:(X,£γπς)(G,Fγπς) is svns-uniformly continuous, then ψϑ:(X,(£γπςst)(G,Fγπςst) is svns-uniformly continuous.

    Proof. To prove this theorem, we need to prove that

    (£γst)e((ψ×ψ)1ϑ(υA))(Fγst)ϑ(e)(υA),(£πst)e((ψ×ψ)1ϑ(υA))(Fπst)ϑ(e)(υA),
    (£ςst)e((ψ×ψ)1ϑ(υA))(Fςst)ϑ(e)(υA),

    for each υA^(G×G,R), eE.

    Assume that

    (£γst)e((ψ×ψ)1ϑ(υA))(Fγst)ϑ(e)(υA),(£πst)e((ψ×ψ)1ϑ(υA)(Fπst)ϑ(e)(υA),
    (£ςst)e((ψ×ψ)1ϑ(υA))(Fςst)ϑ(e)(υA).

    From the concept of (Fγπςst)ϑ(e)(υA), there exists μB^(G×G,R), eE, ϱζ with μBˆEϱυA such that

    (£γst)e((ψ×ψ)1ϑ(υA))Fγϑ(e)(μB),(£πst)e((ψ×ψ)1ϑ(υA))Fπϑ(e)(μB),
    (£ςst)e((ψ×ψ)1ϑ(υA))Fςϑ(e)(μB).

    Since ψϑ:(X,(£γπςst)(G,Fγπςst) is svns-uniformly continuous,

    £γe((ψ×ψ)1ϑ(μB))Fγϑ(e)(μB),£πe((ψ×ψ)1ϑ(μB))Fπϑ(e)(μB),
    £ςe((ψ×ψ)1ϑ(μB))Fςϑ(e)(μB).

    From the concept of £γπςe((ψ×ψ)1ϑ(υA)), we get

    (£γst)e((ψ×ψ)1ϑ(υA))£γe((ψ×ψ)1ϑ(μB))Fγϑ(e)(μB),
    (£πst)e((ψ×ψ)1ϑ(υA))£πe((ψ×ψ)1ϑ(μB))Fπϑ(e)(μB),
    (£ςst)e((ψ×ψ)1ϑ(υA))£πe((ψ×ψ)1ϑ(μB))Fςϑ(e)(μB).

    This is a conflict with the hypothesis.

    Proposition 2. Let ψ:XG, and ϑ:ER be two mappings, and let fD^(X,E), υA,μB,κC^(G×G,R). Then, the following results hold in general:

    (1)ψ1ϑ(υA[ψϑ(fD)])=((ψ×ψ)1ϑ(υA))[fD],

    (2)((ψ×ψ)1ϑ(υsA))[fD]=((ψ×ψ)1ϑ(υA))s[fD],

    (3)(ψ×ψ)1ϑ(υAμB)=(ψ×ψ)1ϑ(υA)(ψ×ψ)1ϑ(μB),

    (4)(ψ×ψ)1ϑ(υA)(ψ×ψ)1ϑ(υA)(ψ×ψ)1ϑ(υAυA).

    Proof. (1) For ωψ(E), we get that

    ψ1ϑ(υω[ψϑ(fϑ1(ω))])(x)=ψ1ϑ(υω[(ψ(f))ω])(x)=(υω[(ψ(f))ω])(ψ(x))=yG[(ψ(f))ω(y)υω(y,ψ(x))]=zX[(ψ(f))ω(ψ(z))υω(ψ(z),ψ(x))]=zX[(fϑ1(ω))(z)(ψ×ψ)1(υω(z,x))]=(ψ×ψ)1ϑ(υω[(fϑ1(ω)])(x).

    (2) For ωψ(E), we have

    ((ψ×ψ)1ϑ(υsω))[fϑ1(ω)](x)=zX[(fϑ1(ω))(z)((ψ×ψ1)ϑ(υsω))(z,x)]=zX[(fϑ1(ω))(z)υsω(ψ(z),ψ(x)]=zX[(fϑ1(ω))(z)υω(ψ(x),ψ(z)]=zX[(fϑ1(ω))(z)((ψ×ψ)1ϑ(υω))(x,z)]=zX[(fϑ1(ω))(z)((ψ×ψ)1ϑ(υω))s(z,x)]=((ψ×ψ)1ϑ(υω))s[(fϑ1(ω)](x).

    (3) Direct.

    (4) For ωψ(E), we have

    ((ψ×ψ)1ϑ(υω)(ψ×ψ)1ϑ(υω))(x1,x2)=zX[(ψ×ψ)1ϑ(υω)(x1,z)(ψ×ψ)1ϑ(υω)(z,x2)]=zX[υω(ψ(x1),ψ(z))υω(ψ(z),ψ(x2))]zX[υω(ψ(x1),y)υω(y,ψ(x2))]=(υωυω)(ψ(x1),ψ(x2))=(ψ×ψ)1ϑ(υωυω)(x1,x2).

    Theorem 9. Let (X,£γπς) and (G,Fγπς) be svns-uniform spaces, ψϑ:^(X×X,E)^(G×G,R) be svns-uniformly continuous. Then, the following results hold in general.

    (1)ψ1ϑ(IFγπς(ω,fC,r))I£γπς(ϑ1(ω),ψ1ϑ(fC),r)), for each fC^(G,R), rξ, ωR,

    (2)C£γπς(ϑ1(ω),ψ1ϑ(fC),r))ψ1ϑ(CFγπς(ω,fC,r)), for each fC^(G,R), rξ, ωR,

    (3)ψϑ(C£γπς(e,gD,r))CFγπς(ϑ(ω),ψϑ(gD),r)), for each gD^(X,E), rξ, eE.

    Proof. (1) For each υA,^(G×G,R) and fC,gD^(G,R), from Proposition 2, υA[fC]gD implies that

    ((ψ×ψ)1ϑ(υA))[ψ1ϑ(fC)]=ψ1ϑ(υA[ψϑ(ψ1ϑ(fC))])ψ1ϑ(υA[fC])ψ1ϑ(gD).

    Since

    £γϑ1(ω)(μB)Fγω(υA),£πϑ1(ω)(μB)Fπω(υA),£ςϑ1(ω)(μB)Fςω(υA),

    for every μB(ψ×ψ)1ϑ(υA), we obtain

    ψ1ϑ(IFγπς(ω,fC,r))=ψ1ϑ({gD^(G,R):υA[gD]fC,Fγ(υA)r,Fπω(υA)1r,Fςω(υA)1r})={ψ1ϑ(gD)^(X,E):υA[gD]fC,Fγ(υA)r,Fπω(υA)1r,Fςω(υA)1r}{ψ1ϑ(fC)^(X,E):μB[ψ1ϑ(gD)]ψ1ϑ(fC),£γϑ1(ω)(μB)r,£πϑ1(ω)(μB)1r,£ςϑ1(ω)(μB)1r}I£γπς(ϑ1(ω),ψ1ϑ(fC),r)).

    In a similar vein, we can demonstrate (2) and (3) through a parallel line of reasoning.

    Theorem 10. Let (X,£γπςE) and (G,FγπςR) be svns-uniform spaces, and ψϑ:^(X,E)^(G,R) an injective svns-uniformly continuous. Then, ψϑ:(X,Tγπς£)(G,TγπςF) is svns-continuous.

    Proof. Since ψϑ injective and by applying Theorem 4, we get that:

    For each υA,^(G×G,R) and fB^(G,R), ωAB. Then,

    ((ψ×ψ)1ϑ((υfBA)ω))(x1,x2)=(υfBA)ω(ψ(x1),ψ(x2))={1,ifψ(x1)=ψ(x2),fω(ψ(x1))fω(ψ(x2)),ifψ(x1)ψ(x2),={1,ifψ(x1)=ψ(x2),ψ1ϑ(fω)(x1)ψ1ϑ(fω)(x2),ifψ(x1)ψ(x2),=(υψ1ϑ(fB)ϑ1(A))ϑ1(ω)(x1,x2).

    Therefore, eE

    (Tγ£)e(ψ1ϑ(fB))=£γe(υψ1ϑ(fB)ϑ1(A))=£γe((ψ×ψ)1ϑ(υfBA))Fγϑ(e)(υfBA)=(TγF)ϑ(e)(fB)
    (Tπ£)e(ψ1ϑ(fB))=£πe(υψ1ϑ(fB)ϑ1(A))=£πe((ψ×ψ)1ϑ(υfBA))Fπϑ(e)(υfBA)=(TπF)ϑ(e)(fB)
    (Tς£)e(ψ1ϑ(fB))=£ςe(υψ1ϑ(fB)ϑ1(A))=£ςe((ψ×ψ)1ϑ(υfBA))Fςϑ(e)(υfBA)=(TςF)ϑ(e)(fB).

    Theorem 11. Let (X,£γπςE) and (G,FγπςR) be two svns-uniform spaces and ψϑ:^(X,E)^(G,R) be an svns-uniformly continuous mapping. Then, ψϑ:(X,Tγπς£)(G,TγπςF) is svns-continuous.

    Proof. Initially, it is clear that ψ1ϑ(υA[ψ(x)])=(ψ×ψ)1ϑ(υA[x]) from that:

    [ψ1ϑ(υA[ψ(x)])](z)=(υA[ψ(x)])(ψ(z))=υA(ψ(z),ψ(x))=((ψ×ψ)1ϑ(υA))(z,x)=[((ψ×ψ)1ϑ(υA))[x]](z).

    Thus, υA[ψ(x)]fB implies that ψ1ϑ(υA[ψ(x)])=((ψ×ψ)1ϑ(υA))[x]ψ1ϑ(fB). By applying Theorem 8, we obtain

    (TγF)ω(fB)=y[(fcB)(y)υA[y]fBFγω(υA)]x[fcB(ψ(x))υA[ψ(x)]fBFγω(υA)]x[(ψ1ϑ(fB))c(x)((ψ×ψ)1ϑ(υA))[x]ψ1ϑ(fB)£γϑ1(ω)((ψ×ψ)1ϑ(υA))](Tγ£)ϑ1(ω)(ψ1ϑ(fB)),
    (Tπ£)ω(fB)=y[(fcB)(y)υA[y]fBFπω(υA)]x[fcB(ψ(x))υA[ψ(x)]fBFπω(υA)]x[(ψ1ϑ(fB))c(x)((ψ×ψ)1ϑ(υA))[x]ψ1ϑ(fB)£πϑ1(ω)((ψ×ψ)1ϑ(υA))](Tπ£)ϑ1(ω)(ψ1ϑ(fB)),

    Likewise, we can establish through a similar line of reasoning that (Tς£)ω(fB)(Tς£)ϑ1(ω)(ψ1ϑ(fB)).

    Theorem 12. Let {(Xj,(£γπςj)Ej):jΓ} be a family of svns- uniform spaces and, for all jΓ, ψj:XXj, and ϑj:EEj are mappings. Define £γ:Eζ^(X×X,E), £π:Eζ^(X×X,E) and £ς:Eζ^(X×X,E) on X by:

    £γe(υA)=[nj=1((£γωj)ϑωj(e))((μB)ωj)υAnj=1(ψωj×ψωj)1ϑωj((μB)ωj)],
    £πe(υA)=[nj=1((£πωj)ϑωj(e))((μB)ωj)υAnj=1(ψωj×ψωj)1ϑωj((μB)ωj)],
    £ςe(υA)=[nj=1((£ςωj)ϑωj(e))((μB)ωj)υAnj=1(ψωj×ψωj)1ϑωj((μB)ωj)].

    where is taken over all finite subsets Ω={ω1,ω2,...,ωn}Γ. Then,

    (1)£γπς is the coarsest svns-uniformity on X for which all {(ψϑ)j:jΓ} are svns-uniformly continuous.

    (2) A map ψϑ:(X,£γπςR)(X,£γπςE) is svns-uniformly continuous if for all jΓ, (ψϑ)jψϑ:(X,£γπςR)(Xj,(£γπςj)Ej) is svns-uniformly continuous.

    Proof. (1) Initially, we indication that £γπς is an svns-uniformity on X for which all {(ψϑ)j:jΓ} are svns-uniformly continuous.

    (£1) For every ωjΩ, there exists (υA)ωj(Xωj׈Xωj,Eωj) such that, for eE, we obtain that

    (£γωj)ϑωj(e))((μB)ωj)=1,(£πωj)ϑωj(e))((μB)ωj)=0,(£ςωj)ϑωj(e))((μB)ωj)=0.

    Put (ψωj×ψωj)1ϑωj((μB)ωj)=υA. Then, £γe(υA)=1, £πe(υA)=0 and £ςe(υA)=0.

    (£2) It is obvious from the definition of £γπς.

    (£3) For all limited subsets Ω={ω1,ω2,...,ωn}, T={t1,t2,...,tm} of Γ such that

    nj=1(ψωj×ψωj)1ϑωj((υA)ωj)υA,mj=1(ψtj×ψtj)1ϑtj((μB)tj)μB

    we have

    mj=1(ψtj×ψtj)1ϑtj((μB)tj)nj=1(ψωj×ψωj)1ϑωj((υA)ωj)μBυA.

    Moreover, for all ωΩT we have

    (ψω×ψω)1ϑω((μB)ω)(ψω×ψω)1ϑω((υA)ω)=(ψω×ψω)1ϑω((μB)ω(υA)ω).

    Put (ψmj×ψmj)1ϑmj((WC)mj)μBυA, where

    γ(WC)mj(x)={γ(υA)mj(x),ifmjΩ(ΩT),γ(μB)mj(x),ifmjΩ(ΩT),γ(υA)mj(x)γ(μB)mj(x),ifmjΩT,
    π(WC)mj(x)={π(υA)mj(x),ifmjΩ(ΩT),π(μB)mj(x),ifmjΩ(ΩT),π(υA)mj(x)π(μB)mj(x),ifmjΩT,
    ς(WC)mj(x)={ς(υA)mj(x),ifmjΩ(ΩT),ς(μB)mj(x),ifmjΩ(ΩT),ς(υA)mj(x)ς(μB)mj(x),ifmjΩT,

    Therefore, we obtain

    £γe(υAμB)jΩT(£γj)ϑj(e)((WC)j)[nj=1(£γωj)ϑωj(e)((υA)ωj)][mj=1(£γtj)ϑtj(e)((μB)tj)]
    £πe(υAμB)jΩT(£πj)ϑj(e)((WC)j)[nj=1(£πωj)ϑωj(e)((υA)ωj)][mj=1(£πtj)ϑtj(e)((μB)tj)],
    £ςe(υAμB)jΩT(£ςj)ϑj(e)((WC)j)[nj=1(£ςωj)ϑωj(e)((υA)ωj)][mj=1(£ςtj)ϑtj(e)((μB)tj)].

    Taking the supremum on the families nj=1(ψωj×ψωj)1ϑωj((υA)ωj)υA and mj=1(ψtj×ψtj)1ϑtj((μB)tj)μB we obtain

    £γe(υAμB)£γe(υA)£γe(μB),£πe(υAμB)£πe(υA)£πe(μB),
    £ςe(υAμB)£ςe(υA)£ςe(μB),eE.

    (£4) If £γe(υA)0, £πe(υA)1 and £ςe(υA)1, then there exists Ω={ω1,ω2,...,ωp} of Γ with pj=1(ψωj×ψωj)1ϑωj((μB)ωj)υA such that

    £γe(υA)pj=1(£γωj)ϑωj(e)((μB)ωj)0,£πe(υA)pj=1(£πωj)ϑωj(e)((μB)ωj)1,
    £πe(υA)pj=1(£πωj)ϑωj(e)((μB)ωj)1.

    Since, (£γωj)ϑωj(e)((μB)ωj)0, (£πωj)ϑωj(e)((μB)ωj)1, (£ςωj)ϑωj(e)((μB)ωj)0ωjΩ, then (\top)_{C}\npreceq(\upsilon_{_{B}})_{_{\omega_{_{j}}}} . Thus,

    \begin{equation*} (\top)_{C}\preceq (\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\top)_{C})\preceq\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}. \end{equation*}

    (£_{_{5}}) Assume that £^{\gamma}_{_{e}}(\upsilon_{_{A}}^{s})\ngeq£^{\gamma}_{_{e}}(\upsilon_{_{A}}) , £^{\pi}_{_{e}}(\upsilon_{_{A}}^{s})\nleq£^{\pi}_{_{e}}(\upsilon_{_{A}}) and £^{\varsigma}_{_{e}}(\upsilon_{_{A}}^{s})\nleq£^{\varsigma}_{_{e}}(\upsilon_{_{A}}) . From the concept of £^{\gamma\pi\varsigma} , there exists \Omega = \{\omega_{1}, \omega_{2}, ..., \omega_{p}\} of \Gamma with \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}} such that

    \begin{equation*} £_{_{e}}^{\gamma}(\upsilon_{_{A}}^{s})\ngeq\bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}),\;\;\;\;\;£_{_{e}}^{\pi}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}), \end{equation*}
    \begin{equation*} £_{_{e}}^{\varsigma}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}). \end{equation*}

    Since £_{\omega_{_{j}}}^{\gamma\pi\varsigma} is an svns-uniformity on \mathcal{X} for each \omega_{_{j}}

    \begin{equation*} (£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}})\geq(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}), \;\;\;\;\; (£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}})\leq(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}), \end{equation*}
    \begin{equation*} (£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}})\leq(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}). \end{equation*}

    It follows that

    \begin{equation*} £_{_{e}}^{\gamma}(\upsilon_{_{A}}^{s})\ngeq\bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}),\;\;\;\;\;£_{_{e}}^{\pi}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}), \end{equation*}
    \begin{equation*} £_{_{e}}^{\varsigma}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}). \end{equation*}

    On the other hand,

    \begin{equation*} \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu^{s}_{_{B}})_{\omega_{_{j}}}) = \sqcap^{n}_{j = 1}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}}))^{s} \preceq\upsilon^{s}_{_{A}}. \end{equation*}

    Hence,

    \begin{equation*} £_{_{e}}^{\gamma}(\upsilon_{_{A}}^{s})\geq\bigwedge\limits^{p}_{j = 1}£^{\gamma}_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}),\;\;\;\;\;£_{_{e}}^{\pi}(\upsilon_{_{A}}^{s})\leq\bigvee\limits^{p}_{j = 1}£^{\pi}_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}), \;\;\;\;\; £_{_{e}}^{\varsigma}(\upsilon_{_{A}}^{s})\leq\bigvee\limits^{p}_{j = 1}£^{\varsigma}_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}). \end{equation*}

    It is a contradiction. Hence, (£_{_{5}}) holds.

    (£_{_{6}}) Suppose that for each \upsilon_{_{A}}\in\widehat{(\mathcal{X}\times\mathcal{X}, \text{E})}

    \begin{equation*} £^{\gamma}_{e}(\upsilon_{_{A}})\nleq \bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \;\;\;\; £^{\pi}_{e}(\upsilon_{_{A}})\ngeq \bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*}
    \begin{equation*} £^{\varsigma}_{e}(\upsilon_{_{A}})\ngeq \bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}})\circ(\upsilon_{_{A}})_{_{1}})\preceq\upsilon_{_{A}}\}. \end{equation*}

    By the concept of £^{\gamma\pi\varsigma} , there exists \Omega = \{\omega_{1}, \omega_{2}, ..., \omega_{p}\} of \Gamma with \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}} such that

    \begin{equation*} \bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mu_{_{\omega_{_{j}}}})\nleq\bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*}
    \begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mu_{_{\omega_{_{j}}}})\ngeq\bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*}
    \begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\varsigma{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mu_{_{\omega_{_{j}}}})\ngeq\bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}. \end{equation*}

    Since £_{\omega_{_{j}}}^{\gamma\pi\varsigma} is svns- uniformity on \mathcal{X}_{_{\omega_{_{j}}}} for each \omega_{_{j}}\in\Omega

    \begin{equation*} (£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{j}})\nleq\bigvee\{(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\mid\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\mu_{_{B}}\}, \end{equation*}
    \begin{equation*} (£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{j}})\ngeq\bigwedge\{(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\mid\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\mu_{_{B}}\}, \end{equation*}
    \begin{equation*} (£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{j}})\ngeq\bigwedge\{(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\mid\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\mu_{_{B}}\}. \end{equation*}

    Thus, there exists \mathcal{W}_{_{C}}\in\widehat{(\mathcal{X}_{_{\omega_{_{j}}}}\times\mathcal{X}_{_{\omega_{_{j}}}}, {E}_{_{\omega_{_{j}}}})} , \mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\upsilon_{_{A}} such that

    \begin{equation*} \bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\nleq\bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*}
    \begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\ngeq\bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*}
    \begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\varsigma{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\ngeq\bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}. \end{equation*}

    On the other hand,

    \begin{eqnarray*} &\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}})\circ\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}})&\preceq\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}})\\&&\preceq\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}. \end{eqnarray*}

    Therefore, we have

    \begin{equation*} \bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}\geq£_{{e}}^{\gamma}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}))\geq (£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}}), \end{equation*}
    \begin{equation*} \bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}\leq£_{{e}}^{\pi}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}))\leq (£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}}), \end{equation*}
    \begin{equation*} \bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}\leq£_{{e}}^{\varsigma}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}))\leq (£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}}). \end{equation*}

    It is a contradiction. Hence, £_{_{6}} holds.

    Next by the concept of £^{\gamma\pi\varsigma} it is easily proved that, for each j\in\Gamma

    \begin{equation*} £_{{e}}^{\gamma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}(\mu_{_{B}}))\geq (£_{_{j}}^{\gamma})_{_{\vartheta_{j}(e)}}(\mu_{_{B}}),\;\;\;\;\;£_{{e}}^{\pi}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}(\mu_{_{B}}))\leq (£_{_{j}}^{\pi})_{_{\vartheta_{j}(e)}}(\mu_{_{B}}), \end{equation*}
    \begin{equation*} £_{{e}}^{\varsigma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}(\mu_{_{B}}))\leq (£_{_{j}}^{\varsigma})_{_{\vartheta_{j}(e)}}(\mu_{_{B}}), \;\forall\;\mu_{_{B}}\in\widehat{(\mathcal{X}_{_{j}}\times\mathcal{X}_{_{j}}, \text{E}_{_{j}})}. \end{equation*}

    Thus, (\psi_{_{j}})_{\vartheta_{j}}:\mathcal{X}\rightarrow \mathcal{X}_{_{j}} is svns-uniformly continuous.

    Lastly, let us say that £^{\star\gamma\pi\varsigma} is an svns-uniformity on \mathcal{X} and (\psi_{_{j}})_{\vartheta_{j}}:(\mathcal{X}, £^{\star\gamma\pi\varsigma})\rightarrow (\mathcal{X}_{_{j}}, £_{j}^{\gamma\pi\varsigma}) is svns-uniformly continuous, that is, for every j\in \Gamma and (\mu_{_{B}})_{j}\in\widehat{(\mathcal{X}_{j}\times\mathcal{X}_{j}, \text{E}_{_{j}}}) ,

    \begin{equation*} £_{{e}}^{\star\gamma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}((\mu_{_{B}})_{j}))\geq (£_{_{j}}^{\gamma})_{_{\vartheta_{j}(e)}}((\mu_{_{B}})_{j}), \;\;\;\;\;\; £_{{e}}^{\star\pi}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}((\mu_{_{B}})_{j}))\leq (£_{_{j}}^{\pi})_{_{\vartheta_{j}(e)}}((\mu_{_{B}})_{j}), \end{equation*}
    \begin{equation*} £_{{e}}^{\star\varsigma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}((\mu_{_{B}})_{j}))\leq (£_{_{j}}^{\varsigma})_{_{\vartheta_{j}(e)}}((\mu_{_{B}})_{j}). \end{equation*}

    For every finite subset \Omega = \{\omega_{1}, \omega_{2}, ..., \omega_{p}\} of \Gamma with \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}} , we have

    \begin{eqnarray*} &£^{\gamma}_{_{e}}(\upsilon_{_{A}})& = \bigvee\left[\bigwedge^{p}_{j = 1}(£^{\gamma}_{_{j}})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{_{j}}}})\mid\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}\right]\\&&\leq\bigvee\left[\bigwedge^{p}_{j = 1}(£^{\star\gamma}_{_{e}}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\mid\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}\right]\\&&\leq\bigvee\left[\bigwedge^{p}_{j = 1}(£^{\star\gamma}_{_{e}}(\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}}))\mid\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}\right]\\&&\leq £^{\star\gamma}_{_{e}}(\upsilon_{_{A}}). \end{eqnarray*}

    In a similar vein, we can demonstrate through a parallel line of reasoning that £^{\pi}_{_{e}}(\upsilon_{_{A}})\geq £^{\star\pi}_{_{e}}(\upsilon_{_{A}}) and £^{\varsigma}_{_{e}}(\upsilon_{_{A}})\geq £^{\star\varsigma}_{_{e}}(\upsilon_{_{A}}) .

    (2) It can be easily proved.

    Many scientists have studied the soft set theory and easily applied it to many problems in social life. In the present work, we defined the single-valued neutrosophic soft uniform spaces and single-valued neutrosophic soft uniform bases. The relationships between them were also investigated. Next, the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies, and single-valued neutrosophic soft interior operators were introduced and studied. Finally, we proved crucial results in introducing and characterizing single-valued neutrosophic soft uniformly continuous, on single-valued neutrosophic soft uniformly topological spaces. Moreover, the relationship between single-valued neutrosophic soft uniformly continuous and single-valued neutrosophic soft continuous was studied. This paper can form the theoretical basis for further applications of single-valued neutrosophic soft topology, potentially leading to the development of other scientific areas.

    The authors declare that they have not used Artificial Intelligence tools in the creation of this article.

    The authors would like to extend their sincere appreciation to Supporting Project number (RSPD2023R860) King Saud University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [3] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956
    [4] F. Smarandache, A unifying field in logics: Neutrosophic logic, Rehoboth: American Research Press, 1999.
    [5] D. Molodtsov, Soft set theory-first result, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5
    [6] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602.
    [7] P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inf., 5 (2013), 157–168.
    [8] B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 586507. https://doi.org/10.1155/2009/586507
    [9] H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct, 4 (2010), 410–413.
    [10] Y. M. Saber, F. Alsharari, F. Smarandache, On Single-valued neutrosophic ideals in Šostak sense, Symmetry, 12 (2020), 193. https://doi.org/10.3390/sym12020193 doi: 10.3390/sym12020193
    [11] Y. M. Saber, F. Alsharari, F. Smarandache, A. Abdel-Sattar, Connectedness and stratification of single-valued neutrosophic topological spaces, Symmetry, 12 (2020), 1464. https://doi.org/10.3390/sym12091464 doi: 10.3390/sym12091464
    [12] F. Alsharari, F. Smarandache, Y. M. Saber, Compactness on single-valued neutrosophic ideal topological spaces, Neutrosophic Sets Syst., 41 (2021), 127–145.
    [13] Y. M. Saber, F. Alsharari, F. Smarandache, A. Abdel-Sattar, On single valued neutrosophic regularity spaces, Comput. Model. Eng. Sci., 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782 doi: 10.32604/cmes.2022.017782
    [14] D. Sasirekha, P. Senthilkumar, Determining the Best Plastic Recycling Technology Using the MABAC Method in a Single-Valued Neutrosophic Fuzzy Approach, Neutrosophic Sets Syst., 58 (2023), 194–210
    [15] F. Masri, M. Zeina, O. Zeitouny, Some Single Valued Neutrosophic Queueing Systems with Maple Code, Neutrosophic Sets Syst., 53 (2023), 251–273. https://doi.org/10.5281/zenodo.7536023 doi: 10.5281/zenodo.7536023
    [16] Y. M. Saber, F. Alsharari, F. Smarandache, An Introduction to Single-Valued Neutrosophic Soft Topological Structure, Soft Comput., 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4 doi: 10.1007/s00500-022-07150-4
    [17] S. Shahzadi, A. Rasool, G. Santos-Garcìa, Methods to find strength of job competition among candidates under single-valued neutrosophic soft model, Math. Bio. Eng., 20 (2023), 4609–4642. https://doi.org/10.3934/mbe.2023214 doi: 10.3934/mbe.2023214
    [18] A. Cano, G. Petalcorin, Single-valued Neutrosophic Soft sets in Hyper UP-Algebra, Eur. J. Pure. Appl. Math., 16 (2023), 548–576. https://doi.org/10.29020/nybg.ejpam.v16i1.4637 doi: 10.29020/nybg.ejpam.v16i1.4637
    [19] A. Özkan, Ş. Yazgan, S. Kaur, Neutrosophic Soft Generalized b-Closed Sets in Neutrosophic Soft Topological Spaces, Neutrosophic Sets Syst., 56 (2023), 48–69.
    [20] S. Al-Hijjawi, A. Ahmad, S. Alkhazaleh, A generalized effective neurosophic soft set and its applications, AIMS Mathematics, 18 (2023), 29628–29666. https://doi.org/10.3934/math.20231517 doi: 10.3934/math.20231517
    [21] C. Jana, M. Pal, A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [22] N. L. A. Mohd Kamal, L. Abdullah, Multi-Valued Neutrosophic Soft Set, Malays. J. Math. Sci., 13 (2019), 153–168.
    [23] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl., 82 (1981), 370–385. https://doi.org/10.1016/0022-247X(81)90202-X
    [24] W. Kotzé, Uniform spaces, In: Mathematics of Fuzzy Sets, Boston: Springer, 553–580.
    [25] B. Hutton, Uniformities in fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 559–571. https://doi.org/10.1016/0022-247X(77)90192-5 doi: 10.1016/0022-247X(77)90192-5
    [26] S. E. Abbas, I. Ibedou, Fuzzy soft uniform spaces, Soft Comput., 21 (2017), 6073–6083. https://doi.org/10.1007/s00500-016-2327-3
    [27] J. Dezert, Open Questions to Neutrosophic Inferences, Multi. Val. Logic., 8 (2001), 439–472.
  • This article has been cited by:

    1. Fahad Alsharari, Hanan Alohali, Yaser Saber, Florentin Smarandache, An Introduction to Single-Valued Neutrosophic Primal Theory, 2024, 16, 2073-8994, 402, 10.3390/sym16040402
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1349) PDF downloads(72) Cited by(1)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog