
In this paper, we introduce the notion of single-valued neutrosophic soft uniform spaces as a view point of the entourage approach. We investigate the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and single-valued neutrosophic soft interior operators. Also, we study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform space.
Citation: Yaser Saber, Hanan Alohali, Tawfik Elmasry, Florentin Smarandache. On single-valued neutrosophic soft uniform spaces[J]. AIMS Mathematics, 2024, 9(1): 412-439. doi: 10.3934/math.2024023
[1] | Sumyyah Al-Hijjawi, Abd Ghafur Ahmad, Shawkat Alkhazaleh . A generalized effective neurosophic soft set and its applications. AIMS Mathematics, 2023, 18(12): 29628-29666. doi: 10.3934/math.20231517 |
[2] | Ning Liu, Zengtai Gong . Derivatives and indefinite integrals of single valued neutrosophic functions. AIMS Mathematics, 2024, 9(1): 391-411. doi: 10.3934/math.2024022 |
[3] | Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, Mazin Abed Mohammed, Karrar Hameed Abdulkaree, Abed Saif Alghawli, Mohammed AA Al-qaness . An innovative decision-making framework for supplier selection based on a hybrid interval-valued neutrosophic soft expert set. AIMS Mathematics, 2023, 8(9): 22127-22161. doi: 10.3934/math.20231128 |
[4] | Majdoleen Abu Qamar, Abd Ghafur Ahmad, Nasruddin Hassan . An approach to Q-neutrosophic soft rings. AIMS Mathematics, 2019, 4(4): 1291-1306. doi: 10.3934/math.2019.4.1291 |
[5] | Saba Al-Kaseasbeh, Madeline Al Tahan, Bijan Davvaz, Mariam Hariri . Single valued neutrosophic $ (m, n) $-ideals of ordered semirings. AIMS Mathematics, 2022, 7(1): 1211-1223. doi: 10.3934/math.2022071 |
[6] | Amr Elrawy, Mohamed Abdalla . Results on a neutrosophic sub-rings. AIMS Mathematics, 2023, 8(9): 21393-21405. doi: 10.3934/math.20231090 |
[7] | Jie Ling, Mingwei Lin, Lili Zhang . Medical waste treatment scheme selection based on single-valued neutrosophic numbers. AIMS Mathematics, 2021, 6(10): 10540-10564. doi: 10.3934/math.2021612 |
[8] | Hatice Tasbozan . Near neutrosophic soft set. AIMS Mathematics, 2024, 9(4): 9447-9454. doi: 10.3934/math.2024461 |
[9] | Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051 |
[10] | Xiaoyan Zhou, Mingwei Lin, Weiwei Wang . Statistical correlation coefficients for single-valued neutrosophic sets and their applications in medical diagnosis. AIMS Mathematics, 2023, 8(7): 16340-16359. doi: 10.3934/math.2023837 |
In this paper, we introduce the notion of single-valued neutrosophic soft uniform spaces as a view point of the entourage approach. We investigate the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and single-valued neutrosophic soft interior operators. Also, we study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform space.
There are many theories that have been suggested for dealing with uncertainties in an efficient way such as the theory of fuzzy sets[1], the theory of intuitionistic fuzzy sets[2], the theory of rough sets[3], and the theory of neutrosophic sets[4]. However, the idea of fuzzy sets, intuitionistic fuzzy sets, and neutrosophic sets are not sufficient to cope with parametrization tools. In 1999, Molodtsov[5] proposed the idea of a soft set that has the ability to deal with this difficulty. The idea of fuzzy soft (FS) sets and neutrosophic soft sets was proposed by Maji et al.[6,7], and some properties of FS sets were discussed by Ahmad and Kharal[8]. Wang et al. [9] proposed the idea of single-valued neutrosophic sets. Saber et al. [10,11,12,13] introduced several concepts including, r-single-valued neutrosophic compact modulo, and r-single-valued neutrosophic connected sets in single-valued neutrosophic topological spaces, single-valued neutrosophic ideal open local function, single-valued neutrosophic θ£-separated. Single-valued neutrosophic fuzzy set and multi-attribute decision-making were introduced by Sasirekha et al. [14]. Masri et al. [15] introduced the idea of a single-valued trapezoidal neutrosophic number.
Šostak's single-valued neutrosophic soft topological spaces and single-valued neutrosophic soft sets were constructed by Saber et al. [16]. The concept of single-valued neutrosophic soft has been thoroughly explored and advanced by numerous researchers, such as (Shahzadi et al. [17], Cano et al. [18], Özkan et al. [19], Al-Hijjawi et al. [20], Jana et al. [21] and Kamal et al. [22]) There are three alternative approaches to uniformity in the fuzzy case: Lowen's [23] entourage approach based on power sets of the form ζX×X, Kotzé's [24] uniform covering approach, and Hutton's [25] uniform operator approach.
It is well known that the theory of neutrosophic sets has been regarded as a generalization of the theory of fuzzy sets, the theory of intuitionistic fuzzy sets and the theory of rough sets. Furthermore, this is an important mathematical tool to deal with uncertainty. One of the main contributions of this paper is to introduce the concepts of single-valued neutrosophic uniformity in the sense of entourage, which is a generalization of the concepts introduced in Lowen[23], Kotzé[24], Hutton[25] and Abbas et al. [26].
Motivated by the above discussion, the present work deals with the single-valued neutrosophic uniformity in the sense of entourage. We introduce the notions of single-valued neutrosophic soft uniform spaces and single-valued neutrosophic soft uniform bases. The notion of this single-valued neutrosophic soft uniformities to be stratified is ensured. We investigate the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and single-valued neutrosophic soft interior operators. We study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform structure. Finally, we introduce the product single-valued neutrosophic soft uniformity of a given family of single-valued neutrosophic soft uniform spaces.
In this section, we give all the basic definitions and results that we need to go through our work. First, we give the definition of a single-valued neutrosophic set (svn-set) and a single-valued neutrosophic soft set (svns-set). For more details about svn-set theory and svns-set theory, we refer to [9,16]. As usual, ^(X,E) denotes the family of all svns-sets on X, and E is the set of all parameters. Additionally, X indicates an initial universe and ζX are the sets of all svn-sets on X (where, ζ=[0,1] and ζ0=(0,1]).
Definition 1. [4]. Let X be a universe set. A neutrosophic set (n-set) Θ on X defined as
Θ={⟨y,γΘ(y),πΘ(y),ςΘ(y)∣y∈X,γΘ(y),πΘ(y),ςΘ(y)∈⌋−0,1+⌊}, |
where γΘ(y), πΘ(y) and ςΘ(y) are the truth, the indeterminacy, and the falsity membership functions respectively.
Definition 2. [9]. Let X be a non-null set. Then, svn-set Θ on X is defined as
Θ={⟨y,γΘ(y),πΘ(y),ςΘ(y)∣y∈X,γΘ(y),πΘ(y),ςΘ(y)∈ζ}, |
where γΘ,πΘ,ςΘ:X→ζ and 0≤γΘ(y)+πΘ(y)+ςΘ(y)≤3.
Remark 1. To clarify the relationship between intuitionistic fuzzy sets if-set, neutrosophic sets n-set, and single-valued neutrosophic sets svn-set, let us confirm that both neutrosophic sets and single-valued neutrosophic sets are a generalization of the concept of intuitionistic fuzzy sets, as follows:
In IFS, paraconsistent, dialtheist and incomplete information cannot be characterized. This most important distinction between if-set and n-set is shown in the below neutrosophic cube A' B' C' D' E' F' G' H' introduced by J. Dezert [27].
Because only the classical interval [0, 1]is used as a range for the neutrosophic parameters in technical applications (truth, indeterminacy and falsity), we call the cube ABCDEDGH the technical neutrosophic cube and its extension A' B' C' D' E' F' G' H' the neutrosophic cube or nonstandard neutrosophic cube, used in the fields where we need to differentiate between absolute and relative notions like philosophy.
Definition 3. [16]. fA is an svns-set on X, where f:E→ζX; i.e., fe≜f(e) is an svn-set on X, for all e∈A and f(e)=⟨0,1,1⟩, if e∉A.
The svn-set f(e) is termed as an element of the svns−setfA. Thus, an svns−setfE on X can be defined as:
(f,E)={(e,f(e))∣e∈E,f(e)∈ζX}={e,⟨γf(e),πf(e),ςf(e)⟩)∣e∈E,f(e)∈ζX}, |
where γf:E→ζ (γf is termed as a membership function), πf:E→ζ (πf is termed as indeterminacy function) and ςf:E→ζ (ςf is termed as a nonmembership function) of svns−set.
An svns-set fE on X is termed as a null svns-set (for short, ˆΦ), if γf(e)=0,πf(e)=1 and ςf(e)=1, for any e∈E.
An svns−setfE on X is termed as an absolute svns-set (for short, ˜ˆE), if γf(e)=1,πf(e)=0 and ςf(e)=0, for any e∈E.
Definition 4. [16]. Let fA,gB∈^(X,E) be an svns-sets on X. Then,
(1) Inclusion of two sets (for short, fA⪯gB) defined as:
γf(e)≤γg(e),πf(e)≥πg(e),ςf(e)≥ςg(e). |
(2) The complemented of the set fA denoted by (for short, fcA) defined as:
fcA={(e,⟨ςf(e),˜πfc(e),γf(e)⟩)∣e∈E}. |
Definition 5. [16]. A mapping Tγ,Tπ,Tς:E→ζ^(X,E) is said to be a single-valued neutrosophic soft topology (svnst) on X if it meets the next criteria, for every e∈E:
(T1)Tγe(ˆΦ)=1, Tπe(ˆΦ)=0, Tςe(ˆΦ)=0 and Tγe(ˆE)=1Tπe(ˆE)=0, Tςe(ˆE)=0,
(T2)Tγe(fA⊓gB)≥Tγe(fA)∧Tγe(gB), Tπe(fA⊓gB)≤Tπe(fA)∨Tπe(gB),
Tςe(fA⊓gB)≤Tςe(fA)∨Tςe(gB), ∀fA,gB∈^(X,E),
(T3)Tγe(⨆j∈Γ(fA)j)≥⋀j∈ΓTγe((fA)j), Tπe(⨆j∈Γ(fA)j)≤⋁j∈ΓTπe((fA)j),
Tςe(⨆j∈Γ(fA)j)≤⋁j∈ΓTςe((fA)j), ∀(fA)j∈^(X,E), j∈Γ.
(Note that ⊓ and ⊔ in the definition are clarified in Molodtsov [5]). The quadruple (X,Tγ,Tπ,Tς) is said to be a single-valued neutrosophic soft topological space (svnst-space), where (Tγe(fA)) representing the degree of openness, (Tπe(fA)) the degree of indeterminacy and (Tςe(fA)) the degree of non-openness; of a svns-set with respect to that parameter e∈E. Sometimes, we will write Tγπς for (Tγ,Tπ,Tς).
Let (X,Tγπς) and (G,T⋆γπς) be svnst-space. An svns-mapping ψφ:^(X,E)→^(G,R) is said to be a single-valued neutrosophic soft continuous mapping (svnsc-map) if
Tγe(ψ−1φ(gB))≥T⋆γφ(e)(gB),Tπe(ψ−1φ(gB))≤T⋆πφ(e)(gB), |
Tςe(ψ−1φ(gB))≤T⋆ςφ(e)(gB), |
for all gB∈^(G,R) and e∈E [Saber et al. (2022)[16].
Definition 6. A map I:E×^(X,E)×ζ0→^(X,E) is said to be single-valued neutrosophic soft interior operator (svnsi-operator) on X if it meets the next criteria, ∀, e∈E, fA,gB∈^(X,E) and r,s∈ζ:
(I1) I(e,ˆE,r)=ˆE,
(I2) I(e,fA,r)⪯fA,
(I3) if fA⪯gB and r≤s then I(e,fA,r)⪯I(e,gB,s),
(I4) I(e),fA⊓gB,r∧s)⪰I(e,fA,r)⊓I(e,gB,s),
(I5) I(e,I(e,fA,r),r)=I(e,fA,r).
Definition 7. [16]. A map C:E×^(X,E)×ζ0→^(X,E) is said to be single-valued neutrosophic soft closure operator (svnsc-operator) on X if it meets the next criteria, ∀, e∈E, fA,gB∈^(X,E) and r,s∈ζ:
(C1) C(e,ˆΦ,r)=ˆΦ,
(C2) C(e,fA,r)⪰fA,
(C3) if fA⪯gB and r≤s then C(e,fA,r)⪯C(e,gB,s),
(C4) C(e,fA⊔gB,r∧s)⪯C(e,fA,r)⊔C(e,gB,s),
(C5) C(e,C(e,fA,r),r)⪯C(e,fA,r),
(C6) C(e,fA,r)=[I(e,fcA,r)]c.
The main objective of this section is to define and discuss the concepts of single-valued neutrosophic soft uniformity (svns-uniformity), single-valued neutrosophic soft uniform base (svns-uniform base) and stratified single-valued neutrosophic soft uniform space (ssvns-uniform space). Several basic properties and theorems related to these concepts are explored.
In this section, we indicate that ^(X×X,E) is the family of all svns-sets on X×X and ζX×X are the sets of all svn-sets on X×X. Additionally, for ϱ∈ζ, ˉϱ(x,y)=ϱ for any (x,y)∈X×X.
Definition 8. Let X be a set. A mappings £γ,£π,£ς:E→ζ^(X×X,E) is called an svns-uniformity on X if it meets the next criteria:
(£1) for any e∈E, there exists υA∈^(X×X,E) such that £γe(υA)=1, £πe(υA)=0, £ςe(υA)=0,
(£2) if υA⪯μB, then £γe(υA)≤£γe(μB), £πe(υA)≥£πe(μB), £ςe(υA)≥£ςe(μB),
(£3) for every υA,μB∈^(X×X,E), then
£γe(υA⊓μB)≥£γe(υA)∧£γe(μB),£πe(υA⊓μB)≤£πe(υA)∨£πe(μB) |
£ςe(υA⊓μB)≤£ςe(υA)∨£ςe(μB), |
(£4)(⊤)C⋠υA implies that £γe(υA)=0, £πe(υA)=1, £ςe(υA)=1, where, ∀e∈E,
(⊤)e(x,y)={⟨1,0,0⟩,ifx=y,⟨0,1,1⟩,otherwise, |
(£5)£γe(υA)≤£γe(υsA), £πe(υA)≥£πe(υsA), £ςe(υA)≥£ςe(υsA), where υse(x,y)=υe(y,x) for every e∈E,
(£6) for each υA∈^(X×X,E), e∈E,
£γe(υA)≤⋁{£γe(μB):(μB∘μB)⪯υA},£πe(υA)≥⋀{£πe(μB):(μB∘μB)⪯υA}, |
£ςe(υA)≥⋀{£ςe(μB):(μB∘μB)⪯υA}, |
where (υB∘μB)=⋁z∈X{υe(x,z)∧μe(z,y)} for each x,y∈X.
A svns-uniformity £γ,£π,£ς:E→ζ^(X×X,E) is called stratified if
(£st)£γe(ˆEϱ)=1, £πe(ˆEϱ)=0, £ςe(ˆEϱ)=0, where υE=ˆEϱ if υe=ˉϱ∀, e∈E.
After adding the last condition (X,£γ,£π,£ς) is called ssvns-uniform space. Sometimes, we will write £γπςE for (£γ,£π,£ς).
Let £γπςE and £⋆γπςE be two svns-uniformities on X. £γπςE is finer than £⋆γπςE (£⋆γπςE is coarser than £γπςE), indicated by £⋆γπςE⪯£γπςE provided
£⋆γe(υA)≤£γE(υA),£⋆πe(υA)≥£πe(υA),£⋆ςe(υA)≥£ςe(υA),∀e∈E,υA∈^(X×X,E). |
Remark 2. Suppose that (X,£γπςE) is an svns-uniform space. Then, by using the two conditions (£1) and (£2), we obtain, £γe(ˆE)=1, £πe(ˆE)=0, £ςe(ˆE)=0 because υA⪯ˆE for every e∈E, υA∈^(X×X,E).
Theorem 1. Let (X,£γπςE) be an svns-uniform space. Define for any e∈E, υA∈^(X×X,E).
(£γst)e(υA)=⋁{£γe((μB)):μB⊓ˆEϱ⪯υA,ϱ∈ζ}, |
(£πst)e(υA)=⋀{£πe((μB)):μB⊓ˆEϱ⪯υA,ϱ∈ζ}, |
(£ςst)e(υA)=⋀{£ςe((μB)):μB⊓ˆEϱ⪯υA,ϱ∈ζ}. |
Then, (£γπςst)E is the coarsest ssvns-uniformity which is finer than £γπςE.
Proof. (£1) There exists υA∈^(X×X,E) such that £γe(υA)=1, £πe(υA)=0, £ςe(υA)=0 for every e∈E. Since υA⊓ˆEϱ⪯υA,then(£γst)e(υA)=1,(£πst)e(υA)=0,(£ςst)e(υA)=0.
(£2) Direct from the definition.
(£3) Let there exist (υ1)A,(υ2)B∈^(X×X,E) such that for every e∈E,
(£γst)e((υ1)A⊓(υ2)B)≱(£γst)e((υ1)A)∧(£γst)e((υ2)B), |
(£πst)e((υ1)A⊓(υ2)B)≰(£πst)e((υ1)A)∨(£πst)e((υ2)B), |
(£ςst)e((υ1)A⊓(υ2)B)≰(£ςst)e((υ1)A)∨(£ςst)e((υ2)B). |
By using the definition of (£γπςst)E, then there exists (μ1)C,(μ2)D∈^(X×X,E), ϱ1,ϱ2∈ζ with (μ1)C⊓ˆEϱ1⪯(υ1)A, (μ2)D⊓ˆEϱ2⪯(υ2)B such that
(£γst)e((υ1)A⊓(υ2)B)≱£γe((μ1)C)∧£γe((μ2)D), |
(£πst)e((υ1)A⊓(υ2)B)≰£πe((μ1)C)∨£πe((μ2)D), |
(£ςst)e((υ1)A⊓(υ2)B)≰£ςe((μ1)C)∨(£ςe((μ2)D). |
Otherwise, (μ1)C⊓(μ2)D⊓ˆEϱ1⊓ˆEϱ2⪯(υ1)A⊓(υ2)B. Then, we have
(£γst)e((υ1)A⊓(υ2)B)≥£γe((μ1)C⊓(μ2)D)≥£γe((μ1)C)∧£γe((μ2)D), |
(£πst)e((υ1)A⊓(υ2)B)≤£πe((μ1)C⊓(μ2)D)≤£πe((μ1)C)∨£πe((μ2)D), |
(£ςst)e((υ1)A⊓(υ2)B)≤£ςe((μ1)C⊓(μ2)D)≤£ςe((μ1)C)∨(£ςe((μ2)D). |
This is a contradiction. Consequently, (£3) holds.
(£4) Direct from the definition.
(£5) Let
(£γst)e(υsA)≱(£γst)e(υA),(£πst)e(υsA)≰(£πst)e(υA),(£ςst)e(υsA)≰(£ςst)e(υA), |
∀, e∈E, υA∈^(X×X,E). By using the definition of (£γπςst)E, there exists μB∈^(X×X,E), ϱ∈ζ with μB⊓ˆEϱ⪯υA, such that
(£γst)e(υsA)≱£γe(μB),(£πst)e(υsA)≰£πe(μB),(£ςst)e(υsA)≰£ςe(μB). |
Since £γπςE is svns-uniformity, then
£γe(μB)≤£γe(μsB),£πe(μB)≥£πe(μsB),£ςe(μB)≥£ςe(μsB), |
It follows that
(£γst)e(υsA)≱£γe(μsB),(£πst)e(υsA)≰£πe(μsB),(£ςst)e(υsA)≰£ςe(μsB). |
On the other hand, μsB⊓ˆEϱ⪯υsA. Hence, for each e∈E
(£γst)e(υsA)≥£γe(μsB),(£πst)e(υsA)≤£πe(μsB),(£ςst)e(υsA)≤£ςe(μsB). |
This is a contradiction. Therefore, (£5) holds.
(£6) Suppose that
(£γst)e(υA)≰⋁{(£γst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
(£πst)e(υA)≱⋀{(£πst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
(£ςst)e(υA)≱⋀{(£ςst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}. |
for any υA∈^(X×X,E). From the definition of (£γπςst)E, there exists μB∈^(X×X,E), ϱ∈ζ with μB⊓ˆEϱ⪯υA such that
£γe(μB)≰⋁{(£γst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
£πe(μB)≱⋀{(£πst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
£ςe(μB)≱⋀{(£ςst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}. |
Since £γπςE is svns-uniformity on X, then
£γe(μB)≤⋁{£γe(σD):σD∘σD⪯μB}, |
£πe(μB)≥⋀{£πe(σD):σD∘σD⪯μB}, |
£ςe(μB)≥⋀{£ςe(σD):σD∘σD⪯μB}. |
That means, there is σD∈^(X×X,E) such that σD⊓σD⪯μB and that
£γe(σD)≰⋁{(£γst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
£πe(σD)≱⋀{(£πst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
£ςe(σD)≱⋀{(£ςst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}. |
On the other hand,
(σD⊓ˆEϱ)∘(σD⊓ˆEϱ)⪯(σD∘σD)⊓ˆEϱ⪯μB⊓ˆEϱ⪯υA, |
which means that there is (υ1)C=σD⊓ˆEϱ with (υ1)C∘(υ1)C⪯υA,
£γe(σD)≤(£γst)e((υ1)C)≤⋁{(£γst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
£πe(σD)≥(£πst)e((υ1)C)≥⋀{(£πst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}, |
£ςe(σD)≥(£ςst)e((υ1)C)≥⋀{(£ςst)e((υ1)C):(υ1)C∘(υ1)C⪯υA}. |
It is a contradiction. Thus, (£6) holds.
(£st) Since ˆEϱ⊓ˆE1=ˆEϱ for each ϱ∈ζ, then (£γst)ˆE=1, (£πst)ˆE=0 and (£ςst)ˆE=0. Therefore, (£γπςst)e is stratified.
For each υA∈^(X×X,E), υA⊓ˆE1=υA, we have for each e∈E
(£γst)e(υA)≥£γe(υA),(£πst)e(υA)≤£πe(υA),(£ςst)e(υA)≤£ςe(υA). |
Hence, (£γπςst)E is finer than £γπςE.
Finally, consider £⋆γπςE is an ssvns-uniformity finer than £γπςE. Let there exists υA∈^(X×X,E) such that
(£γst)e(υA)≰£⋆γe(υA),(£πst)e(υA)≱£⋆πe(υA),(£ςst)e(υA)≱£⋆ςe(υA). |
From the definition of {(£γst)e(υA),(£πst)e(υA),(£ςst)e(υA)}, there exists μB∈^(X×X,E), ϱ∈ζ with μB⊓ˆEϱ⪯υA and
£γe(μB)≰£⋆γe(υA),£πe(μB)≱£⋆πe(υA),£ςe(μB)≱£⋆ςe(υA). |
Since £⋆γπςE is stratified, then
£γe(μB)≤£⋆γe(μB)=£⋆γe(μB)∧£⋆γe(ˆEϱ)≤£⋆γe(μB⊓ˆEϱ)≤£γe(υA), |
£πe(μB)≥£⋆πe(μB)=£⋆πe(μB)∨£⋆πe(ˆEϱ)≥£⋆πe(μB⊔ˆEϱ)≥£πe(υA), |
£ςe(μB)≥£⋆ςe(μB)=£⋆ςe(μB)∨£⋆ςe(ˆEϱ)≥£⋆ςe(μB⊔ˆEϱ)≥£ςe(υA). |
It is a contradiction. Hence,
(£γst)e(υA)≤£⋆γe(υA),(£πst)e(υA)≥£⋆πe(υA),(£ςst)e(υA)≥£⋆ςe(υA), |
for each υA∈^(X×X,E), e∈E. Hence, (£γπςst)E is the coarsest ssvns-uniformity which is finer than £γπςE.
Remark 3. Let ℏγ,ℏπ,ℏς:E→ζ^(X×X,E) be a mapping and υA∈^(X×X,E). Let us define ⟨ℏγe⟩, ⟨ℏπe⟩ and ⟨ℏςe⟩ as follows for each e∈E:
⟨ℏγe⟩(υA)=⋁υA⪯υBℏγe(υB),⟨ℏπe⟩(υA)=⋀υA⪯υBℏπe(υB),⟨ℏςe⟩(υA)=⋀υA⪯υBℏςe(υB). |
Definition 9. A mappings ℏγ,ℏπ,ℏς:E→ζ^(X×X,E) is called a svns-uniform base on X if it meets the next criteria:
(ℏ1) There exists υA∈^(X×X,E) such that ℏγe(υA)=1, ℏπe(υA)=0, ℏςe(υA)=0, for all e∈E,
(ℏ2) for each υA,μB∈^(X×X,E), e∈E, such that
⟨ℏγe⟩(υA⊓μB)≥ℏγe(υA)∧ℏγe(μB),⟨ℏπe⟩(υA⊓μB)≤ℏπe(υA)∨ℏπe(μB), |
⟨ℏςe⟩(υA⊓μB)≤ℏςe(υA)∨ℏςe(μB), |
(ℏ3) If (⊤)A⋠υB, then ℏγe(υB)=0, ℏπe(υB)=1, ℏςe(υB)=1.
(ℏ4) For every υA∈^(X×X,E), ⟨ℏγe⟩(υsA)≥ℏγe(υA), ⟨ℏπe⟩(υsA)≤ℏπe(υA) and ⟨ℏςe⟩(υsA)≤ℏςe(υA),
(ℏ5) For every υA∈^(X×X,E),
⋁{ℏγe(μB):(μB∘μB)⪯υA}≥ℏγe(υA),;⋀{ℏπe(μB):(μB∘μB)⪯υA}≤ℏπe(υA), |
⋀{ℏςe(μB):(μB∘μB)⪯υA}≤ℏςe(υA). |
A svns-uniform base (ℏγ,ℏπ,ℏς) is said to be stratified if and only if (ℏγ,ℏπ,ℏς) satisfies
(ℏst)ℏγe(ˆEϱ)=1, ℏπe(ˆEϱ)=0, ℏςe(ˆEϱ)=0, ∀ϱ∈ζ, e∈E.
In this case (ℏγ,ℏπ,ℏς) is stratified single-valued neutrosophic soft uniform base (for short, ssvns-uniform base). Sometimes, we will write ℏγπςE for (ℏγ,ℏπ,ℏς).
Let ℏγπςE and ℏ⋆γπςE be two svns-uniform bases on X. Then, ℏγπςE is finer than ℏ⋆γπςE (ℏ⋆γπςE is coarser than ℏγπςE), denoted by ℏ⋆γπςE⪯ℏγπςE provided
⟨ℏ⋆γe⟩(υA)≤⟨ℏγe⟩(υA),⟨ℏ⋆πe⟩(υA)≥⟨ℏπe⟩(υA),⟨ℏ⋆ςe⟩(υA)≥⟨ℏςe⟩(υA), |
for each e∈E, υA∈^(X×X,E). Obviously, all svns-uniformity £γπςE on X is a svns- uniform base with ⟨£γπςE⟩=£γπςE.
Theorem 2. Let ℏγπςE be a svns-uniform base on X, define the mappings ℏγ,ℏπ,ℏς:E→ζ^(X×X,E), for any υA∈^(X×X,E), e∈E as follows:
(ℏγst)e(υA)=⋁{ℏγe((μB)):μB⊓ˆEϱ⪯υA,ϱ∈ζ}, |
(ℏπst)e(υA)=⋀{ℏπe((μB)):μB⊓ˆEϱ⪯υA,ϱ∈ζ}, |
(ℏςst)e(υA)=⋀{ℏςe((μB)):μB⊓ˆEϱ⪯υA,ϱ∈ζ}. |
Then,
(1)(ℏγπςst)E is the coarsest ssvns-uniform base which is finer than ℏγπςE,
(2)⟨(ℏγπςst)E⟩=⟨ℏγπςE⟩st.
Proof. (1) Similar to Theorem 1.
(2) It becomes clear to us from (1), that
⟨ℏγE⟩st⪯⟨(ℏγst)E⟩,⟨ℏπE⟩st⪰⟨(ℏπst)E⟩,⟨ℏγE⟩st⪰⟨(ℏγst)E⟩. |
Conversely, let
⟨(ℏγst)e⟩(υA)⋠⟨ℏγe⟩st(υA),⟨(ℏπst)e⟩(υA)⋡⟨ℏπe⟩st(υA),⟨(ℏςst)e⟩(υA)⋡⟨ℏςe⟩st(υA), |
for some υA∈^(X×X,E). By the concept of ⟨(ℏγπςst)E⟩, there exists μB∈^(X×X,E) with μB⪯υA such that
(ℏγst)e(μB)≰⟨ℏγe⟩st(υA),(ℏπst)e(μB)≱⟨ℏπe⟩st(υA),(ℏςst)e(μB)≱⟨ℏςe⟩st(υA). |
By the concept of ⟨ℏγπςE⟩st, there exists σC∈^(X×X,E), ϱ∈ζ with σC⊓ˆEϱ⪯μB such that
ℏγe(σC)≰⟨ℏγe⟩st(υA),ℏπe(σC)≱⟨ℏπe⟩st(υA),ℏςe(σC)≱⟨ℏςe⟩st(υA). |
On the other hand, σC⊓ˆEϱ⪯υA implies that
⟨ℏγe⟩st(υA)≥⟨ℏγe⟩(σC)≥ℏγe(σC),⟨ℏπe⟩st(υA)≤⟨ℏπe⟩(σC)≤ℏγe(σC), |
⟨ℏςe⟩st(υA)≤⟨ℏςe⟩(σC)≤ℏγe(σC). |
It is a contradiction. Hence, ⟨ℏγe⟩st(υA)≥⟨(ℏγst)e⟩(υA), ⟨ℏπe⟩st(υA)≤⟨(ℏπst)e⟩(υA), ⟨ℏςe⟩st(υA)≤⟨(ℏςst)e⟩(υA), and ⟨(ℏγπςst)E⟩=⟨ℏγπςE⟩st.
Theorem 3. Let (X,£γπςE) be an svns-uniform space. For all fB∈^(X,E) and υA∈^(X×X,E), the image υA[fB] of fB with respect to υA is the svns of X defined by
(υe[fe])(x)=⋁y∈X[fe(y)∧υe(y,x)],∀,e∈A∩Bandx∈X. |
For fC,(fD)j∈^(X,E), υA,μB∈^(X×X,E), we have:
(1)fC⪯υA[fC] whenever £γe(υA)>0, £πe(υA)<1, £ςe(υA)<1,
(2)υA⪯υA∘υA whenever £γe(υA)>0, £πe(υA)<1, £ςe(υA)<1,
(3)(μB∘υA)[fC]=μB[υA[fC]],
(4)υA[⨆j(fD)j]=⨆jυA[(fD)j],
(5)(υA⊓μB)[(fD)1⊓(fD)2]⪯υA[(fD)1]⊓μB[(fD)2],
(6)(υA⊔μB)[(fD)1⊔(fD)2]⪯υA[(fD)1]⊔μB[(fD)2],
(7)υA[(υsA[fC])c]⪯fcC.
Proof. Obvious.
Theorem 4. Let ℏγπςE be a svns-uniform base on X. define the operator Iℏγπς:E×^(X,E)×ζ0→^(X,E) as next for every e∈E, r∈ζ, fB∈^(X,E),
Iℏγπς(e,fB,r)=⨆{RC:υA[RC]⪯fB,ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r}. |
Then, Iℏγπς is an svnsi-operator on X.
Proof. (I1) Since ˆE=υE[ˆE], for all ℏγe(υE)≥r,ℏπe(υE)≤1−r,ℏςe(υE)≤1−r, then Iℏγπς(e,ˆE,r)=ˆE.
(I2) Whenever RC⪯υA[RC]⪯fB, ∀ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r, we get that Iℏγπς(e,fB,r)⪯fB for all fB∈^(X,E).
(I3) Clearly, Iℏγπς(e,fB,r)⪯Iℏγπς(e,RD,s) for every fB⪯RD, fB,RD∈^(X,E) and r≤s.
(I4) Assume that
Iℏγπς(e,(fC)1,r)⊓Iℏγπς(e,(fC)2,s)⋠Iℏγπς(e,(fC)1⊓(fC)2,r∧s). |
Then, there exists (RD)1,(RD)2∈^(X,E) with υA[(RD)1]⪯(fC)1μB[(RD)2]⪯(fC)2 and
ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r, |
ℏγe(μB)≥s,ℏπe(μB)≤1−s,ℏςe(μB)≤1−s, |
such that
(RD)1⊓(RD)2⋠Iℏγπς(ˆe,(fC)1⊓(fC)2,r∧s). |
Since
ℏγe(υA⊓μB)≥ℏγe(υA)∧ℏγe(μB),ℏπe(υA⊓μB)≤ℏπe(υA)∨ℏπe(μB), |
ℏςe(υA⊓μB)≤ℏςe(υA)∨ℏςe(μB), |
we get than
(υA⊓μB)[(RD)1⊓(RD)2]⪯υA[(RD)1]⊓μB[(RD)2]⪯(fC)1⊓(fC)2. |
Then,
(RD)1⊓(RD)2⪯Iℏγπς(ˆe,(fC)1⊓(fC)2,r∧s). |
This is a contradiction. Consequently, (I4) holds.
(I5) Assume that Iℏγπς(e,fC,r)⋠Iℏγπς(e,Iℏγπς(e,fC,r),r). By using the definition of Iℏγπς(e,fC,r), there exists υA∈^(X×X,E) and RD∈^(X,E), such that
ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r,υA[RD]⪯fC, |
and RD⋠Iℏγπς(e,Iℏγπς(e,fC,r),r). Otherwise, since
⋁{ℏγe(μB):μB∘μB⪯υA}≥ℏγe(υA)≥r, |
⋀{ℏπe(μB):μB∘μB⪯υA}≤ℏπe(υA)≤1−r, |
⋀{ℏςe(μB):μB∘μB⪯υA}≤ℏςe(υA)≤1−r, |
there exists μB∈^(X×X,E) with μB∘μB⪯υA such that
ℏγe(μB)≥r,ℏπe(μB)≤1−r,ℏςe(μB)≤1−r,μB[μB[RD]]⪯υA[RD]⪯fC. |
By using the definition of Iℏγπς(e,fC,r), we obtain μB[RD]⪯Iℏγπς(e,fC,r). By the concept of Iℏγπς(e,Iℏγπς(e,fC,r),r), it follows that
RD⪯Iℏγπς(e,Iℏγπς(e,fC,r),r). |
This is a contradiction. Consequently, (I5) holds.
Theorem 5. Let ℏγπςE be a svns-uniform base on X. Define the operator Cℏγπς:E×^(X,E)×ζ0→^(X,E) as next for every e∈E, fB∈^(X,E), r∈ζ,
![]() |
Then, Cℏγπς is a svnsc-operator on X.
Proof. (C1) Since ˆΦ=υA[ˆΦ], for all ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r, then Cℏγπς(e,ˆΦ,r)=ˆΦ.
(C2) Whenever RC⪯υA[RC]⪯fB, for all ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r, we get that Cℏγπς(e,fB,r)⪰fB for each fB∈^(X,E).
(C3) It is established that Cℏγπς(e,fB,r)⪯Cℏγπς(e,RD,s) for every fB⪯RD, fB,RD∈^(X,E) and r≤s.
(C4) Assume that
Cℏγπς(e,fC,r)⊔Cℏγπς(e,RD,s)⋡Cℏγπς(e,fC⊔RD,r∧s). |
Then, there exists r,s∈ζ0, υA,μB∈^(X×X,E) with
ℏγe(υA)≥r∧s,ℏπe(υA)≤1−(r∧s),ℏςe(υA)≤1−(r∧s), |
ℏγe(μB)≥s∧s,ℏπe(μB)≤1−(s∧s),ℏςe(μB)≤1−(r∧s), |
such that
υsA[fC]⊔μsB[RD]⋡Cℏγπς(e,fC⊔RD,r∧s). |
Since ℏγe(υA⊔μB)≥ℏγe(υA)⊓ℏγe(μB)≥r∧s, ℏπe(υA⊔μB)≤ℏπe(υA)⊔ℏπe(μB)≤1−(r∨s), ℏςe(υA⊔μB)≤ℏςe(υA)⊔ℏςe(μB)≤1−(r∨s) and (υA⊔μB)s[fC⊔RD]⪯υsA[fC]⊔μsB[RD], then Cℏγπς(e,fC⊔RD,r∧s)⪯υsA[fC]⊔μsB[RD]. It is a contradiction. Thus, (C4) holds.
(C5) Assume that there exists r∈ζ0, e∈E, fC∈^(X,E), such that
Cℏγπς(e,fC,r)⋡Cℏγπς(e,Cℏγπς(e,fC,r),r). |
Using the concept of Cℏγπς(e,fC,r), there exist υA∈^(X×X,E) with
ℏγe(υA)≥r,ℏπe(υA)≤1−r,ℏςe(υA)≤1−r, |
such that Cℏγπς(e,Cℏγπς(e,fC,r),r)⋠υsA[fC]. Otherwise, from (ℏ5), we have
⋁{ℏγe(μB):(μB∘μB)⪯υA}≥ℏγe(υA)≥r,⋀{ℏπe(μB):(μB∘μB)⪯υA}≤ℏπe(υA)≤1−r, |
⋀{ℏςe(μB):(μB∘μB)⪯υA}≤ℏςe(υA)≤1−r, |
which leads to the existence of μB∈^(X×X,E) with μB∘μB⪯υA and
ℏγe(μB)≥r,ℏπe(μB)≤1−r,ℏςe(μB)≤1−r. |
It follows that
Cℏγπς(e,Cℏγπς(e,fC,r),r)⪯μsB[Cℏγπς(e,fC,r)]⪯μsB[μsB[fC]]⪯υsA[fC]. |
It is a contradiction. Thus, (C5) holds.
(C6) We want, for each e∈E, fC∈^(X,E), r∈ζ0, to verify that Cℏγπς(e,fC,r)=(Iℏγπς(e,fcC,r))c. This means that we need to prove it:
![]() |
Since υA[(υsA[fC])c]⪯fcC, from (7) in Theorem 3, we obtain
![]() |
Since (υA[RD])c⪰fC, we obtain υsA[fC]⪯υsA[(υA[RD])c]. Then,
![]() |
Thus, (C6) holds.
In this section, we study several single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft uniform structure. We have proved that single-valued neutrosophic soft uniform base and single-valued neutrosophic soft uniform space are single-valued neutrosophic soft topological spaces.
Theorem 6. Let ℏγπςE be an svns-uniform base on X, define the mappings Tγℏ:E→ζ^(X,E), Tπℏ:E→ζ^(X,E), Tςℏ:E→ζ^(X,E) as follows for each e∈E, r∈ζ0, fA∈^(X,E),
(Tγℏ)e(fA)=⋁{r:fA⪯Iℏγπς(e,fA,r)}, |
(Tπℏ)e(fA)=⋀{1−r:fA⪯Iℏγπς(e,fA,r)}, |
(Tςℏ)e(fA)=⋀{1−r:fA⪯Iℏγπς(e,fA,r)}. |
Then, Tγπςℏ is an svnst on X.
Proof. (T1) Since Iℏγπς(e,ˆE,r)=ˆE and Iℏγπς(e,ˆΦ,r)=ˆΦ for each r∈ζ0, e∈E, then
Tγe(ˆΦ)=1,Tπe(ˆΦ)=0,=Tςe(ˆΦ)=0, |
Tγe(ˆE)=1,Tπe(ˆE)=0,=Tςe(ˆE)=0. |
(T2) To prove the second condition, we follow as follows:
(Tγℏ)e(fA)∧(Tγℏ)e(gB)=⋁{r∣fA⪯Iℏγπς(e,fA,r)}∧⋁{s∣gB⪯Iℏγπς(e,gB,s)}≤⋁{r∧s∣fA⊓gB⪯Iℏγπς(e,fA,r)⊓Iℏγπς(e,gB,s)}≤⋁{r∧s∣fA⊓gB⪯Iℏγπς(e,fA⊓gB,r∧s)}≤(Tγℏ)e(fA⊓gB), |
(Tπℏ)e(fA)∨(Tπℏ)e(gB)=⋀{1−r∣fA⪯Iℏγπς(e,fA,r)}∨⋀{1−s∣gB⪯Iℏγπς(e,gB,s)}≥⋀{1−r∨1−s)∣fA⊔gB⪯Iℏγπς(e,fA,r)⊔Iℏγπς(e,gB,s)}≥⋀{1−(r∧s)∣fA⊔gB⪯Iℏγπς(e,fA⊔gB,r∧s)}≥⋀{1−(r∧s)∣fA⊓gB⪯Iℏγπς(e,fA⊓gB,r∧s)}≥(Tπℏ)e(fA⊓gB), |
(Tςℏ)e(fA)∨(Tςℏ)e(gB)=⋀{1−r∣fA⪯Iℏγπς(e,fA,r)}∨⋀{1−s∣gB⪯Iℏγπς(e,gB,s)}≥⋀{1−r∨1−s)∣fA⊔gB⪯Iℏγπς(e,fA,r)⊔Iℏγπς(e,gB,s)}≥⋀{1−(r∧s)∣fA⊔gB⪯Iℏγπς(e,fA⊔gB,r∧s)}≥⋀{1−(r∧s)∣fA⊓gB⪯Iℏγπς(e,fA⊓gB,r∧s)}≥(Tςℏ)e(fA⊓gB). |
(T3) Assume that there exists a collection {(fA)j:j∈Γ} such that
Tγe(⨆j∈Γ(fA)j)≱⋀j∈ΓTγe((fA)j),Tπe(⨆j∈Γ(fA)j)≰⋁j∈ΓTπe((fA)j), |
Tςe(⨆j∈Γ(fA)j)≰⋁j∈ΓTςe((fA)j). |
For every j∈Γ, there exist rj∈ζ0 such that (fA)j⪯Iℏγπς(e,fA,r) and that
Tγe(⨆j∈Γ(fA)j)≱⋀j∈Γrj,Tπe(⨆j∈Γ(fA)j)≰⋁j∈Γ(1−r)j,Tςe(⨆j∈Γ(fA)j)≰⋁j∈Γ(1−r)j. |
Putting r=⋀j∈Γrj and 1−r=⋁j∈Γ(1−r)j, from Theorem 4, we get that
⨆j∈Γ(fA)j⪯⨆j∈ΓIℏγπς(e,(fA)j,rj)⪯⨆j∈ΓIℏγπς(e,(fA)j,r)⪯Iℏγπς(e,⨆j∈Γ(fA)j,r). |
It follows that
Tγe(⨆j∈Γ(fA)j)≥⋀j∈Γrj=r,Tπe(⨆j∈Γ(fA)j)≤⋁j∈Γ(1−r)j=1−r, |
Tςe(⨆j∈Γ(fA)j)≤⋁j∈Γ(1−r)j=1−r. |
It is a contradiction. Thus, T3 holds.
Definition 10. Let fB∈^(X,E) and υA∈^(X×X,E). Define υfBA∈^(X×X,E), for each e∈A∩B related with fB by
(υfBA)e(x,y)={⟨1,0,0⟩,ifx=y,γfe(x)∧fe(y),πfe(x)∨fe(y),ςfe(x)∨fe(y),otherwise. |
Theorem 7. Let (X,£γπςE) be an svns-uniform space, define the mappings T∗γ£,T∗π£,T∗ς£:E→ζ^(X,E) as follows:
(T∗γ£)e(fB)={1,iffB=ˆΦ,£γe(υfBA),iffB∈^(X,E)−ˆΦ, |
(T∗π£)e(fB)={0,iffB=ˆΦ,£πe(υfBA),iffB∈^(X,E)−ˆΦ, |
(T∗ς£)e(fB)={0,iffB=ˆΦ,£ςe(υfBA),iffB∈^(X,E)−ˆΦ. |
Then, T∗γπς£ is an svnst on X.
Proof. (T1)(T∗γ£)e(ˆΦ)=1, (T∗π£)e(ˆΦ)=0, (T∗ς£)e(ˆΦ)=0 and (T∗γ£)e(ˆE)=£γe(υˆEe)=1, (T∗π£)e(ˆE)=£πe(υˆEe)=0, (T∗ς£)e(ˆE)=£ςe(υˆEe)=0.
(T2) Since υfBA⊓υRCA=υfB⊓RCA for every fB,RC∈^(X,E), by (£3), we have
£γe(υfB⊓RCA)=£γe(υfBA⊓υRCA)≥£γe(υfBA)∧£γe(υRCA), |
£πe(υfB⊓RCA)=£πe(υfBA⊓υRCA)≤£πe(υfBA)∨£πe(υRCA), |
£ςe(υfB⊓RCA)=£ςe(υfBA⊓υRCA)≤£ςe(υfBA)∨£ςe(υRCA). |
Thus,
(T∗γ£)e(fB⊓RC)=£γe(υfB⊓RCA)≥£γe(υfBA)∧£γe(υRCA)=(T∗γ£)e(fB)∧(T∗γ£)e(RC), |
(T∗π£)e(fB⊓RC)=£πe(υfB⊓RCA)≤£πe(υfBA)∨£πe(υRCA)=(T∗π£)e(fB)∨(T∗π£)e(RC), |
(T∗ς£)e(fB⊓RC)=£ςe(υfB⊓RCA)≤£ςe(υfBA)∨£ςe(υRCA)=(T∗ς£)e(fB)∨(T∗ς£)e(RC). |
(T3) Similar to the proof in (T3) from Theorem 6.
Theorem 8. Let (X,£γπςE) be a svns-uniform space, define the mappings T⋆⋆γ£,T⋆⋆π£,T⋆⋆ς£:E→ζ^(X,E) as follows:
(T⋆⋆γ£)e(fB)=⋀x∈X[(fe)c(x)∨⋁υA[x]⪯fA£γe(υA)], |
(T⋆⋆π£)e(fB)=⋁x∈X[(fe)c(x)∧⋁υA[x]⪯fA£πe(υA)], |
(T⋆⋆ς£)e(fB)=⋁x∈X[(fe)c(x)∧⋁υA[x]⪯fA£ςe(υA)]. |
Then, T⋆⋆γπς£ is an svnst on X, where (υA[x])(y)⪯υA(y,x) for all e∈A.
Proof. (T1) Obvious.
(T2) Assume that
⋁υA[x]⪯(fD)1£γe(υA)∧⋁μB[x]⪯(fD)2£γe(μB)≰⋁κC[x]⪯(fD)1⊓(fD)2£γe(κC), |
⋀υA[x]⪯(fD)1£πe(υA)∨⋀μB[x]⪯(fD)2£πe(μB)≱⋀κC[x]⪯(fD)1⊓(fD)2£πe(κC), |
⋀υA[x]⪯(fD)1£ςe(υA)∨⋀μB[x]⪯(fD)2£ςe(μB)≱⋀κC[x]⪯(fD)1⊓(fD)2£ςe(κC). |
Then, there exists υA,μB with υA[x]⪯(fD)1, μB[x]⪯(fD)2 such that
£γe(υA)∧£γe(μB)≰⋁κC[x]⪯(fD)1⊓(fD)2£πe(κC),£πe(υA)∨£πe(μB)≱⋀κC[x]⪯(fD)1⊓(fD)2£πe(κA), |
£ςe(υA)∨£ςe(μB)≱⋀κC[x]⪯(fD)1⊓(fD)2£ςe(κC). |
This results in (υA⊓μB)[x]⪯(fD)1⊓(fD)2 such that
⋁κC[x]⪯(fD)1⊓(fD)2£γe(κC)≥£γe(υA⊓μB)≥£γe(υA)∧£γe(μB), |
⋀κC[x]⪯(fD)1⊓(fD)2£πe(κC)≤£πe(υA⊓μB)≤£πe(υA)∨£πe(μB), |
⋀κC[x]⪯(fD)1⊓(fD)2£ςe(κC)≤£ςe(υA⊓μB)≤£ςe(υA)∨£ςe(μB). |
It is a contradiction. Thus,
(T⋆⋆γ£)e((fD)1)∧(T⋆⋆γ£)e((fD)2)=(⋀x∈X[(fce)1(x)∨⋁υA[x]⪯(fD)1£γe(υA)])∧(⋀x∈X[(fce)2(x)∨⋁μB[x]⪯(fD)2£γe(μB)])≤(⋀x∈X[(fce)1(x)∨⋁υA[x]⪯(fD)1£γe(υA)]∧[(fce)2(x)∨⋁μB[x]⪯(fD)2£γe(μB)])≤⋀x∈X[((fce)1⊔(fce)2)(x)∨⋁υA[x]⪯(fD)1£γe(υA)∧⋁μB[x]⪯(fD)2£γe(μB)]≤⋀x∈X[((fce)1⊔(fce)2)(x)∨⋁(υA⊓μB)[x]⪯(fD)1⊓(fD)2£γe(υA⊓μB)]≤(T⋆⋆γ£)e((fD)1⊓(fD)2), |
(T⋆⋆π£)e((fD)1)∨(T⋆π£)e((fD)2)=(⋁x∈X[(fce)1(x)∧⋁υA[x]⪯(fD)1£πe(υA)])∨(⋁x∈X[(fce)2(x)∧⋁μB[x]⪯(fD)2£πe(μB)])≥⋁x∈X([(fce)1(x)∧⋁υA[x]⪯(fD)1£πe(υA)]∨[(fce)2(x)∧⋁μB[x]⪯(fD)2£πe(μB)])≥⋁x∈X[((fce)1⊓(fce)2)(x)∧⋁υA[x]⪯(fD)1£πe(υA)∨⋁μB[x]⪯(fD)2£πe(μB)]≥⋁x∈X[((fce)1⊓(fce)2)(x)∧⋁(υA⊓μB)[x]⪯(fD)1⊓(fD)2£πe(υA⊓μB)]≥(T⋆⋆π£)e((fD)1⊓(fD)2). |
Likewise, we can establish through a similar line of reasoning that
(T⋆⋆ς£)e((fD)1)∨(T⋆⋆ς£)e((fD)2)≥(T⋆⋆ς£)e((fD)1⊓(fD)2). |
(T3) For e∈E
(T⋆⋆γ£)e(⋁j∈Γ(fB)j)=⋀x∈X[(⋁j∈Γ(fe)j)c(x)]∨[⋁υA[x]⪯⨆j(fB)j£γe(υA)]=⋀x∈X[⋀j∈Γ(fce)j(x)∨⋁υA[x]⪯⨆j(fB)j£γe(υA)]=⋀j∈Γ[⋀x∈X(fce)j(x)∨⋁υA[x]⪯⨆j(fB)j£γe(υA)]≥⋀j∈Γ[⋀x∈X(fce)j(x)∨⋁υA[x]⪯(fB)j£γe(υA)]=⋀j∈Γ(T⋆⋆γ£)e((fB)j), |
(T⋆⋆π£)e(⋁j∈Γ(fB)j)=⋁x∈X[(⋁j∈Γ(fe)j)c(x)]∧[⋁υA[x]⪯⨆j(fB)j£πe(υA)]=⋁x∈X[⋀j∈Γ(fce)j(x)∧⋁υA[x]⪯⨆j(fB)j£πe(υA)]≤⋁x∈X[⋁j∈Γ(fce)j(x)∧⋁υA[x]⪯⨆j(fB)j£πe(υA)]=⋁j∈Γ[⋁x∈X(fce)j(x)∧⋁υA[x]⪯⨆j(fB)j£πe(υA)]≤⋁j∈Γ[⋁x∈X(fce)j(x)∧⋁υA[x]⪯(fB)j£πe(υA)]=⋁j∈Γ(T⋆⋆π£)e((fB)j). |
In a similar vein, we can demonstrate through a parallel line of reasoning that
(T⋆⋆ς£)e(⋁j∈Γ(fB)j)≤⋁j∈Γ(T⋆⋆ς£)e((fB)j). |
Therefore, T⋆⋆γπς£ is an svnst on X.
In this section, we obtain crucial results in introducing and characterizing single-valued neutrosophic soft uniformly continuous, on single-valued neutrosophic soft uniformly topological spaces. Moreover, the relationship between single-valued neutrosophic soft uniformly continuous and single-valued neutrosophic soft continuous is studied.
Definition 11. Let (X,£γπςE) and (G,£⋆γπςR) be two svns-uniform spaces and ψ:X→G and ϑ:E→R be two mappings. Then, an svns-map ψϑ:^(X×X,E)→^(G×G,R) is called single-valued neutrosophic soft uniformly continuous (svns-uniformly continuous) if
£γe((ψ×ψ)−1ϑ(μB))≥£⋆γϑ(e)(μB),£πe((ψ×ψ)−1ϑ(μB))≤£⋆πϑ(e)(μB), |
£ςe((ψ×ψ)−1ϑ(μB))≤£⋆ςϑ(e)(μB), |
for each μB∈^(G×G,R), e∈E.
Proposition 1. Let (X,£γπςE) and (G,FγπςR) be svns-uniform spaces. If ψϑ:(X,£γπς)→(G,Fγπς) is svns-uniformly continuous, then ψϑ:(X,(£γπςst)→(G,Fγπςst) is svns-uniformly continuous.
Proof. To prove this theorem, we need to prove that
(£γst)e((ψ×ψ)−1ϑ(υA))≥(Fγst)ϑ(e)(υA),(£πst)e((ψ×ψ)−1ϑ(υA))≤(Fπst)ϑ(e)(υA), |
(£ςst)e((ψ×ψ)−1ϑ(υA))≤(Fςst)ϑ(e)(υA), |
for each υA∈^(G×G,R), e∈E.
Assume that
(£γst)e((ψ×ψ)−1ϑ(υA))≱(Fγst)ϑ(e)(υA),(£πst)e((ψ×ψ)−1ϑ(υA)≰(Fπst)ϑ(e)(υA), |
(£ςst)e((ψ×ψ)−1ϑ(υA))≰(Fςst)ϑ(e)(υA). |
From the concept of (F⋆γπςst)ϑ(e)(υA), there exists μB∈^(G×G,R), e∈E, ϱ∈ζ with μB⊓ˆEϱ⪯υA such that
(£γst)e((ψ×ψ)−1ϑ(υA))≱Fγϑ(e)(μB),(£πst)e((ψ×ψ)−1ϑ(υA))≰Fπϑ(e)(μB), |
(£ςst)e((ψ×ψ)−1ϑ(υA))≰Fςϑ(e)(μB). |
Since ψϑ:(X,(£γπςst)→(G,Fγπςst) is svns-uniformly continuous,
£γe((ψ×ψ)−1ϑ(μB))≥Fγϑ(e)(μB),£πe((ψ×ψ)−1ϑ(μB))≤Fπϑ(e)(μB), |
£ςe((ψ×ψ)−1ϑ(μB))≤Fςϑ(e)(μB). |
From the concept of £γπςe((ψ×ψ)−1ϑ(υA)), we get
(£γst)e((ψ×ψ)−1ϑ(υA))≥£γe((ψ×ψ)−1ϑ(μB))≥Fγϑ(e)(μB), |
(£πst)e((ψ×ψ)−1ϑ(υA))≤£πe((ψ×ψ)−1ϑ(μB))≤Fπϑ(e)(μB), |
(£ςst)e((ψ×ψ)−1ϑ(υA))≤£πe((ψ×ψ)−1ϑ(μB))≤Fςϑ(e)(μB). |
This is a conflict with the hypothesis.
Proposition 2. Let ψ:X→G, and ϑ:E→R be two mappings, and let fD∈^(X,E), υA,μB,κC∈^(G×G,R). Then, the following results hold in general:
(1)ψ−1ϑ(υA[ψϑ(fD)])=((ψ×ψ)−1ϑ(υA))[fD],
(2)((ψ×ψ)−1ϑ(υsA))[fD]=((ψ×ψ)−1ϑ(υA))s[fD],
(3)(ψ×ψ)−1ϑ(υA⊓μB)=(ψ×ψ)−1ϑ(υA)⊓(ψ×ψ)−1ϑ(μB),
(4)(ψ×ψ)−1ϑ(υA)∘(ψ×ψ)−1ϑ(υA)⪯(ψ×ψ)−1ϑ(υA∘υA).
Proof. (1) For ω∈ψ(E), we get that
ψ−1ϑ(υω[ψϑ(fϑ−1(ω))])(x)=ψ−1ϑ(υω[(ψ(f))ω])(x)=(υω[(ψ(f))ω])(ψ(x))=⋁y∈G[(ψ(f))ω(y)∧υω(y,ψ(x))]=⋁z∈X[(ψ(f))ω(ψ(z))∧υω(ψ(z),ψ(x))]=⋁z∈X[(fϑ−1(ω))(z)∧(ψ×ψ)−1(υω(z,x))]=(ψ×ψ)−1ϑ(υω[(fϑ−1(ω)])(x). |
(2) For ω∈ψ(E), we have
((ψ×ψ)−1ϑ(υsω))[fϑ−1(ω)](x)=⋁z∈X[(fϑ−1(ω))(z)∧((ψ×ψ−1)ϑ(υsω))(z,x)]=⋁z∈X[(fϑ−1(ω))(z)∧υsω(ψ(z),ψ(x)]=⋁z∈X[(fϑ−1(ω))(z)∧υω(ψ(x),ψ(z)]=⋁z∈X[(fϑ−1(ω))(z)∧((ψ×ψ)−1ϑ(υω))(x,z)]=⋁z∈X[(fϑ−1(ω))(z)∧((ψ×ψ)−1ϑ(υω))s(z,x)]=((ψ×ψ)−1ϑ(υω))s[(fϑ−1(ω)](x). |
(3) Direct.
(4) For ω∈ψ(E), we have
((ψ×ψ)−1ϑ(υω)∘(ψ×ψ)−1ϑ(υω))(x1,x2)=⋁z∈X[(ψ×ψ)−1ϑ(υω)(x1,z)∧(ψ×ψ)−1ϑ(υω)(z,x2)]=⋁z∈X[υω(ψ(x1),ψ(z))∧υω(ψ(z),ψ(x2))]≤⋁z∈X[υω(ψ(x1),y)∧υω(y,ψ(x2))]=(υω∘υω)(ψ(x1),ψ(x2))=(ψ×ψ)−1ϑ(υω∘υω)(x1,x2). |
Theorem 9. Let (X,£γπς) and (G,Fγπς) be svns-uniform spaces, ψϑ:^(X×X,E)→^(G×G,R) be svns-uniformly continuous. Then, the following results hold in general.
(1)ψ−1ϑ(IFγπς(ω,fC,r))⪯I£γπς(ϑ−1(ω),ψ−1ϑ(fC),r)), for each fC∈^(G,R), r∈ξ, ω∈R,
(2)C£γπς(ϑ−1(ω),ψ−1ϑ(fC),r))⪯ψ−1ϑ(CFγπς(ω,fC,r)), for each fC∈^(G,R), r∈ξ, ω∈R,
(3)ψϑ(C£γπς(e,gD,r))⪯CFγπς(ϑ(ω),ψϑ(gD),r)), for each gD∈^(X,E), r∈ξ, e∈E.
Proof. (1) For each υA,∈^(G×G,R) and fC,gD∈^(G,R), from Proposition 2, υA[fC]⪯gD implies that
((ψ×ψ)−1ϑ(υA))[ψ−1ϑ(fC)]=ψ−1ϑ(υA[ψϑ(ψ−1ϑ(fC))])⪯ψ−1ϑ(υA[fC])⪯ψ−1ϑ(gD). |
Since
£γϑ−1(ω)(μB)≥Fγω(υA),£πϑ−1(ω)(μB)≤Fπω(υA),£ςϑ−1(ω)(μB)≤Fςω(υA), |
for every μB∈(ψ×ψ)−1ϑ(υA), we obtain
ψ−1ϑ(IFγπς(ω,fC,r))=ψ−1ϑ(⨆{gD∈^(G,R):υA[gD]⪯fC,Fγ(υA)≥r,Fπω(υA)≤1−r,Fςω(υA)≤1−r})=⨆{ψ−1ϑ(gD)∈^(X,E):υA[gD]⪯fC,Fγ(υA)≥r,Fπω(υA)≤1−r,Fςω(υA)≤1−r}⪯⨆{ψ−1ϑ(fC)∈^(X,E):μB[ψ−1ϑ(gD)]⪯ψ−1ϑ(fC),£γϑ−1(ω)(μB)≥r,£πϑ−1(ω)(μB)≤1−r,£ςϑ−1(ω)(μB)≤1−r}⪯I£γπς(ϑ−1(ω),ψ−1ϑ(fC),r)). |
In a similar vein, we can demonstrate (2) and (3) through a parallel line of reasoning.
Theorem 10. Let (X,£γπςE) and (G,FγπςR) be svns-uniform spaces, and ψϑ:^(X,E)→^(G,R) an injective svns-uniformly continuous. Then, ψϑ:(X,T⋆γπς£)→(G,T⋆γπςF) is svns-continuous.
Proof. Since ψϑ injective and by applying Theorem 4, we get that:
For each υA,∈^(G×G,R) and fB∈^(G,R), ω∈A∩B. Then,
((ψ×ψ)−1ϑ((υfBA)ω))(x1,x2)=(υfBA)ω(ψ(x1),ψ(x2))={1,ifψ(x1)=ψ(x2),fω(ψ(x1))∧fω(ψ(x2)),ifψ(x1)≠ψ(x2),={1,ifψ(x1)=ψ(x2),ψ−1ϑ(fω)(x1)∧ψ−1ϑ(fω)(x2),ifψ(x1)≠ψ(x2),=(υψ−1ϑ(fB)ϑ−1(A))ϑ−1(ω)(x1,x2). |
Therefore, ∀e∈E
(T⋆γ£)e(ψ−1ϑ(fB))=£γe(υψ−1ϑ(fB)ϑ−1(A))=£γe((ψ×ψ)−1ϑ(υfBA))≥Fγϑ(e)(υfBA)=(T⋆γF)ϑ(e)(fB) |
(T⋆π£)e(ψ−1ϑ(fB))=£πe(υψ−1ϑ(fB)ϑ−1(A))=£πe((ψ×ψ)−1ϑ(υfBA))≤Fπϑ(e)(υfBA)=(T⋆πF)ϑ(e)(fB) |
(T⋆ς£)e(ψ−1ϑ(fB))=£ςe(υψ−1ϑ(fB)ϑ−1(A))=£ςe((ψ×ψ)−1ϑ(υfBA))≤Fςϑ(e)(υfBA)=(T⋆ςF)ϑ(e)(fB). |
Theorem 11. Let (X,£γπςE) and (G,FγπςR) be two svns-uniform spaces and ψϑ:^(X,E)→^(G,R) be an svns-uniformly continuous mapping. Then, ψϑ:(X,T⋆⋆γπς£)→(G,T⋆⋆γπςF) is svns-continuous.
Proof. Initially, it is clear that ψ−1ϑ(υA[ψ(x)])=(ψ×ψ)−1ϑ(υA[x]) from that:
[ψ−1ϑ(υA[ψ(x)])](z)=(υA[ψ(x)])(ψ(z))=υA(ψ(z),ψ(x))=((ψ×ψ)−1ϑ(υA))(z,x)=[((ψ×ψ)−1ϑ(υA))[x]](z). |
Thus, υA[ψ(x)]⪯fB implies that ψ−1ϑ(υA[ψ(x)])=((ψ×ψ)−1ϑ(υA))[x]⪯ψ−1ϑ(fB). By applying Theorem 8, we obtain
(T⋆⋆γF)ω(fB)=⋀y[(fcB)(y)∨⋁υA[y]⪯fBFγω(υA)]≤⋀x[fcB(ψ(x))∨⋁υA[ψ(x)]⪯fBFγω(υA)]≤⋀x[(ψ−1ϑ(fB))c(x)∨⋁((ψ×ψ)−1ϑ(υA))[x]⪯ψ−1ϑ(fB)£γϑ−1(ω)((ψ×ψ)−1ϑ(υA))]≤(T⋆⋆γ£)ϑ−1(ω)(ψ−1ϑ(fB)), |
(T⋆⋆π£)ω(fB)=⋁y[(fcB)(y)∧⋁υA[y]⪯fBFπω(υA)]≥⋁x[fcB(ψ(x))∧⋁υA[ψ(x)]⪯fBFπω(υA)]≥⋁x[(ψ−1ϑ(fB))c(x)∧⋁((ψ×ψ)−1ϑ(υA))[x]⪯ψ−1ϑ(fB)£πϑ−1(ω)((ψ×ψ)−1ϑ(υA))]≥(T⋆⋆π£)ϑ−1(ω)(ψ−1ϑ(fB)), |
Likewise, we can establish through a similar line of reasoning that (T⋆⋆ς£)ω(fB)≥(T⋆⋆ς£)ϑ−1(ω)(ψ−1ϑ(fB)).
Theorem 12. Let {(Xj,(£γπςj)Ej):j∈Γ} be a family of svns- uniform spaces and, for all j∈Γ, ψj:X→Xj, and ϑj:E→Ej are mappings. Define £γ:E→ζ^(X×X,E), £π:E→ζ^(X×X,E) and £ς:E→ζ^(X×X,E) on X by:
£γe(υA)=⋁[n⋀j=1((£γωj)ϑωj(e))((μB)ωj)∣υA⪰⊓nj=1(ψωj×ψωj)−1ϑωj((μB)ωj)], |
£πe(υA)=⋀[n⋁j=1((£πωj)ϑωj(e))((μB)ωj)∣υA⪰⊓nj=1(ψωj×ψωj)−1ϑωj((μB)ωj)], |
£ςe(υA)=⋀[n⋁j=1((£ςωj)ϑωj(e))((μB)ωj)∣υA⪰⊓nj=1(ψωj×ψωj)−1ϑωj((μB)ωj)]. |
where ⋁is taken over all finite subsets Ω={ω1,ω2,...,ωn}⊆Γ. Then,
(1)£γπς is the coarsest svns-uniformity on X for which all {(ψϑ)j:j∈Γ} are svns-uniformly continuous.
(2) A map ψϑ:(X⋆,£γπςR)→(X,£γπςE) is svns-uniformly continuous if for all j∈Γ, (ψϑ)j∘ψϑ:(X⋆,£γπςR)→(Xj,(£γπςj)Ej) is svns-uniformly continuous.
Proof. (1) Initially, we indication that £γπς is an svns-uniformity on X for which all {(ψϑ)j:j∈Γ} are svns-uniformly continuous.
(£1) For every ωj∈Ω, there exists (υA)ωj∈(Xωj׈Xωj,Eωj) such that, for e∈E, we obtain that
(£γωj)ϑωj(e))((μB)ωj)=1,(£πωj)ϑωj(e))((μB)ωj)=0,(£ςωj)ϑωj(e))((μB)ωj)=0. |
Put (ψωj×ψωj)−1ϑωj((μB)ωj)=υA. Then, £γe(υA)=1, £πe(υA)=0 and £ςe(υA)=0.
(£2) It is obvious from the definition of £γπς.
(£3) For all limited subsets Ω={ω1,ω2,...,ωn}, T={t1,t2,...,tm} of Γ such that
⊓nj=1(ψωj×ψωj)−1ϑωj((υA)ωj)⪯υA,⊓mj=1(ψtj×ψtj)−1ϑtj((μB)tj)⪯μB |
we have
⊓mj=1(ψtj×ψtj)−1ϑtj((μB)tj)⊓⊓nj=1(ψωj×ψωj)−1ϑωj((υA)ωj)⪯μB⊓υA. |
Moreover, for all ω∈Ω∩T we have
(ψω×ψω)−1ϑω((μB)ω)⊓(ψω×ψω)−1ϑω((υA)ω)=(ψω×ψω)−1ϑω((μB)ω⊓(υA)ω). |
Put (ψmj×ψmj)−1ϑmj((WC)mj)⪯μB⊓υA, where
γ(WC)mj(x)={γ(υA)mj(x),ifmj∈Ω−(Ω∩T),γ(μB)mj(x),ifmj∈Ω−(Ω∩T),γ(υA)mj(x)∩γ(μB)mj(x),ifmj∈Ω∩T, |
π(WC)mj(x)={π(υA)mj(x),ifmj∈Ω−(Ω∩T),π(μB)mj(x),ifmj∈Ω−(Ω∩T),π(υA)mj(x)∪π(μB)mj(x),ifmj∈Ω∩T, |
ς(WC)mj(x)={ς(υA)mj(x),ifmj∈Ω−(Ω∩T),ς(μB)mj(x),ifmj∈Ω−(Ω∩T),ς(υA)mj(x)∪ς(μB)mj(x),ifmj∈Ω∩T, |
Therefore, we obtain
£γe(υA⊓μB)≥⋀j∈Ω∪T(£γj)ϑj(e)((WC)j)≥[n⋀j=1(£γωj)ϑωj(e)((υA)ωj)]∧[m⋀j=1(£γtj)ϑtj(e)((μB)tj)] |
£πe(υA⊓μB)≤⋁j∈Ω∪T(£πj)ϑj(e)((WC)j)≤[n⋁j=1(£πωj)ϑωj(e)((υA)ωj)]∨[m⋁j=1(£πtj)ϑtj(e)((μB)tj)], |
£ςe(υA⊓μB)≤⋁j∈Ω∪T(£ςj)ϑj(e)((WC)j)≤[n⋁j=1(£ςωj)ϑωj(e)((υA)ωj)]∨[m⋁j=1(£ςtj)ϑtj(e)((μB)tj)]. |
Taking the supremum on the families ⊓nj=1(ψωj×ψωj)−1ϑωj((υA)ωj)⪯υA and ⊓mj=1(ψtj×ψtj)−1ϑtj((μB)tj)⪯μB we obtain
£γe(υA⊓μB)≥£γe(υA)∧£γe(μB),£πe(υA⊓μB)≤£πe(υA)∨£πe(μB), |
£ςe(υA⊓μB)≤£ςe(υA)∨£ςe(μB),∀e∈E. |
(£4) If £γe(υA)≠0, £πe(υA)≠1 and £ςe(υA)≠1, then there exists Ω={ω1,ω2,...,ωp} of Γ with ⊓pj=1(ψωj×ψωj)−1ϑωj((μB)ωj)⪯υA such that
£γe(υA)≥p⋀j=1(£γωj)ϑωj(e)((μB)ωj)≠0,£πe(υA)≤p⋁j=1(£πωj)ϑωj(e)((μB)ωj)≠1, |
£πe(υA)≤p⋁j=1(£πωj)ϑωj(e)((μB)ωj)≠1. |
Since, (£γωj)ϑωj(e)((μB)ωj)≠0, (£πωj)ϑωj(e)((μB)ωj)≠1, (£ςωj)ϑωj(e)((μB)ωj)≠0∀ωj∈Ω, then (\top)_{C}\npreceq(\upsilon_{_{B}})_{_{\omega_{_{j}}}} . Thus,
\begin{equation*} (\top)_{C}\preceq (\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\top)_{C})\preceq\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}. \end{equation*} |
(£_{_{5}}) Assume that £^{\gamma}_{_{e}}(\upsilon_{_{A}}^{s})\ngeq£^{\gamma}_{_{e}}(\upsilon_{_{A}}) , £^{\pi}_{_{e}}(\upsilon_{_{A}}^{s})\nleq£^{\pi}_{_{e}}(\upsilon_{_{A}}) and £^{\varsigma}_{_{e}}(\upsilon_{_{A}}^{s})\nleq£^{\varsigma}_{_{e}}(\upsilon_{_{A}}) . From the concept of £^{\gamma\pi\varsigma} , there exists \Omega = \{\omega_{1}, \omega_{2}, ..., \omega_{p}\} of \Gamma with \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}} such that
\begin{equation*} £_{_{e}}^{\gamma}(\upsilon_{_{A}}^{s})\ngeq\bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}),\;\;\;\;\;£_{_{e}}^{\pi}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}), \end{equation*} |
\begin{equation*} £_{_{e}}^{\varsigma}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}). \end{equation*} |
Since £_{\omega_{_{j}}}^{\gamma\pi\varsigma} is an svns-uniformity on \mathcal{X} for each \omega_{_{j}}
\begin{equation*} (£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}})\geq(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}), \;\;\;\;\; (£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}})\leq(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}), \end{equation*} |
\begin{equation*} (£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}})\leq(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{j}}}). \end{equation*} |
It follows that
\begin{equation*} £_{_{e}}^{\gamma}(\upsilon_{_{A}}^{s})\ngeq\bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}),\;\;\;\;\;£_{_{e}}^{\pi}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}), \end{equation*} |
\begin{equation*} £_{_{e}}^{\varsigma}(\upsilon_{_{A}}^{s})\nleq\bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}). \end{equation*} |
On the other hand,
\begin{equation*} \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu^{s}_{_{B}})_{\omega_{_{j}}}) = \sqcap^{n}_{j = 1}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}}))^{s} \preceq\upsilon^{s}_{_{A}}. \end{equation*} |
Hence,
\begin{equation*} £_{_{e}}^{\gamma}(\upsilon_{_{A}}^{s})\geq\bigwedge\limits^{p}_{j = 1}£^{\gamma}_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}),\;\;\;\;\;£_{_{e}}^{\pi}(\upsilon_{_{A}}^{s})\leq\bigvee\limits^{p}_{j = 1}£^{\pi}_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}), \;\;\;\;\; £_{_{e}}^{\varsigma}(\upsilon_{_{A}}^{s})\leq\bigvee\limits^{p}_{j = 1}£^{\varsigma}_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu^{s}_{_{B}})_{_{\omega_{j}}}). \end{equation*} |
It is a contradiction. Hence, (£_{_{5}}) holds.
(£_{_{6}}) Suppose that for each \upsilon_{_{A}}\in\widehat{(\mathcal{X}\times\mathcal{X}, \text{E})}
\begin{equation*} £^{\gamma}_{e}(\upsilon_{_{A}})\nleq \bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \;\;\;\; £^{\pi}_{e}(\upsilon_{_{A}})\ngeq \bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*} |
\begin{equation*} £^{\varsigma}_{e}(\upsilon_{_{A}})\ngeq \bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}})\circ(\upsilon_{_{A}})_{_{1}})\preceq\upsilon_{_{A}}\}. \end{equation*} |
By the concept of £^{\gamma\pi\varsigma} , there exists \Omega = \{\omega_{1}, \omega_{2}, ..., \omega_{p}\} of \Gamma with \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}} such that
\begin{equation*} \bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mu_{_{\omega_{_{j}}}})\nleq\bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*} |
\begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mu_{_{\omega_{_{j}}}})\ngeq\bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*} |
\begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\varsigma{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mu_{_{\omega_{_{j}}}})\ngeq\bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}. \end{equation*} |
Since £_{\omega_{_{j}}}^{\gamma\pi\varsigma} is svns- uniformity on \mathcal{X}_{_{\omega_{_{j}}}} for each \omega_{_{j}}\in\Omega
\begin{equation*} (£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{j}})\nleq\bigvee\{(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\mid\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\mu_{_{B}}\}, \end{equation*} |
\begin{equation*} (£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{j}})\ngeq\bigwedge\{(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\mid\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\mu_{_{B}}\}, \end{equation*} |
\begin{equation*} (£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{j}})\ngeq\bigwedge\{(£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\mid\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\mu_{_{B}}\}. \end{equation*} |
Thus, there exists \mathcal{W}_{_{C}}\in\widehat{(\mathcal{X}_{_{\omega_{_{j}}}}\times\mathcal{X}_{_{\omega_{_{j}}}}, {E}_{_{\omega_{_{j}}}})} , \mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}}\preceq\upsilon_{_{A}} such that
\begin{equation*} \bigwedge\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\nleq\bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*} |
\begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\ngeq\bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}, \end{equation*} |
\begin{equation*} \bigvee\limits^{p}_{j = 1}(£_{_{\varsigma{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}})\ngeq\bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}}))\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}. \end{equation*} |
On the other hand,
\begin{eqnarray*} &\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}})\circ\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}})&\preceq\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}\circ\mathcal{W}_{_{C}})\\&&\preceq\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}. \end{eqnarray*} |
Therefore, we have
\begin{equation*} \bigvee\{£^{\gamma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}\geq£_{{e}}^{\gamma}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}))\geq (£_{_{\omega_{_{j}}}}^{\gamma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}}), \end{equation*} |
\begin{equation*} \bigwedge\{£^{\pi}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}\leq£_{{e}}^{\pi}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}))\leq (£_{_{\omega_{_{j}}}}^{\pi})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}}), \end{equation*} |
\begin{equation*} \bigwedge\{£^{\varsigma}_{e}((\upsilon_{_{A}})_{_{1}})\mid(\upsilon_{_{A}})_{_{1}}\circ(\upsilon_{_{A}})_{_{1}}\preceq\upsilon_{_{A}}\}\leq£_{{e}}^{\varsigma}((\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}(\mathcal{W}_{_{C}}))\leq (£_{_{\omega_{_{j}}}}^{\varsigma})_{_{\vartheta_{\omega_{_{j}}}(e)}}(\mathcal{W}_{_{C}}). \end{equation*} |
It is a contradiction. Hence, £_{_{6}} holds.
Next by the concept of £^{\gamma\pi\varsigma} it is easily proved that, for each j\in\Gamma
\begin{equation*} £_{{e}}^{\gamma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}(\mu_{_{B}}))\geq (£_{_{j}}^{\gamma})_{_{\vartheta_{j}(e)}}(\mu_{_{B}}),\;\;\;\;\;£_{{e}}^{\pi}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}(\mu_{_{B}}))\leq (£_{_{j}}^{\pi})_{_{\vartheta_{j}(e)}}(\mu_{_{B}}), \end{equation*} |
\begin{equation*} £_{{e}}^{\varsigma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}(\mu_{_{B}}))\leq (£_{_{j}}^{\varsigma})_{_{\vartheta_{j}(e)}}(\mu_{_{B}}), \;\forall\;\mu_{_{B}}\in\widehat{(\mathcal{X}_{_{j}}\times\mathcal{X}_{_{j}}, \text{E}_{_{j}})}. \end{equation*} |
Thus, (\psi_{_{j}})_{\vartheta_{j}}:\mathcal{X}\rightarrow \mathcal{X}_{_{j}} is svns-uniformly continuous.
Lastly, let us say that £^{\star\gamma\pi\varsigma} is an svns-uniformity on \mathcal{X} and (\psi_{_{j}})_{\vartheta_{j}}:(\mathcal{X}, £^{\star\gamma\pi\varsigma})\rightarrow (\mathcal{X}_{_{j}}, £_{j}^{\gamma\pi\varsigma}) is svns-uniformly continuous, that is, for every j\in \Gamma and (\mu_{_{B}})_{j}\in\widehat{(\mathcal{X}_{j}\times\mathcal{X}_{j}, \text{E}_{_{j}}}) ,
\begin{equation*} £_{{e}}^{\star\gamma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}((\mu_{_{B}})_{j}))\geq (£_{_{j}}^{\gamma})_{_{\vartheta_{j}(e)}}((\mu_{_{B}})_{j}), \;\;\;\;\;\; £_{{e}}^{\star\pi}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}((\mu_{_{B}})_{j}))\leq (£_{_{j}}^{\pi})_{_{\vartheta_{j}(e)}}((\mu_{_{B}})_{j}), \end{equation*} |
\begin{equation*} £_{{e}}^{\star\varsigma}((\psi_{_{j}}\times\psi_{_{j}})^{-1}_{_{\vartheta_{_{j}}}}((\mu_{_{B}})_{j}))\leq (£_{_{j}}^{\varsigma})_{_{\vartheta_{j}(e)}}((\mu_{_{B}})_{j}). \end{equation*} |
For every finite subset \Omega = \{\omega_{1}, \omega_{2}, ..., \omega_{p}\} of \Gamma with \sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}} , we have
\begin{eqnarray*} &£^{\gamma}_{_{e}}(\upsilon_{_{A}})& = \bigvee\left[\bigwedge^{p}_{j = 1}(£^{\gamma}_{_{j}})_{_{\vartheta_{\omega_{_{j}}}(e)}}((\mu_{_{B}})_{_{\omega_{_{j}}}})\mid\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}\right]\\&&\leq\bigvee\left[\bigwedge^{p}_{j = 1}(£^{\star\gamma}_{_{e}}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\mid\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}\right]\\&&\leq\bigvee\left[\bigwedge^{p}_{j = 1}(£^{\star\gamma}_{_{e}}(\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}}))\mid\sqcap^{p}_{j = 1}(\psi_{_{\omega_{_{j}}}}\times\psi_{_{\omega_{_{j}}}})^{-1}_{_{\vartheta_{_{\omega_{_{j}}}}}}((\mu_{_{B}})_{\omega_{_{j}}})\preceq\upsilon_{_{A}}\right]\\&&\leq £^{\star\gamma}_{_{e}}(\upsilon_{_{A}}). \end{eqnarray*} |
In a similar vein, we can demonstrate through a parallel line of reasoning that £^{\pi}_{_{e}}(\upsilon_{_{A}})\geq £^{\star\pi}_{_{e}}(\upsilon_{_{A}}) and £^{\varsigma}_{_{e}}(\upsilon_{_{A}})\geq £^{\star\varsigma}_{_{e}}(\upsilon_{_{A}}) .
(2) It can be easily proved.
Many scientists have studied the soft set theory and easily applied it to many problems in social life. In the present work, we defined the single-valued neutrosophic soft uniform spaces and single-valued neutrosophic soft uniform bases. The relationships between them were also investigated. Next, the relationship among single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies, and single-valued neutrosophic soft interior operators were introduced and studied. Finally, we proved crucial results in introducing and characterizing single-valued neutrosophic soft uniformly continuous, on single-valued neutrosophic soft uniformly topological spaces. Moreover, the relationship between single-valued neutrosophic soft uniformly continuous and single-valued neutrosophic soft continuous was studied. This paper can form the theoretical basis for further applications of single-valued neutrosophic soft topology, potentially leading to the development of other scientific areas.
The authors declare that they have not used Artificial Intelligence tools in the creation of this article.
The authors would like to extend their sincere appreciation to Supporting Project number (RSPD2023R860) King Saud University, Riyadh, Saudi Arabia.
The authors declare that they have no conflicts of interest.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
[3] | Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 |
[4] | F. Smarandache, A unifying field in logics: Neutrosophic logic, Rehoboth: American Research Press, 1999. |
[5] | D. Molodtsov, Soft set theory-first result, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 |
[6] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[7] | P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inf., 5 (2013), 157–168. |
[8] | B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 586507. https://doi.org/10.1155/2009/586507 |
[9] | H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct, 4 (2010), 410–413. |
[10] |
Y. M. Saber, F. Alsharari, F. Smarandache, On Single-valued neutrosophic ideals in Šostak sense, Symmetry, 12 (2020), 193. https://doi.org/10.3390/sym12020193 doi: 10.3390/sym12020193
![]() |
[11] |
Y. M. Saber, F. Alsharari, F. Smarandache, A. Abdel-Sattar, Connectedness and stratification of single-valued neutrosophic topological spaces, Symmetry, 12 (2020), 1464. https://doi.org/10.3390/sym12091464 doi: 10.3390/sym12091464
![]() |
[12] | F. Alsharari, F. Smarandache, Y. M. Saber, Compactness on single-valued neutrosophic ideal topological spaces, Neutrosophic Sets Syst., 41 (2021), 127–145. |
[13] |
Y. M. Saber, F. Alsharari, F. Smarandache, A. Abdel-Sattar, On single valued neutrosophic regularity spaces, Comput. Model. Eng. Sci., 130 (2022), 1625–1648. https://doi.org/10.32604/cmes.2022.017782 doi: 10.32604/cmes.2022.017782
![]() |
[14] | D. Sasirekha, P. Senthilkumar, Determining the Best Plastic Recycling Technology Using the MABAC Method in a Single-Valued Neutrosophic Fuzzy Approach, Neutrosophic Sets Syst., 58 (2023), 194–210 |
[15] |
F. Masri, M. Zeina, O. Zeitouny, Some Single Valued Neutrosophic Queueing Systems with Maple Code, Neutrosophic Sets Syst., 53 (2023), 251–273. https://doi.org/10.5281/zenodo.7536023 doi: 10.5281/zenodo.7536023
![]() |
[16] |
Y. M. Saber, F. Alsharari, F. Smarandache, An Introduction to Single-Valued Neutrosophic Soft Topological Structure, Soft Comput., 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4 doi: 10.1007/s00500-022-07150-4
![]() |
[17] |
S. Shahzadi, A. Rasool, G. Santos-Garcìa, Methods to find strength of job competition among candidates under single-valued neutrosophic soft model, Math. Bio. Eng., 20 (2023), 4609–4642. https://doi.org/10.3934/mbe.2023214 doi: 10.3934/mbe.2023214
![]() |
[18] |
A. Cano, G. Petalcorin, Single-valued Neutrosophic Soft sets in Hyper UP-Algebra, Eur. J. Pure. Appl. Math., 16 (2023), 548–576. https://doi.org/10.29020/nybg.ejpam.v16i1.4637 doi: 10.29020/nybg.ejpam.v16i1.4637
![]() |
[19] | A. Özkan, Ş. Yazgan, S. Kaur, Neutrosophic Soft Generalized b-Closed Sets in Neutrosophic Soft Topological Spaces, Neutrosophic Sets Syst., 56 (2023), 48–69. |
[20] |
S. Al-Hijjawi, A. Ahmad, S. Alkhazaleh, A generalized effective neurosophic soft set and its applications, AIMS Mathematics, 18 (2023), 29628–29666. https://doi.org/10.3934/math.20231517 doi: 10.3934/math.20231517
![]() |
[21] |
C. Jana, M. Pal, A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
![]() |
[22] | N. L. A. Mohd Kamal, L. Abdullah, Multi-Valued Neutrosophic Soft Set, Malays. J. Math. Sci., 13 (2019), 153–168. |
[23] | R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl., 82 (1981), 370–385. https://doi.org/10.1016/0022-247X(81)90202-X |
[24] | W. Kotzé, Uniform spaces, In: Mathematics of Fuzzy Sets, Boston: Springer, 553–580. |
[25] |
B. Hutton, Uniformities in fuzzy topological spaces, J. Math. Anal. Appl., 58 (1977), 559–571. https://doi.org/10.1016/0022-247X(77)90192-5 doi: 10.1016/0022-247X(77)90192-5
![]() |
[26] | S. E. Abbas, I. Ibedou, Fuzzy soft uniform spaces, Soft Comput., 21 (2017), 6073–6083. https://doi.org/10.1007/s00500-016-2327-3 |
[27] | J. Dezert, Open Questions to Neutrosophic Inferences, Multi. Val. Logic., 8 (2001), 439–472. |
1. | Fahad Alsharari, Hanan Alohali, Yaser Saber, Florentin Smarandache, An Introduction to Single-Valued Neutrosophic Primal Theory, 2024, 16, 2073-8994, 402, 10.3390/sym16040402 |