This article suggested a solution to a flow control problem governed by a class of nonlinear systems called bilinear systems. The problem was initially well-posed, and after it was established that an optimal control solution existed, its characteristics were stated. After that, we demonstrated how to use various bounded feedback controls to make a plate equation's flow close to the required profile. As an application, we resolved the plate equation-governed partial flow control issue. The findings bring up a variety of system applications, which can be employed in engineering advancement.
Citation: Maawiya Ould Sidi, Rabie Zine, Sid Ahmed Ould Ahmed Mahmoud, Hadi Obaid Alshammari, Sid Ahmed Ould Beinane. Optimal control problems governed by a class of nonlinear systems[J]. AIMS Mathematics, 2024, 9(1): 440-452. doi: 10.3934/math.2024024
This article suggested a solution to a flow control problem governed by a class of nonlinear systems called bilinear systems. The problem was initially well-posed, and after it was established that an optimal control solution existed, its characteristics were stated. After that, we demonstrated how to use various bounded feedback controls to make a plate equation's flow close to the required profile. As an application, we resolved the plate equation-governed partial flow control issue. The findings bring up a variety of system applications, which can be employed in engineering advancement.
[1] | N. Kizilova, J. Mizerski, H. Solovyova, Pulse wave propagation along human aorta: a model study, J. Theor. Appl. Mech., 58 (2020), 17–34. https://doi.org/10.15632/jtam-pl/115215 doi: 10.15632/jtam-pl/115215 |
[2] | I. Lasiecka, J. Lions, R. Triggiani, Non homogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pure. Appl., 65 (1986), 149–192. |
[3] | Q. Huang, J. Huang, Servo constraint control for mechanical systems: friction force depending on control design, J. Theor. Appl. Mech., 59 (2021), 413–430. https://doi.org/10.15632/jtam-pl/137539 doi: 10.15632/jtam-pl/137539 |
[4] | P. Lowe, Basic principles of plate theory, Dordrecht: Springer, 1982. https://doi.org/10.1007/978-94-011-6384-2 |
[5] | F. Bucci, I. Chueshov, I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pur. Appl. Anal., 6 (2007), 113–140. https://doi.org/10.3934/cpaa.2007.6.113 doi: 10.3934/cpaa.2007.6.113 |
[6] | L. De Monvel, I. Chueshov, Oscillations of von Karman's plate in a potential flow of gas, Izv. Math., 63 (1999), 219. https://iopscience.iop.org/article/10.1070/IM1999v063n02ABEH000237 doi: 10.1070/IM1999v063n02ABEH000237 |
[7] | M. Eller, R. Triggiani, Exact/approximate controllability of thermoelastic plates with variable thermal coefficients, Discrete Cont. Dyn., 7 (2001), 283–302. https://www.aimsciences.org/article/doi/10.3934/dcds.2001.7.283 |
[8] | J. Lagnese, J. Lions, Modeling analysis and control of thin plates, Paris: Masson, 1988. |
[9] | I. Lasiecka, Controllability of viscoelastic Kirchhoff plate, International Series of Numerical Mathematics, 91 (1989), 237–247. |
[10] | E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Annales de l'Institut Henri Poincare C, Analyse non lineaire, 10 (1993), 109–129. https://doi.org/10.1016/S0294-1449(16)30221-9 doi: 10.1016/S0294-1449(16)30221-9 |
[11] | J. Rousseau, E. Zongo, Stabilization of the damped plate equation under general boundary conditions, J. Ecole Polytech.-Math., 10 (2023), 1–65. https://doi.org/10.5802/jep.213 doi: 10.5802/jep.213 |
[12] | Q. Zhao, Null controllability for a structurally damped stochastic plate equation, J. Math. Anal. Appl., 523 (2022), 126900. https://doi.org/10.1016/j.jmaa.2022.126900 doi: 10.1016/j.jmaa.2022.126900 |
[13] | S. Huang, Z. Ye, D. Fan, J. Xu, D. Zhang, W. Chen, Thermal equation of state for zoisite: Implications for the transportation of water into the upper mantle and the high-velocity anomaly in the Farallon plate, GSA Bulletin, 135 (2023), 1178–1186. https://doi.org/10.1130/B36479.1 doi: 10.1130/B36479.1 |
[14] | J. Kaplunov, B. Erbas, N. Ege, Asymptotic derivation of 2D dynamic equations of motion for transversely inhomogeneous elastic plates, Int. J. Eng. Sci., 178 (2022), 103723. https://doi.org/10.1016/j.ijengsci.2022.103723 doi: 10.1016/j.ijengsci.2022.103723 |
[15] | Q. Fu, W. Gu, P. Gu, J. Wu, Iterative learning control for a class of mixed hyperbolic-parabolic distributed parameter systems, Int. J. Control Autom. Syst., 14 (2016), 1455–1463. https://doi.org/10.1007/s12555-015-0256-z doi: 10.1007/s12555-015-0256-z |
[16] | M. Hamidaoui, C. Shao, S. Haouassi, A PD-type iterative learning control algorithm for one-dimension linear wave equation, Int. J. Control Autom. Syst., 18 (2020), 1045–1052. https://doi.org/10.1007/s12555-019-0094-5 doi: 10.1007/s12555-019-0094-5 |
[17] | L. Tao, Q. Chen, Y. Nan, Disturbance-observer based adaptive control for second-order nonlinear systems using chattering-free reaching law, Int. J. Control Autom. Syst., 17 (2019), 356–369. https://doi.org/10.1007/s12555-018-0277-5 doi: 10.1007/s12555-018-0277-5 |
[18] | M. Bradley, S. Lenhart, Bilinear optimal control of a Kirchhoff plate to a desired profile, Optim. Contr. Appl. Met., 18 (1997), 217–226. https://doi.org/10.1002/(SICI)1099-1514(199705/06)18:3<217::AID-OCA594>3.0.CO;2-N doi: 10.1002/(SICI)1099-1514(199705/06)18:3<217::AID-OCA594>3.0.CO;2-N |
[19] | M. Bradley, S. Lenhart, J. Yong, Bilinear optimal control of the velocity term in a Kirchhoff plate equation, J. Math. Anal. Appl., 238 (1999), 451–467. https://doi.org/10.1006/jmaa.1999.6524 doi: 10.1006/jmaa.1999.6524 |
[20] | R. Zine, Optimal control for a class of bilinear hyperbolic distributed systems, Far East Journal of Mathematical Sciences, 102 (2017), 1761–1775. |
[21] | R. Zine, M. Ould Sidi, Regional optimal control problem with minimum energy for a class of bilinear distributed systems, IMA J. Math. Control I., 35 (2018), 1187–1199. https://doi.org/10.1093/imamci/dnx022 doi: 10.1093/imamci/dnx022 |
[22] | R. Zine, M. Ould Sidi, Regional optimal control problem governed by distributed bi-linear hyperbolic systems, Int. J. Control Autom. Syst., 16 (2018), 1060–1069. https://doi.org/10.1007/s12555-017-0226-8 doi: 10.1007/s12555-017-0226-8 |
[23] | M. Li, X. Liu, Iterative identification methods for a class of bilinear systems by using the particle filtering technique, Int. J. Adapt. Control, 35 (2021), 2056–2074. https://doi.org/10.1002/acs.3308 doi: 10.1002/acs.3308 |
[24] | S. Liu, Y. Zhang, L. Xu, F. Ding, A. Alsaedi, T. Hayat, Extended gradient-based iterative algorithm for bilinear state-space systems with moving average noises by using the filtering technique, Int. J. Control Autom. Syst., 19 (2021), 1597–1606. https://doi.org/10.1007/s12555-019-0831-9 doi: 10.1007/s12555-019-0831-9 |
[25] | S. Benhadid, S. Rekkab, E. Zerrik, Sensors and regional gradient observability of hyperbolic systems, Intelligent Control and Automation, 3 (2012), 78–89. https://doi.org/10.4236/ica.2012.31010 doi: 10.4236/ica.2012.31010 |
[26] | H. Bourray, A. Boutoulout, I. El Harraki, Gradient controllability for hyperbolic systems, Information Sciences Letters, 3 (2014), 11–19. https://doi.org/10.12785/isl/030102 doi: 10.12785/isl/030102 |
[27] | M. Ould Sidi, S. Beinane, Gradient optimal control problems for a class of infinite dimensional systems, Nonlinear Dynamics and Systems Theory, 20 (2020), 316–326. |
[28] | M. Ould Sidi, S. Beinane, Regional gradient optimal control problem governed by a distributed bilinear systems, Telkomnika, 17 (2019), 1957–1965. https://doi.org/10.12928/telkomnika.v17i4.11275 doi: 10.12928/telkomnika.v17i4.11275 |
[29] | J. Lions, E. Magenes, Problemes aux limites non homogenes et applications, Paris: Dunod, 1968. |
[30] | H. Brezis, Analyse fonctionnelle: theorie et application, Paris: Masson, 1983. |
[31] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[32] | A. El Jai, A. Pritchard, Regional controllability of distributed systems, In: Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems, Berlin: Springer, 2007,326–335. https://doi.org/10.1007/BFb0115033 |