Research article

A generalized effective neurosophic soft set and its applications

  • Received: 24 August 2023 Revised: 01 October 2023 Accepted: 11 October 2023 Published: 01 November 2023
  • MSC : 03B52, 03E72, 03E75

  • We introduce the concept of an effective neutrosophic soft set, which aims to capture the influence on three independent membership functions representing degrees of truth (T), indeterminacy (I) and falsity (F). We go further by presenting a generalization of the effective neutrosophic soft set, which includes the incorporation of a degree to signify the potential for an approximate value-set. This enhancement contributes to improved efficiency and realism in the concept. Notably, this innovative approach leverages the strengths of both the generalized neutrosophic set and the effective neutrosophic soft set. The subsequent sections delve into fundamental operations on the generalized effective neutrosophic soft set, providing clarity through illustrative examples and propositions. Furthermore, we demonstrate the practical application of the generalized effective neutrosophic soft set in addressing decision-making problems and medical diagnoses.

    Citation: Sumyyah Al-Hijjawi, Abd Ghafur Ahmad, Shawkat Alkhazaleh. A generalized effective neurosophic soft set and its applications[J]. AIMS Mathematics, 2023, 18(12): 29628-29666. doi: 10.3934/math.20231517

    Related Papers:

  • We introduce the concept of an effective neutrosophic soft set, which aims to capture the influence on three independent membership functions representing degrees of truth (T), indeterminacy (I) and falsity (F). We go further by presenting a generalization of the effective neutrosophic soft set, which includes the incorporation of a degree to signify the potential for an approximate value-set. This enhancement contributes to improved efficiency and realism in the concept. Notably, this innovative approach leverages the strengths of both the generalized neutrosophic set and the effective neutrosophic soft set. The subsequent sections delve into fundamental operations on the generalized effective neutrosophic soft set, providing clarity through illustrative examples and propositions. Furthermore, we demonstrate the practical application of the generalized effective neutrosophic soft set in addressing decision-making problems and medical diagnoses.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–253. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5. doi: 10.1016/S0898-1221(99)00056-5
    [4] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6. doi: 10.1016/S0898-1221(03)00016-6
    [5] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X. doi: 10.1016/S0898-1221(02)00216-X
    [6] S. Alkhazaleh, A. R. Salleh, N. Hassan, Soft multisets theory, Applied Mathematical Sciences, 5 (2011), 3561–3573.
    [7] S. Alkhazaleh, A. R. Salleh, N. Hassan, Possibility fuzzy soft set, Advances in Decision Sciences, 2011 (2011), 479756. http://doi.org/10.1155/2011/479756. doi: 10.1155/2011/479756
    [8] S. Alkhazaleh, A. R. Salleh, N. Hassan, Fuzzy parameterized interval-valued fuzzy soft set, Applied Mathematical Sciences, 5 (2011), 3335–3346.
    [9] S. Alkhazaleh, Plithogenic soft set, Neutrosophic Sets Sy., 33 (2020), 256–274. http://doi.org/10.5281/zenodo.3783023. doi: 10.5281/zenodo.3783023
    [10] M. Abdel-Basset, M. Saleh, A. Gamal, F. Smarandache, An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number, Appl. Soft Comput., 77 (2019), 438–452. https://doi.org/10.1016/j.asoc.2019.01.035. doi: 10.1016/j.asoc.2019.01.035
    [11] M. Abdel-Basset, G. Manogaran, A. Gamal, V. Chang, A novel intelligent medical decision support model based on soft computing and IoT, IEEE Internet Things, 7 (2020), 4160–4170. https://doi.org/10.1109/JIOT.2019.2931647 doi: 10.1109/JIOT.2019.2931647
    [12] P. K. Maji, A. R. Roy, R. Biswas, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (2001), 589–602.
    [13] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412–418. https://doi.org/10.1016/j.cam.2006.04.008. doi: 10.1016/j.cam.2006.04.008
    [14] P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Comput. Math. Appl., 59 (2010), 1425–1432. https://doi.org/10.1016/j.camwa.2009.12.006. doi: 10.1016/j.camwa.2009.12.006
    [15] S. Alkhazaleh, A. R. Salleh, Fuzzy soft expert sets and its application, Appl. Math., 5 (2014), 1349–1368. https://doi.org/10.4236/am.2014.59127 doi: 10.4236/am.2014.59127
    [16] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, 2006 IEEE International Conference on Granular Computing, Atlanta, GA, USA, 2006, 38–42. https://doi.org/10.1109/GRC.2006.1635754
    [17] P. K. Maji, Neutrosophic soft set, Annals Fuzzy Math., 5 (2013), 157–168.
    [18] R. Sahin, A. Küçük, Generalised neutrosophic soft set and its integration to decision making problem, Appl. Math. Inform. Sci., 8 (2014), 2751–2759. https://doi.org/10.12785/amis/080610 doi: 10.12785/amis/080610
    [19] S. Broumi, Generalized neutrosophic soft set, arXiv: 1305.2724. https://doi.org/10.48550/arXiv.1305.2724
    [20] S. Alkhazaleh, Time-neutrosophic soft set and its applications, J. Intell. Fuzzy Syst., 30 (2016), 1087–1098. https://doi.org/10.3233/IFS-151831 doi: 10.3233/IFS-151831
    [21] S. Alkhazaleh, n-Valued refined neutrosophic soft set theory, J. Intell. Fuzzy Syst., 32 (2017), 4311–4318. https://doi.org/10.3233/JIFS-16950 doi: 10.3233/JIFS-16950
    [22] S. Alkhazaleh, A. A. Hazaymeh, N-valued refined neutrosophic soft sets and their applications in decision making problems and medical diagnosis, J. Artif. Intell. Soft, 8 (2018), 79–86. https://doi.org/10.1515/jaiscr-2018-0005 doi: 10.1515/jaiscr-2018-0005
    [23] N. L. A. M. Kamal, L. Abdullah, I. Abdullah, S. Alkhazaleh, F. Karaaslan, Multi-valued interval neutrosophic soft set: formulation and theory, Neutrosophic Sets Sy., 30 (2019), 149–170.
    [24] S. Al-Hijjawi, A. G. Ahmad, S. Alkhazaleh, Time Q-neutrosophic soft expert set, International Journal of Neutrosophic Science, 19 (2022), 08–28.
    [25] F. Smarandache, Extension of soft set to hypersoft set, and then to plithogenic hypersoft set, Neutrosophic Sets Sy., 22 (2018), 168–170.
    [26] M. Saqlain, M. Saeed, M. R. Ahmad, F. Smarandache, Generalization of TOPSIS for Neutrosophic Hypersoft set using accuracy function and its application, Neutrosophic Sets Sy., 27 (2019), 131–137. https://doi.org/10.5281/zenodo.3275533. doi: 10.5281/zenodo.3275533
    [27] S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, F. Smarandache, Complex fermatean neutrosophic graph and application to decision making, Decision Making: Applications in Management and Engineering, 6 (2023), 474–501. https://doi.org/10.31181/dmame24022023b doi: 10.31181/dmame24022023b
    [28] S. Broumi, R. Sundareswaran, M. Shanmugapriya, G. Nordo, M. Talea, A. Bakali, et al., Interval-valued fermatean neutrosophic graphs, Decision Making: Applications in Management and Engineering, 5 (2022), 176–200. https://doi.org/10.31181/dmame0311072022b doi: 10.31181/dmame0311072022b
    [29] S. K. Sahoo, S. S. Goswami, A comprehensive review of multiple criteria decision-making (MCDM) methods: advancements, applications, and future directions, Decision Making Advances, 1 (2023), 25–48. https://doi.org/10.31181/dma1120237 doi: 10.31181/dma1120237
    [30] S. Broumi, M. Dhar, A. Bakhouyi, A. Bakali, M. Talea, Medical diagnosis problems based on neutrosophic sets and their hybrid structures: a survey, Neutrosophic Sets Sy., 49 (2022), 1–18.
    [31] S. Alkhazaleh, Effective fuzzy soft set theory and its applications, Appl. Comput. Intell. S., 2022 (2022), 6469745. https://doi.org/10.1155/2022/6469745 doi: 10.1155/2022/6469745
    [32] S. Alkhazaleh, E. Beshtawi, Effective fuzzy soft expert set theory and its applications, Int. J. of Fuzzy Log. Inte., 23 (2023), 192–204. https://doi.org/10.5391/IJFIS.2023.23.2.192 doi: 10.5391/IJFIS.2023.23.2.192
    [33] S. Al-Hijjawi, A. G. Ahmad, S. Alkhazaleh, Effective neutrosophic soft set and its applications, submitted for publication.
    [34] S. Al-Hijjawi, A. G. Ahmad, S. Alkhazaleh, Effective neutrosophic soft expert set, in press.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1180) PDF downloads(115) Cited by(1)

Article outline

Figures and Tables

Tables(41)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog