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Abstract: We introduce the concept of an effective neutrosophic soft set, which aims to capture the
influence on three independent membership functions representing degrees of truth (T), indeterminacy
(I) and falsity (F). We go further by presenting a generalization of the effective neutrosophic soft set,
which includes the incorporation of a degree to signify the potential for an approximate value-set. This
enhancement contributes to improved efficiency and realism in the concept. Notably, this innovative
approach leverages the strengths of both the generalized neutrosophic set and the effective neutrosophic
soft set. The subsequent sections delve into fundamental operations on the generalized effective
neutrosophic soft set, providing clarity through illustrative examples and propositions. Furthermore,
we demonstrate the practical application of the generalized effective neutrosophic soft set in addressing
decision-making problems and medical diagnoses.
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1. Introduction

Fuzzy sets were developed by Zadeh [1] to address problems involving uncertain information.
Atanassov [2] extended the concept of fuzzy sets to intuitionistic fuzzy sets, which offer a broader
framework for handling uncertainty. In 1999, Molodtsov [3] introduced soft sets as another valuable
tool for managing data uncertainties. The concept of soft sets has been thoroughly explored and
advanced by numerous researchers [4—11], who have applied it across various domains. Maji [12]
innovatively combined fuzzy sets and soft sets, giving rise to the notion of fuzzy soft sets. Furthermore,
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Roy and Maji’s formulation of fuzzy soft sets [13] has found practical applications in addressing
decision-making challenges.

The concept of generalized fuzzy soft sets was introduced by Majumdar and Samanta [14]. Their
work also included the development of operations and applications in decision-making and medical
diagnosis problems using this concept. Fuzzy soft sets were further advanced to fuzzy soft expert
sets by Alkhazaleh and Salleh [15], effectively combining the principles of fuzzy sets and soft expert
sets. They introduced operations, discussed properties, and explored applications of this concept in
decision-making problems. Additionally, they introduced a mapping for this concept.

The transition from intuitionistic fuzzy sets to Neutrosophic sets (NS) was pioneered by
Smarandach [16]. The concept of neutrosophic soft sets (NSS), which merges neutrosophic sets
and soft sets, was introduced by Maji [17]. Sahin [18] extended the idea of neutrosophic soft sets
to generalized neutrosophic soft sets (GNSS). Broumi [19] further extended this by introducing
generalized neutrosophic soft sets with defined operations and applications in decision-making
problems. Several developments of neutrosophic soft sets, along with their applications in decision-
making, have been explored in subsequent works [20-26]. Currently, different applications on
neutrosophic graph in decision making introduced in [27-29]. In the field of medical diagnosis
(MD), determining diseases based on a person’s symptoms is a crucial task. Neutrosophic sets
find application in medical diagnosis, particularly when dealing with extensive datasets containing
uncertainty, inconsistency and indeterminacy. Broumi [30] has successfully applied neutrosophic sets
to address problems in medical diagnosis (MD).

Effective Fuzzy Soft Set (EFSS), introduced by Alkhazaleh in 2022 [31], was designed to
extend the notion of external effectiveness within the realm of soft sets. Alkhazaleh also presented
operations on Effective Fuzzy Soft Sets (ENSS) and investigated various properties of this concept.
Furthermore, practical applications of EFSS were explored in decision-making problems (DM) and
medical diagnosis (MD). Furthermore, the concept of Effective Fuzzy Soft Expert Sets (ENSES) [32]
introduced the opinions of experts in one model.

In the same year, Effective Fuzzy Soft Set (EFSS) was extended to Effective Neutrosophic Soft
Set (ENSS) [33], incorporating the notion of effectiveness on the three independent membership
functions representing the degrees of truth (T), indeterminacy (I) and falsity (F). Moreover, the concept
of Effective Neutrosophic Soft Expert Set (ENSES) [34] introduced with operations and sutiable
examples.

In this research, we introduce the concept of an effective neutrosophic soft set, a mathematical
framework designed to capture the nuances of uncertain information by utilizing three distinct
membership functions representing degrees of truth (T), indeterminacy (I) and falsity (F). Going
beyond conventional approaches, we propose a generalization of the effective neutrosophic soft set,
which incorporates an additional degree to signify the potential for an approximate value-set. This
extension enhances the framework’s efficiency and realism, making it more adept at modeling complex
real-world scenarios. Notably, our innovative approach seamlessly integrates the strengths of both
the generalized neutrosophic set and the effective neutrosophic soft set, offering a versatile and
comprehensive representation of uncertainty. To enhance understanding, we elucidate fundamental
operations on the generalized effective neutrosophic soft set through illustrative examples and
propositions. Furthermore, we demonstrate the practical applicability of our generalized framework
in addressing diverse decision-making problems and making informed medical diagnoses. This study
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contributes to the advancement of mathematical models for handling uncertainty and bridges the gap
between theory and practicality, offering valuable insights and solutions with real-world relevance.

While the study encompasses the broader realm of fuzzy sets and their generalizations, such as
GENSS, it is pertinent to acknowledge the specific contributions and unique focus of the present work.
Fuzzy sets and their extensions have played a pivotal role in Multi-Criteria Decision Making (MCDM)
and related fields. However, the distinctive feature of this research lies in its innovative exploration of
effective neutrosophic soft sets and their generalization. By introducing a comprehensive framework
that combines elements of neutrosophic sets and soft sets, the study offers a fresh perspective on
addressing uncertainty and ambiguity in decision-making processes. While the immediate application
focus may not be apparent, the significance of this work becomes evident when considering its potential
impact on refining MCDM methodologies and expanding the toolbox of decision-makers. Therefore,
this research, while grounded in the broader context of fuzzy set theory, brings a unique and valuable
perspective to the study line by opening up new avenues for addressing complex decision-making
challenges.

We introduce the concept of Generalized Effective Neutrosophic Soft Set by extending the concept
of Effective Neutrosophic Soft Set as defined in [34]. We also introduce the degree of possibility (u(e;))
associated with each parameter e attached to ENSS, enhancing the realism of the concept.

We then define fundamental concepts such as soft sets, neutrosophic soft sets, effective fuzzy soft
sets and effective neutrosophic soft sets. Then, we proceed to define basic operations for the new
concept, including subset, equality, complement, union and intersection, with illustrative examples and
accompanying propositions. Finally, we present an application of this new concept in decision-making
problems and medical diagnosis.

2. Preliminary

In this section, we provide some necessary definitions for the understanding of this paper. Let U be
a set of universe, E be a set of parameters and P(U) denote the power set of U and A C E.

Definition 2.1. [3] A pair (F, A) is called a soft set over U, where F is a mapping
F:A- PU).

Definition 2.2. [12] Let U be an initial universal set, E be a set of parameters and /Y denote the power
set of fuzzy set of U and A C E. A pair (F, E) is called a fuzzy soft set over U, where F' is a mapping
given by
F:A- 1"

Definition 2.3. [5] A neutrosophic set A on universe of discourse U is defined as

A = {x : Ta(x), Ia(x), Fa(x); x € U},
where 7,1, F : X —]70,17[ and "0 < Tx (x) + I4(x) + F4(x) < 3" and Tx(x) is the truth-membership
function, 7,(x) is an indeterminacy-membership and F4(x) is a falsity-membership function.

Definition 2.4. [16] Let U be an initial universe set and E be a set of parameters. Consider A C E.
Let P(U) denotes the set of all neutrosophic sets of U. The collection (F, A) is denotes to be the set of
all neutrosophic soft sets over U, where F is a mapping given by

F:A->NW).
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Definition 2.5. [31] An effective set is a fuzzy set A in a universe of discourse A where A is a function
where A : A — [0, 1]. Here, A is the set of effective parameters that may change the membership
values by making positive effect (or no effect) on values of memberships after applying it and defined
as follows: A = {< a,0, (a) : a € A >}, where 6, (a) is a membership degree.

Definition 2.6. [31] Let A be a set of effective parameters, and A be the effective set over A. Let IV
denote all fuzzy subsets of U; a pair (F, E), is called an effective fuzzy soft set (EFSS in short) over
U, where F is mapping given by

F:E-1IY,

define as follows:

x.
F(el')A:{—JI.XjE U, eiEE}.
:UU(xj)A

Where Ya, € A

(1 - ,UU(Xj)) % oA, (@)
Al ’

Hy(x)) + if uy(x;)€(0,1),

.UU(Xj)A =
/.lU(Xj), O.W.

Definition 2.7. [31] The complement of effective set A over the set of effective parameters A is the
effective set A° where c is any fuzzy complement.

Definition 2.8. [33] Let U be an initial universal set and let E be a set of parameters. Let A be a set
of effective parameters and A be the effective set over A. Let N(U) denotes the set of all neutrosophic
subsets of U, a pair (y, E), 1s called an effective neutrosophic soft set (ENSS) over U, where ¢ is a
mapping given by ¢ : E — N(U) defined as follows:

Xj .
cx;eU, ee Ey, 2.1

<Ty (xj)A’IU (xj)A’ Fy (xj)A >

(o) (x)), ={

where

Ty (Xj) " [(I—Tu(xj)lllzk 6Ax‘,‘(llk):| Cif Ty ()Cj) € 0.1

Ty (x)). O.W.

) FU(xJ)—[W] if Fu (%)) € ©,1)

FU ()Cj) , Oo.W.
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Definition 2.9. [33] Let (¢, E1),, and (¢, E»),, be two ENSSs over the common universe U. Then
(Y, E1),, 1s said to be ENS subset of (¢, E3),, if

1) E, C Ey;
2) Ai(x) < Aa(x);

3) Ty, 0 (0 STy 0 (05 Ly, 0 () S Ly 00 (%), Fyy o) (X) 2 Fyy, ) (1)
Yee E,xe U.

We denote it by (¥, E1)a, € (¢, E2)a,-

Definition 2.10. [33] The A ompiemen: of the ENSS (¢, E), is the ENSS denoted by (¢, E)ac, where A€
is fuzzy complement of A.

To get Acompiemens OF ENSS, we keep the neutrosophic soft set (¢, E) as is and find A°. Then, we
apply Eq (2.1) to get a new ENSS.

Definition 2.11. [33] The S oftcompiemen: Of the ENSS (¢, E)is the ENSS denoted by (¢, E), where
Y¢ is the neutrosophic soft complement of .

To get Softcompiemen: 0f ENSS, we keep the effective set A as is and compute /. Then we apply
Eq (2.1) to get a new ENSS.

Definition 2.12. [33] The T otal ompiemen: Of the ENSS (¢, E), is the ENSS denoted by (¥, E)ac, where
Y¢ 1s the neutrosophic soft complement of  and A“ is any fuzzy complement of A.
To get Total ompiemens OF ENSS, we compute ¢ and A¢. Then, we apply Eq (2.1) to get a new ENSS.

Definition 2.13. [33] The union of two ENSSs (¢, E1),, and (¢, E3), over the common universe U is
the ENSS (0, E),,, where E = E; U E, and Yv € E, is given as follows:

Ya,(v), ifveE - Ey;
oA, (V) = {0A,(V), ifveE,-E;
(lp U O-)AS(V)a ifve E\NE,.

Here, s is any s-norm and o is a neutrosophic soft union between ¢ and ¢.

Definition 2.14. [33] The intersection of two ENSSs (¢, E}),, and (¢, E3),, over the common universe
U is the ENSS (w, E),,, where E = E; U E; and Vv € E, (w, E),, is given as follows:

Ya, (), ifvekE —Ey;
wp, (V) = 16a, (), ifve E, —Ej;
W No)a, (), ifve E,NE,.

Here, ¢ is any f-norm and w is a neutrosophic soft intersection between ¢ and ¢.

Definition 2.15. [33] Let (i, E1)a, and (¢, E»)a, be two ENSSs over the common universe U. Then,
“(f, Er)a, AND (¢, E»)a,” is ENSS denoted by (¢, E)a, A (¢, E2)a, and defined by

W, EDa, A (@, Ex)n, = (w, Ey X EY)y,,

where wy, (@, 8) = W (@) NP (B)),,,Y (@,B) € Ey X Er. Here, 1 is any f-norm, wy, is the effective
neutrosophic soft intersection between ¥, and @n,.
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Definition 2.16. [33] Let (¥, E)a, and (¢, E;)s, be two ENSSs over the common universe U. Then,
“(U, E1)a, OR (¢, E)a,” 1s ENSS denoted by (¥, E1)a, V (¢, E2)a, and defined by

W, EDA, V (@, Exn, = (0, E1 X E))y,,

where oy, (@,8) = W (@) U@ (B)),, - V(a,B) € E X Ey. Here, ¢ is any t-norm, o, is the effective
neutrosophic soft union between ¥, and ¢, .

Definition 2.17. [13] Let N(U) be the set of all neutrosophic sets of U. A generalized neutrosophic
soft set y# over U is defined by the set of ordered pairs.
() = (W (e),u(e) : e € Ey(e) € N(U),pu(e) € [0, 1},
where i/ is a mapping given by
Y : E— N(U)and uis afuzzy setsuchthaty: £ — I =[0,1].
Here, y* is a mapping defined by y* : E — N (U) X I. For any parameter e € E, i (e) is referred
as the neutrosophic value set of parameter e, that is ¢ (e) = {< x, Ta(x), [4(x), F4(x) >: x € U}, where
T, I, F are membership values for truthness, indeterminacy and falsity respectively such that 7,1, F :
U—-1[0,11and 0 < Ty (x) + Iy (x) + F4(x) <3.

In fact, y# is a parameterized family of neutrosophic sets on U, which has the degree of possibility
of the approximate value set which is represented by u (e) for each parameter e. So, we can write it as
follows:

© —’/J(e)

N X X X
W) {w(eﬂxl)’w(e)(xz)’“ U (@) (1) }

3. Generalized effective neutrosophic soft set (GENSS)

In this section, we extend the concept of effective neutrosophic soft sets as introduced in [33]. In our
generalization of effective neutrosophic soft sets, we attach a degree to the parameterization of fuzzy
sets while defining effective neutrosophic soft sets.

Definition 3.1. Let U = {u;, u», ..., u,} be an initial universal set, and let E = {ey, ea, ..., , ¢,,} be a set
of parameters. Let A = {a;, as, ..., a;} be a set of effective parameters and A be the effective set over
A. Let N(U) denotes the set of all neutrosophic subsets of U and u be a fuzzy setthatisu : E — I =
[0,1]. A pair I'*, E), is called a generalized effective neutrosophic soft set (GENSS) over U, where
I (e)p = {T(en) > ua (e}, e € E, I'(e)p € N(U) and up (&) € 1 =1[0, 1]}, for all ¢; € E, I'(e))p
is referred to as the effective neutrosophic soft value set of the parameter e; and the mapping given
by [*(e;))p : E — N(U) x I, where u is a fuzzy set such that u : E — 1. Then, we can write the
generalized effective neutrosophic soft set (GENSS) I'* (¢;), as follows:

_ X1 X2 Xn .
re = {(rﬂ (e (¥1)' T (e0p (1) T# (e (xn))"“ “ }

where,
(I—p(e)) X} 27 5ij (ax)

wle), = {'u (e:) + [ AT ] if (e €(0,1);
M (ei) ’ OW
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Example 3.1. Let U = {x1, x5, x3} be a set of universe. Let E = {ey, e>, e3} be a set of parameters.let A =
{ay,ay, a3, as} be a set of effective parameters. Suppose that the effective set over A for all {x1, x,, X3} s
given by expert as follows:

aq a, as dy aq a) asz da
A e S R S 9A ) = YA~ 1 °AN’~~(°
) {0.8 1°02 0.4} (12.) {7 1°09 .7}
as dy
A :{_]9 _25_’_}
%) =105" 06 006

Let the GNSS (I'*, E) is given as follows:

’

X1 X2 X3
' E) = , , - ,0.7
I E) {el’{ <0.5,0,0.7 >) <0.7,0.3,0.1 >) <0.7,0.2,0.5 >) }
X1 X3 X3
62’ 2 2 ’O']‘ b
<0.6,04,09>/)1<0.3,0.7,09>/)1<0.2,0,0.6 >

e ad a2 3 06
P 11<0.7,0.1,05>)1<07,02.03>)\<08,0.1,0.1>) " [[

Now, we apply Definition 3.1 to find I'¥ (e;), as follows:

X1
<05+ [(1-0.5)08+1+0.2+0.4)/4],0.1,0.7 - (0.D[(0.8 +1 +0.2 +0.4)/4] >°

X2

<0.7+[(1-0.7)0.7+1+0.9+0.7)/4],0.3,0.1 = [(0.1)(0.7 + 1 + 0.9 + 0.7) /4] >’

I'(e1)a (xj) Z{

X3
<07+[1-0705+06+0+0.6)/4],0.2,0.5-1(0.5)(0.5+0.6+0+0.6)/4] >}

X1 X2 X3
~1<0.8,0,0.28 >° < 0.95,0.3,0.02 >" < 0.83,0.2,029 > [

Then, we find u (e;), as follows:

ulepr(x)=07+[1-0708+1+02+04+0.7+1+09+0.7+0.5+0.6+0+0.6)/12] = 0.89.

Consequently,

X X2 X3
» N ’ , ,0.89)}.
() (x)) {( <08.0.028 >) (< 0.95,0.3,0.02 >) (< 0.83,0.2,029 > )}

Similarly, we get the GENSS (I'*, E), as follows:

X1 X X
Fﬂ, E = D) , , , 0.8 ’
(% En {el { <0.8,0,0.28 >) (< 0.95,0.3,0.02 >) (< 0.83,0.2,0.29 >) 9}
X1 X X3
{62’{ < 0.84,0.4,0.36 >)’ (< 0.88,0.7,0.16 >)’ (< 0.54.0.035 >),0.66},

X1 X X3 0.85
e . .
7\ < 0.88,0.1,0.2 >/'1<0.95,0.2,0.05 >/'\< 0.89,0.1,0.06 > )’
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Definition 3.2. Let (I*, Ey),, and (", E»),, be two GENSSs over the common universe U. Then
(I'", Ey), 1s the GENS subset of (‘P", E;),,denoted by (I, Ey),, € (¥", Ey),, if the following
conditions are satisfied:

1) E, C Ey;

2) u(e) < nle);

3) Ai(x;) is fuzzy subset of A,(x;) for all i;
4) I'(e)p, ¥ (e)y, Ye€ E\NE,.

Example 3.2. Let E| = {e}, €5, e4} and E, = {ey, €2, e4, €5}, over the common universe U = {x|, X2, X3}.
Clearly, E, C E;. Let

a a a a. a a a a

A (e = {—‘3 22, 0—7},A1(x2) - {—‘4 29, T“}
ay ap az dag a, a asz ag

- __5_5_3/\ = YA A T AN

M) = {07 0°06 04} 2 (1) {0.5 0’1 09}
aq a as dy a; apy das ay

A YA ' A0 40 _}’A - {_a PN _}
2(%2) {0.6 07 101 ) ) 8°0°0.7 05

It’s clear Ay (x;) is a fuzzy subset of A, (x;),Vi=1,2,3.
Let (I, E) and (", E,) be defined as follows:

(I, E)) :{el, { al 2 ) 3 0.1

<0.5,0.2,0.6 >)°\<0.3,0.1,0.8 >\ < 0.3,0.3,0.8 > )’

o

X1 X2 X3 )
<0.2,04,0.7>)'1<0.1,0.3,08 >/'\< 0.2,0.1,0.6 > )" " J°
X1 X2 ) X3 }

<0.4,0.2,0.8 >)1<0.2,0.1,0.9 >/'{< 0.8,0.2,0.5 >’

X1 X2 X3
<0.6,0.3,0.5>/)1<04,0.2,05>/1<0.5,04,0.6 >/

1
1
{
{ x| X2 X3
1
1

e
~

<0.3,0.5,0.6 >)'\<0.4,0.3,0.6 >)'\<0.5,0.4,0.6 >/’

X1 X2 X3

<0.5,0.3,0.7 >)1<0.3,0.2,0.5 >)'\< 0.9,0.3,04 > )’

X1 X2 X3

{ <0.3,0.6,0.5>/)1<0.5,0.3,02>)1<0.8,05,04 >)
By appling Definition 3.1, we get I'* (e;),, as follows:

o
W

-
-
(", E») ={el,
°
°
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— X1
_{< 0.5+[(1-0.5)03+0+1+0.7)/4],0.2,0.6 - [(0.6)(0.3+0+1+0.7)/4] >

X2

<03+ [(1-0.3)0.4+05+1+1)/4],0.1,0.8 = [(0.8)(0.4 + 0.5 + 1 + 1)/4] >’

F(el)Al (xj)

X3
<03+[(1-03)0.7+0+0.6+0.4)/4],0.3,0.8 = [(0.8)(0.7+ 0+ 0.6 + 0.4)/4] >}

_ X1 X2 X3
~1<0.75,0.2,0.3 >> < 0.79,0.1,0.24 > < 0.6,0.3,0.46 > |

Then, we find i (e;),, as follows:

ler) (xpp, =01 +[(1-0.1)03+0+1+0.7+04+05+1+1+0.7+0+0.6+0.4)/12] =

Consequently,

X X2 X3
- N , : ,0.6¢.
(e, (x)) {( <0.75.0.2.0.3 >) (< 0.79,0.1,0.24 >) (< 0.6,0.3,0.46 >) }

Similarly, we get the GENSS (I'*, E),, and (‘P¥, E,),, as follows:

X1 X2 X3
[",E),, = .
@ ), {el’{ <0.75,0.2,0.3 >)’(< 0.79,0.1,0.24 >)’(< 0.6,0.3,0.46 >)’O 6.
X1 X2 X3 06
< 0.6,0.4,0.35 >)"\< 0.73,0.3,0.24 > )"\ < 0.54,0.1,0.35 > "

ad e 3 .0.73
éy4, 5
*11<07.02.04>/1<076.01.027>/1<089.02.029 >

(W, Ex)p, —{61,

X1 X X3 0 71
<0.84,0.3,02>/1<0.9,0.2,0.08 >/'\<0.75,0.4,0.3 >

X1 X X3 0 79
<0.72,0.5,0.24 >)'\<0.9,03,0.11 >\ < 0.75,04,03 >) |

il a2 e 0.82
<08.03.028>/1<088.02.028>,1<095.03.02>/ [

al a2 ik 0.86
“>1<072.06.02>,1<091.03.003>,1<09.05.02>) ([

Therefore, (I, E1),, C (Y7, E2),, -
Note: Let (I%, E),, and (", E;),, be two GENSS over U. Then, (I, E;),, is said to be equal
to (‘P", E»),,, denoted by (I, Ey),, = (W7, E»),, if (I¥, Ey),, 1s a GENS subset of (W7, E»),, and
(W7, E»),, is a GENS subset of (I, E),, .

Definition 3.3. The A, plement of the GENSS (I'*, E), is the GENSS (I'¥, E),. and define by:
(I, E)pe = {(T" () pc, pt(€)pc) }-
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To get Acompiemens 0f GENSS, we keep the generalized neutrosophic soft set (I'¥, E) as is and find the
fuzzy complement of the effective set A, which is A¢. Then, apply Definition 3.1.

Definition 3.4. The S of1,,,piemen Of the GENSS (I, E) , is the GENSS (I, E)j and define by:
M E)y = {(M) (e u(ey) }-
To get Sof 1 ompiemens Of GENSS, we find the generalized neutrosophic soft complement of (I, E)
which is (T*, E)“ and keep the effective set A as is. Then, we apply Definition 3.1.
Definition 3.5. The T otal ompiemen: Of the GENSS (I, E), is the GENSS (I, E),)° and define by:

(T, E)0)" = (I, E)je = {(I (€1)ncs 1 (€1)ac) } -

To get Total compiemens (I, E),) , we find the generalized neutrosophic soft set complement of (I, E)
which is (I'*, E) and the fuzzy complement of the effective set A which is A°. Then, we apply
Definition 3.1.

Example 3.3. Let U = {x, x2, x3} be a set of universe. Let E = {ey, e;, e3} be a set of parameters.
Let A = {ay,a,,as, a4} be a set of effective parameters. Suppose that the effective set over A for all
{x1, X2, X3} is given by expert as follows:

ay ap dsz day ay dy asz ag
A =\ = T T s = ’A = {_’ PSR _9_}’
() {0.3 0’1 0.7} () =04 05 1T
ay dp as dag
A = {_’ PN _}
(%) =107"0"06 04
Let the generalized neutrosophic soft set is given as follows:
X1 X2 X3
FN,E = ’ ’ ’ 50-1 ’
( ) {el { <0.5,0.2,0.6 >)'1<0.3,0.1,0.8 >/ \<0.3,0.3,0.8 >

X1 X2 X3 0.2
e b 9 b b . b
> \< 0.2,04,0.7>)\<0.1,03,0.8 >/ \<0.2,0.1,0.6 >

X1 X2 X3
es, ) ) ,04
{ { <04,0.2,0.8>)1<0.2,0.1,09 >/ \<0.8,0.2,0.5 >

Then, by using fuzzy complement of the effective set we have:

) ay ap dsz day ) a, dady das day
AL = {_, s T _}’ ¢ = {_’ N0 N0 _}7
=071 0031060500

ay dp das dg
AC e R Sl 0%
(x3) {0.3 1°0.4 0.6}

The complement of the generalized neutrosophic soft set is given as follows:

2 c_ X1 X X
e {el’{ <0.6,02,0.5>/'\<0.8,0.1,0.3>/'{<0.8,0.3,0.3 > ’0'9}’

X1 X2 X3 0.8
€2 <0.7,04,0.2 > ’ <0.6,0.3,0.1 > ’ <0.6,0.1,0.2 > T

X1 X2 X3 0.6
e b 2 b b . .
3 <0.8,0.2,04 > <09,0.1,0.2 > <0.5,0.2,0.8 >
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Then, by applying Definitions 3.3-3.5 and Definition 3.1, we compute A ompiements S Of teompiemens @0
Total .ompiement> rESPECtively.
To compute A ompiemen(I* (€1)4), We need to compute I'(e;)ac and ppc(e;) as follows:

X1

Tlenne :{< 05+[(1-05)(0.7+1+0+0.3)/4],0.2,0.6 = [(0.6)(0.7 + 1 + 0 + 0.3)/4] >’
X2

<0.3+[(1-0.3)0.6+0.5+0+0)/4],0.1,0.8 — [(0.8)(0.6 + 0.5+ 0 + 0)/4] >’

X3
<03+[(1-0.3)03+0.1+04+0.6)/4],0.3,0.8—-1[(0.8)(0.3+0.1+0.4+0.6)/4] >}

_ X X3 X3
~1<0.75,0.2,0.3 > < 0.49,0.1,0.58 >* < 0.70,0.3,0.34 > |
uleae=01+[1-0.1)07+1+03+06+05+03+1+04+0.6)/12] =0.51.

Consequently,

X1 X2 X3
Acom emen " =I* c = . , s 0.51])5.
plement (I (e1)5) =7 (e1)s {(< 0.75,0.2,0.3 >) (< 0.49,0.1,0.58 >) (< 0.70,0.3,0.34 > )}

Similarly, we get Acompiemens (I*, E) ) as follows:

X1 X2 X3
Acom emen, l"/l, E = I“/l’ E)pe = s s s ,0.51;,
ptement (( = ( a {el {(< 0.75,0.2,0.3 >) (< 0.49,0.1,0.58 >) (< 0.70,0.3,0.34 >) }

X1 X2 X3 0 56
e .
2\ < 0.6,0.4,0.35 > /1< 0.35,0.3,0.44 > )\ < 0.66,0.1,0.26 > )’ ’

X1 X2 X3 0.67
e . .
2\ < 0.7,0.2,04 >/'\<0.42,0.1,0.65 > )"\ < 0.34,0.2,0.21 >/’

To compute S 0 ftcompiemen:I* (€1) ), we need to compute I'“(e;)4 and pp(e;) as follows:

C — xl
I (ena ‘{< 0.6+ [(1—0.6)(0.3+0 + 1 +0.7)/4],02,0.5 — [(0.5)(0.3 + 0 + L + 0.7)/4] >

X2

<0.8+[(1-0.8)(04+05+1+1)/4],0.1,0.3 - [(0.3)(0.4 + 0.5+ 1 + 1)/4] >’

X3
<08+[(1-0.8)0.7+0+0.6+0.4)/4],0.3,0.3 —[(0.3)(0.7+0+ 0.6 + 0.4)/4] >}

_ X1 X2 X3
"~ 1<0.8,0.2,0.25 > <0.94,0.1,0.09 > < 0.89,0.3,0.17 > |
uer=09+[(1-09)03+0+1+0.7+04+05+1+1+0.7+0+0.6+0.4)/12] =0.6.

Consequently,

X1 X2 X3
complemen ke = I = s , . 0.6]5.
S0 teomptement (T (€1)) = (T7)" (€1)4 {(< 0.8,0.2,0.25 >) (< 0.94,0.1,0.09 >) (< 0.89,0.3,0.17 > )}
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Similarly, we get S o ft.ompiemen: (I, E),) as follows:

X1 X3 X3
I, E),) = (", E), = ,0.6%,
S 0 teomptemens (I, E)p) = (I, E)y {e“{(< 0.8,0.2,0.25 >)’(< 0.94,0.1,0.09 >)’(< 0.89,0.3,0.17 >) }
X1 X2 X3
,0.641,
{ez’ {(< 0.85,0.4,0.1 >)’ (< 0.88,0.3,0.03 >)’ (< 0.77,0.1,0.12 >) }

al e k. 0.73
“1<09.02.02>/1<097.01.006 > \<071.02.046 > ([

To compute T otal ompiemen(I'* (€1)), We need to compute I'“(e1)ac and ppc(e;) as follows:

X1

:{< 0.6+ [(1-0.6)(0.7+1+0+0.3)/4],0.2,0.5 - [(0.5)(0.7+1+0+0.3)/4] >’
X2

< 0.8+ [(1-0.8)(0.6+0.5+0+0)/4],0.1,0.3 = [(0.3)(0.6 + 0.5 + 0 + 0)/4] >’

I (e1)ac

X3
<08+ [(1-0.8)(03+0.1+0.4+0.6)/4],0.3,0.3 -[(0.3)(0.3+0.1 +0.4+0.6)/4] >}

_ X1 X2 X3
~1<0.8,0.2,0.25 > < 0.94,0.1,0.09 > < 0.89,0.3,0.17 > |
uea=09+[1-09)0.7+1+03+06+05+03+1+0.4+0.6)/12] = 0.95.

Consequently,

" e _ Al X X3
Totaleompiemen (" (€)7) = (") (€1)re {(< 0.8.02.025 >)’(< 094.0.1.009> )\ Z089.03.017>° )

Similarly, we get Totalcompiemens (I", E) ) as follows:

z — T EX. = d *2 X3
Totalcomptemenn (17, E)n) = (%, B {el’ {(< 0.8,0.2,0.25 >)’ (< 0.86,0.1,0.22 >)’ (< 0.92,0.3,0.13 >)’0'95 }
X1 X2 X3
,0.89 Y,
{62’ {(< 0.85,0.4,0.1 >)’ (< 0.71,0.3,0.07 >)’ (< 0.83,0.1,0.09 >) }

il 2 Ak 0.78
“1<09.02.025/\<093.01.015>/{<079.02.0345 )" "°([

Proposition 1. Let (I', S ) be GENSS over the U. Then,
1) TOtalcomplement (TOtalcomplement (F'u’ E)A) = (1"/1’ E)A B i'e-’ ((F'u, E)f\C)C = (l",u’ E)Aa

2) Acomplement (Acomplement (Fﬂ’ E)A) = (FIJ’ E)Aa

3) Softcomplement (S Oftcomplement (I—‘,u, E)A) = (1—‘#’ E)A
Proof. 1) Let (I*, E), be GENSS over the U.

Then, I (e)a = {IT'(e)n), pa (e}, e € E, I'(e)y € N(U) and pup (e;) € 1= [0, 11}

R (ei)A = {( al tXj € U,e; € E)},

< Ty(x)a, ly(xpa, Fu(xja >

where
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and
(I—p(en) X 2¢ 5ij (ar)

w(e)y = 'u(ei)+[ AT ] if u(e) €(0,1);

iJA —
/’l(ei)a O.W

Then, Totalcompiemen: (I', E)p) = (I¥, E)ye =

Xj
i , (u(er) r)C}-
{[e < Ty (xj)AC)C,(IU“ (xj)Af)C’ (Fy (xj)Ac)C >] e
where,
(Tue (xj)Av)C =T(ve) (x-i)(A")"

] Tuer (xj) N [[l—T(UC)C(Xj)]lAZlk5((A,yj)f)c(ak):| Ty (xj) cO.1);
T(UC)C (.XJ) N O.W.

_ TU (Xj) + [1—TU(X./)|]A|Z/< 5ij(“k)] Cif TU (xj) c (0’ 1)’
Ty (x;), O.W.

So. (Tu-(xj)ac) = Ty (x,)..

Similarly, (I(x)a)° = Iu (x;),, (Fue(x)ae) = Fy (x;), and

A-pe) Z} Zf 5(/\)(].)8(611() .
e || i e € .1
l'lc (ei) ) OW
¢ c [1—(/-10(91‘))"] XD 5((/\,(!.)6)0 (ax) .
(/,Lc (e,-)Ac)C — (,Ll (ei)) + |A||U|I\ :|’ if M (ei) € (07 1)’
T CH)S o.w.
(I—p(e) X} 2% 0 X (ar) .
— /J (ei) + [ |A||U|k - - ] 5 lf /’L(ei) € (0’ 1) 5
u(e), O.W.
= plea

HCHCC, TOtalcomplemem (TOtalcomplement (Fﬂ’ E)A) = (F'u, E)A
The proofs 2 and 3 can be easily obtained from relative definitions.

Definition 3.6. Let (I¥, Ey),, and (¥7, E,),, be two GENSSs over U. Let E = E, U E,. Then, the
union of two GENSS is given as follows:

I (&)a, if eeE —Ey;
GNERE LGNS it &€ B -Ey;
T UY) (&)a,, if g€ E NE,,

where s is any s-norm, U is neutrosophic soft union between I' and W, and v(e) = s (u (e),n (€)).
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Example 3.4. Let E| = {e, €2, e4} and E, = {ey, e,, €3}, over the common universe U = {x, x,, X3} and
let A = {ay, as, as, as} be the set of effective parameters. Consider two effective sets given as follows:

ay ap dads a a a as dy
A B . R N A T e
1) = { 30 10, MO {0.4’05’ 1’ 1}’
ay dx as da a, a, az a
N AN A 7A = _’_7_7_}’
Ailx) = {07 006 04/ =02 T°05 04
a, dap ds day ay dp dasz da
A {_ _7_’_}’/\ :{_’_’_a_}
2(%) =\06° 0405 02 ™ =\08°02° 06 06

X1 X2 X3

<0.5,0.2,0.6 > <0.3,0.1,0.8 > < 0.3,0.3,0.8 > 0.6

|
i
i

X1 X2 X3
<0.2,04,0.7>"<0.1,0.3,0.8 >" < 0.2,0.1,0.6 > )

o
(\9)

2

X1 X2 X3 0.4
<0.2,0.1,04>"<04,02,09>"<0.2,04,07>) "

X1 X2 X3
<0.1,0.2,04 > <0.3,0.5,0.4 >’ < 0.3,0.4,0.1 >/

=

X1 X2 X3 0.5
€4, ) , , U.
*11<0.4,02,0.8 >’ <0.2,0.1,09 > < 0.8,0.2,0.5 >

.7},
X1 X2 X3
es, , , ,03% 7.
<0.3,0.1,0.6 > <04,0.2,0.6 > <0.3,0.2,04 >

Then, the union of two GNSSs is given as follows:

X1 X3 X3
®",E) = 0.6
(@ E) {el’{ <0.5,0.1,04 >’ <0.4,0.1,0.8 > < 0.3,0.3,0.7 > )

e
\1

(]
W
—_— —— —— ——

. X1 BY) X3
2\ < 0.2,0.2,04 >"<0.3,03,04>"<03,0.1,0.1 >/

. X1 X3 X3
P\ < 0.3,0.1,0.6 > <04,0.2,0.6 > <0.3,02,04 >/

X1 X2 X3 0.5
“\< 0.4,0.2,0.8 >°<0.2,0.1,0.9 >" <0.8,0.2,0.5> )

We get the following effective set by using the basic fuzzy union (max):

ay dz dy Gy dz dg4
A = {55 T T 55 A = {56 05 T T
=103 T T o7/ M= 0605 T 1

(12 (13 ay }

A
(1) = {08 02°06° 0.6

AIMS Mathematics Volume 18, Issue 12, 29628-29666.



29642

Now, we apply Definitions 3.6 and 3.1 to find ®” (e;),, as follows:

X1
<05+[(1-0503+1+1+0.7)/4],0.1,04 — (0.H[(03+1+1+0.7)/4] >°
X2
<04+[(1-04)06+05+1+1)/4],0.1,0.8 = [(0.8)(0.6 + 0.5+ 1+ 1)/4] >’

D (e1)a, (x)) :{

X3
<03+[(1-03)0.8+0.2+0.6+0.6)/4],0.3,0.7 - [(0.7)(0.8 +0.2+ 0.6 + 0.6)/4] >}

_ X1 X2 X3
- 1<0.7,0.1,0.24 > < 0.87,0.1,0.18 > < 0.69,0.3,0.32 > |

Then, we find u (e),, as follows:

Hep, (x1))=06+[(1-06)(03+1+1+0.7+0.6+05+1+1+0.8+0.2+0.6+0.6)/12] = 0.88.

Consequently,

X1 X2 X3
" ) = , : ,0.88 .
(e, ) {(< 0.7,0.1,024 > < 0.87,0.1,0.18 > < 0.69, 0.3, 0.32 >) }
Similarly, we get the GENSS (@”, E),  as follows:

X1 X2 X3
O, E), = .
(@ B, {el’{ <0.7,0.1,0.24 >> < 0.87,0.1,0.18 > < 0.69,0.3,0.32 >)’0 88}’

ad 2 e 091
e ’ ’ 9 s Ve ’
2112052.02.024 >’ < 0.84.03.0.09 > < 0.69. 0.1, 0.05 >

all e e 0.78
€s, s s ,U.
311<058.0.1,036>" < 0.87.02.0.14 > < 0.69.02.0.18 >

2

ad * e 0.85
“11<064.02.048 > <082.01.020>" <081,02.023 > ([

Definition 3.7. Let (I*, Ey),, and (¥7, E,),, be two GENSSs over U and let E = E; U E,. Then, the
intersection of two GENSS is given as follows:

I (&)y, if eeE —E,,
D (£), = { ¥ (e)y, » if e€E—E,
(T U WY (), if e€EiNE,,

where ¢ is any 7-norm, N is a neutrosophic soft intersection between I and 'Y, and &(g) = ¢ (u (g) , 1 (€)).

Example 3.5. Consider Example 3.4. By using the basic fuzzy intersection, we have:

ay dap dads day a, a, ds day
A = {_9 PN _}aA = {_9 P YRR _}a
() =1020"05 040 M =104 0405 02
ay a das dai

A =Y~ s A A A~ A
(%) {0.7 0°04 0.4}
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The intersection of two GNSSs is given as follow:

©
~

-

X1 X3 X3
%, E) =
(#.E) {e"{ <0.2,02,0.6 > <0.3,0.2,09 >’ <0.2,04,0.8 >/’

o
o

=
(98}
—_— —— —— ——

-

0 X1 X2 X3
2\ < 0.1,0.4,0.7 > < 0.1,0.5,0.8 >* < 0.2,0.4,0.6 > )°

X1 X2 X3
e Py ’ ’
P11<03,0.1,06 > <04,02,06 > <03,02,0.4 >

o
W

X1 X2 X3
e b b b 9
1< 04,02,0.8 >’ <0.2,0.1,0.9 > < 0.8,0.2,0.5 >
Now, we apply Definitions 3.7 and 3.1 to find ¥ (e;),, as follows:

X1

<02+ [(1-0.2)02+0+0.5+0.4)/4]1,0.2,0.6 — (0.6)[(0.2 + 0 + 0.5 + 0.4)/4] >’

X2

<03+ [(1-0.3)0.4+0.4+0.5+0.2)/4],0.2,0.9 = [(0.9)(0.4 + 0.4 + 0.5 + 0.2)/4] >’

¥ (e1)y, (x) ={

X3
<02+[(1-02)0.7+0+04+0.4)/4],0.4,0.8 —[(0.8)(0.7+0+ 0.4+ 0.4)/4] >}

_ X1 X2 X3
- 1<0.42,02,0.44 > <0.56,0.2,0.56 >" < 0.5,0.4,0.5 > |

Then, we find u (e;),, as follows:

H(ey, (x1) =04+[(1-04)(02+0+05+04+04+04+05+02+0.7+0+0.4+0.4)/12] = 0.61.

Consequently,

3 N — X1 X2 X3 1
P (e, () {(< 0.42,0.2,0.44 >’ < 0.56,0.2,0.56 > < 0.5,0.4,0.5 >)’ 06 }

Similarly, we get the GENSS (ﬁ‘f , E)A as follows:

X1 X X3
9, E) ={e, , , ,0.61 5,
( )At {el { <0.42,0.2,0.44 > < 0.56,0.2,0.56 > < 0.5,0.4,0.5 >) }

e ad Y e 0.47
211<0235.04.051 >’ < 044.05.05>"<05.04.038>) [’

e ad a2 3 0.54
»11<049,0.1,044 > < 0.63.02.038 > < 056,.02.025>) [

e ad e e 0.67
“11<057.02.058>°<05.0.1.056 > <088.02.031>) ([

Proposition 2. Let (I, Ey),, and (D", E,),, be two GENSSs over the common universe U. Then,
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) (IT", E)p, U (D7, E)p, = (D7, Ex)p, U T, Ep)y,,
2) @*, EDp, N (D7, Ex)p, = (D7, Ex)p, N(TH, Eyy, -
Proof. The proof is straightforward from Definitions 3.6 and 3.7.
Definition 3.8. Let (I*,E;),, AND (¥", E,),, be two GENSSs over U. Then, “(I*, E),, and
(P, E),, ” denoted by(I'™, Ey),, A (P", E3),, and defined by:
(T, Ey, A (P, E)y, = (8, By X Ea),

where % (e, B, = T* (@) NY"(B)y, ¥ (@,B) € E; X Ey. Such that ¢ is any t-norm, & (a,B) =
t(u(a),n(B) VY(a,B) € E; x E; and ¥ (@,PB),, is the generalized effective neutrosophic soft
intersection between (I'¥, E),, and (W7, E»),, .

Example 3.6. Let E| = {e, ez, e4} and E, = {ey, e,, €3}, over the common universe U = {x, x5, X3} and
let A = {ay, as, as, as} be the set of effective parameters. Consider two effective sets given as follows:

Ay ()Cl):{ﬂ,a2 & } Ai(xp) = { 25 a4}

03°0°1°07 04’05 1’
ay 4z a4 a, a, as a
Ay (x) =L G2 4 A4
M) = {07 006 04} 2 (1) {0.2’ 1’0.5’0.4}’
Clz 613 ay ap ad das aa
v Bt i (3.8 )
2(%) =\06° 0405 02 ™ =\08°02° 06 06

Consider two GNSSs given as follows:

X1 X2 X3
<0.5,0.2,0.6 >’ < 0.3,0.1,0.8 >’ < 0.3,0.3,0.8 > T

o
\S}

X1 X2 X3
<0.2,04,0.7 > < 0.1,0.3,0.8 >’ < 0.2,0.1,0.6 > P

X1 X2 X3

<0.2,0.1,04 > <04,0.2,09 > <0.2,04,0.7 >

X X X3 0.7}’

X1 X2 X3 0.5
“< 0.4,0.2,0.8>"<0.2,0.1,09>"<0.8,02,05>) |

<0.1,0.2,04 > <0.3,0.5,04 > < 0.3,04,0.1 >/’

X1 X2 X3 0.3
€s, s 5 s U.
3 <0.3,0.1,0.6 > <04,0.2,0.6 > <0.3,0.2,04 >

We get the following effective set by using the basic fuzzy intersection (min):

a4y as a4 @ az 4y
A —{— 04 M =05 0555 05
(1) 02°0°05 04 Adlx2) 04’04’0502
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Using AND operation on two generalized neutrosophic soft set, we get
(", Ey) A (7, Ey) = (8, Ey X E,), where

X1 X2 X3

<0.2,0.2,0.6 >° <0.3,0.2,0.9 >" < 0.2,0.4,0.8 >’

e
~

o
[\
%/—/%/—/R/—/R/—/%/—/W—/W—/%/—/W—/

-

X1 X2 X3
<0.1,0.2,0.6 >° < 0.3,0.5,0.8 >" < 0.3,0.4,0.8 > )’

S
o)

-

X1 X2 X3
<0.3,0.2,0.6 >°<0.3,0.2,0.8 >’ < 0.3,0.3,0.8 >/

e
w

-

X1 X2 X3

<0.2,04,0.7 > <0.1,0.3,0.9 > < 0.2,04,0.7 >/’

{

(|

(e

e

{(62’ o), { x| X2 X3 0.
(e

(e

(e

o
b

-

<0.1,0.4,0.7 > <0.1,0.5,0.8 >* < 0.2,0.4,0.6 >
X1 X X3

<0.2,04,0.7 > <0.1,0.3,0.8 >’ < 0.2,0.2,0.6 >
X1 X2 X3

<0.2,02,0.8>"<0.2,0.2,09>"<0.2,04,0.7 >

X1 X2 X3
<0.1,0.2,0.8 >7 < 0.2,0.5,0.9 >" < 0.3,0.4,0.5 >

o
b

-

©
~

-

©
W

-

e
w

( ) X1 X2 X3
“¢)11203,02,08> <02,02,09 > <03,02,05 >/
Then, by applying Definitions 3.8 and 3.1, we obtain the GENSS ¥ (e, €1),, as follows:

X1

<02+ [(1-0.2)02+0+0.5+0.4)/4],0.2,0.6 — (0.6)[(0.2+ 0+ 0.5+ 0.4)/4] >~
X2

<03+ [(1-0.3)0.4+0.4+0.5+0.2)/4],0.2,0.9 = [(0.9)(0.4 + 0.4 + 0.5 + 0.2)/4] >’

U (e, €1)A, (xj) :{

X3
<02+[(1-02)0.7+0+04+0.4)/4],0.4,0.8 = [(0.8)(0.7+ 0+ 0.4 +0.4)/4] >}

B X1 X2 X3
< 0.42,0.2,0.44 >’ < 0.56,0.2,0.56 >" < 0.5,0.4,0.5 > |

Then, we find i (e;),, as follows:

ey, (x) =04+[(1-0.4)(02+0+0.5+04+0.4+04+05+0.2+0.7+0+0.4+0.4)/12] = 0.61.

Consequently,

¢ y = il 2 - 0.61
7 len e, () {(< 0.42,0.2,0.44 > < 0.56,0.2,0.56 > < 0.5,04,0.5 >)’ i
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Similarly, we get the GENSS (94, E; X E2) as follows:

all 2 3 ) 061}

<0.42,0.2,0.44 > <0.56,0.2,0.56 > < 0.5,0.4,0.5 >

al a it 0.74
<035,0.2,044 >°<0.56,05,05 > < 0.56,04,05>) [’

all 2 3 0.54
<05.02.045>"<05602.05> <056.03.05>) [

(19 E, XEz {(61,61),

al 2 3 0.47
<035.04.051 > <044.05.05> <05.04.038>) [

al s 3 0.47
<042.04.051 > <044.03.05>"<05.02.038>) [’

<0.42,0.2,0.58 >" < 0.5,0.2,0.56 >" < 0.5,0.4,0.44 >

X1 X2 X3 067
<0.35,0.2,0.58 > < 0.5,0.5,0.56 >* < 0.56,0.4,0.31 >) |

(64’ 62)

(62, 1) al 2 3 0.47
€211 2042.04.051 >' < 0.44.03.056 > < 05.04.044> ) '[°

( ) X1 X2 13 0.54
2 1\<049,02,058>°<05,02,056 >* < 0.56,0.2,031 >/~ [ [’

Definition 3.9. Let (I*,E;),, and (W7, E,),, be two GENSSs over U. Then, “(I*, E;),, OR
(P, Ey),, " denoted by (I%, Ey),, V (W7, E),, and defined by:

I, EDp, V (P, EQp, = (7, Ey X Ej)y

where @ (a,B8),, = (@)UY (B),, Y (a,B) € E; X E;. Such that s is any s-norm, v(@,f) =
s(u(@),n(B) Y(a,p) € E; X E; and @ (a,B),_ is the generalized effective neutrosophic soft union
between (I'*, E1),, and (W7, E»),, .

Example 3.7. Consider Example 3.6, then We get the following effective set by using the basic fuzzy
union (max):

ay d3 dg 1 ap az ag

A ! a_} K {_ N~ 4 9 _}9
(x) = {03 T 107 MY = 06005 T T

As(x3):{

CNCRCRCY
0.8°0.2°0.6"0.6)

Using OR operation on two generalized neutrosophic soft set, we get
(Fﬂ, El) \Y (l}ﬁl, Ez) = ((DV, E| x Ez), where
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(@, E1 x E2) :{(e“el)’{ < 0.5,3.11,0.4 > < 0.4,;.21,0.8 > < 0.3,(;6.;,0.7 > ’0'6}’
{(el’@)’{ <05, (36.12,0.4 > < 0.3,(;.21,0.4 > < 0.3,(;.33,0.1 > ’0'7}’
{(61’63)’{ <05, (;C.11,0.6 > < 0.4,(;.21,0.6 > < 0.3,(;.32,0.4 > ’0'6}’
{("2’61)’{ <02, (;C.]1,0.4 > < 0.4,;.22,0.8 > < 0.2,(;6.31,0.6 > ’0'4}’
{(82’62)’{ <07, (;6.12,0.4 > < 0.3,(;6.23,0.4 > < 0.3,86.31,0.1 > ’0'7}’
{(82’63)’{ <03, (;6.11,0.6 > < 0.4,(;6.22,0.8 > < 0.3,(?.31,0.4 > ’0'3}’
{(e“’el)’{ <04, 86.11,0.4 > < 0.4,86.21,0.9 > < 0.8,(;32,0.5 > ’0'5}’
{(e“’eZ)’{ <04, 86.12,0.4 > < 0.3,(;.21,0.4 > < 0.8,(;6.32,0.1 > ’0'7}’
{(84’63)’{ <04, (;6.11,0.6 > < 0.4,(;6.21,0.6 > < 0.8,(;6.32,0.4 > ’0'5}}'

Then, by applying Definitions 3.9 and 3.1, we obtain the GENSS ®" (e}, e}),, as follows:

X1
<05+ [(1-0503+1+1+0.7)/4],0.1,04 - [(0.4)(0.3+1+1+0.7)/4] >~
X2
<04+[(1-04)06+05+1+1)/4],0.1,0.8-[(0.8)(0.6 +0.5+ 1+ 1)/4] >"

D (ey, ey, (x)) :{

X3
<03+[(1-0.3)0.8+0.2+0.6+0.6)/4],0.3,0.7—-[(0.7)(0.8 + 0.2+ 0.6 + 0.6)/4] >}

_ X1 X2 X3
~ 1<0.88,0.1,0.1 >’ < 0.87,0.1,0.18 >" < 0.69,0.3,0.32 > |

Then, we find u (e),, as follows:

ulep, (x1)=06+[(1-06)(03+1+1+0.7+0.6+05+1+1+0.8+0.2+0.6+0.6)/12] = 0.88.

Consequently,

¢ N al 2 s 0.88
P len e, (%) {(< 0.88,0.1,0.1 > < 0.87,0.1,0.18 > < 0.69, 0.3, 0.32 >)’ o0

Similarly, we get the GENSS (®”, E| X Ej),, as follows:
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(D", Ey X Ey)p, :{(el, el),{
o]
o]
-
-
o]
e
o]

(eq, 1),

(e4, €2),

{(64, e3), {

ad 2 s 0.88
<0.88,0.1,0.1 >’ < 0.87,0.1,0.18 >" < 0.69,0.3,0.32 >)’ ' }’

X X X3 )091}
<0.88,0.2,0.1 >’ <0.84,0.1,0.1 >* < 0.34,03,05>) ’

X1 X2 X3 088
<0.88,0.1,0.15>"<0.87,0.1,0.14 >’ < 0.67,0.2,0.18 >)’ ’ }’

ad e At ) 082}
<0.8,0.1,0.1 > <0.87,0.2,0.18 > < 0.64,0.1,0.27 > ’

X1 X X3 0.91
<0.93,0.2,0.1 >’ <0.84,0.3,0.09 >’ < 0.69,0.1,0.16 > ) " |’

il e e 0.78
<083.01.015> <087.02.0.18 > <0.69.0.1,018 > '°[

X1 X X3 085
<0.85,0.1,0.1 >” < 0.87,0.1,0.20 >* < 0.91,0.2,023 > ) |’

ad e e 0.91
<085.02.0.1> <08401.009> <091.02.005>) [

ail 2 3 0.85
<085.01.015> <087.0.1.0.14> <091.02.0.18 >, ">([

4. An application of GENSS in decision making problem

An application of generalized effective neutrosophic soft sets in decision-making problem is

introduced in this section.

Now we present an algorithm for most appropriate selection of an object.

4.1. Algorithm

We obtain the following algorithm for GENSS by combining the algorithms of Sahin and Kucuk
algorithm [18] and Al-Hijjawi et al. [33].

4.1.1. New Algorithn

1) Construct the generalized neutrosophic soft sets (I, Ey) and (Y, E>) .

2) Construct an effective set of parameters A; and A,.

3) Find an effective set of parameters A, from A; and A,.

4) Compute the corresponding resultant GNSS(ﬁf ,E; X Ez) as required.

5) Compute the corresponding GENSS (ﬂf ,E; X E2)

A

6) Introduce the tables of three basic components of ¢, which are truth membership, indeterminacy
membership and falsity membership respectively.

AIMS Mathematics
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7) In each row, underline the greatest value.

8) Compute the score for each component by taking the sum of the multiplication of the underlying
values with the corresponding values of &.

9) Compute the final score by adding the scores of truth membership part of ¥ to indeterminacy
membership part of 9, then subtracting them from the falsity membership part of 1%*.

10) The optimal selection is the highest score.

4.2. Application in a decision-making problem

Let U = {x1,x,,x3} be a set of laptops with the same model. Let E = {ej, e;,e3} be a set of
parameters where e;= Size, e;,=CPU and e; = Battery. Let A = {ay,a,,a3,a4} be set of effective
parameters, where a,: Each part was created at the original factory; a,: It was reassembled at the
original factory; as: The latest version of the software is running and a4: It was not owned by multiple
people.

Let the effective set over A, YVx; € U given by experts as follows:

a, a a, az a
M = {55 3 ge) Mo = {5 55 T

ay dx 4z dg4 Gy dsz Ay
A = {55 ’—} o5 051
1) =103 001007 T 08 080907

ap 612 613 a a as au
Az (x2) = } {—, —,—,—}.
2 (%) {06 0405022 =102 01705 03

Let (I'*, E) and (W7, E) be two generalized neutrosophic sets (GNSSs) defined as follows:

X1 X2 X3
" E) = )
I E) {el’{<0703 02> <05.01.08>" <090204>)0 }

X1 X2
<0.3,0.1,0.5>"<0.6,0,0.2 >’ < 0.5, 0102

X1 X2
<0.8,0.1,06 > <0.2,0.6,0.4 >’ <05008

X1 X2
<0.1,0,0.4 >"<04,02,0.8 >’ <020604

o efe|
{ {

X1 X2
<0.3,0.5,0.7>"<0.8,0.2,0.4 >’ <04007

X1 X2 X3 0.6
<0.9,0.5,0.7>"<04,0.1,0.2 >"<0.9,0.1,04 > ) '

Using AND operation on two generalized neutrosophic soft set, we get
(", E) A (¥, E) = (%, E X E), where
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195 EXE =1 (e, er),

(e1,e2),

(e1,e3),

(e2,€1),

(e2,€3),

(e3,€1),

(e3, e2),

(e3,e3),

X1

X2

X3

X1

X2

X3

<0.7,0.3,0.6 >’ < 0.2,0.6,0.8 >’ < 0.5,0.2,0.8 >

X1

X2

X3

<0.3,0.5,07>"<0.5,0.2,08 > <0.4,02,0.7 >

X1

X2

X3

<0.7,0.5,0.7 >’ < 0.4,0.1,0.8 > < 0.9,0.2,0.4 >

X2

X3

<0.3,0.1,06 > <0.2,0.6,04 > <0.5,0.1,0.8 >

X1

X2

X3

X1

X3

<0.3,05,0.7 > <04,0.1,0.2 >’ <0.5,0.1,0.4 >

X2

X1

X3

<0.1,0.1,0.6 >’ < 0.2,0.6,0.8 >’ < 0.8,0.6,0.8 >

X2

X1

X3

<0.1,0.5,0.7 > < 0.4,0.2,0.8 >" < 0.2,0.6,0.7 >

X2

)={eren]
fve]
feven|
fewen|
fven|
feven]
feven]
feven]

<0.1,0.5,0.7>"<04,0.2,08 > <0.2,0.6,0.4 >

-

e
=

-

I
Y

-

©
~

-

©
n

-

S
~

)
)
—_— Y Y Y Y — ——

-

o
—

-

The generalized neutrosophic soft set (GNSS) (ﬁf ,E X E) represented in Table 1 below as follows:

AIMS Mathematics

Table 1. Tabular representation of (19’«5 ,E X E)

U

X1

X2

X3

(e1,e1)
(e1,e2)
(e1,e3)
(e2,€1)
(e2,€2)
(e2,€3)
(e3,€1)
(e3,€2)
(e3,€3)

(0.7,0.3,0.6)
(0.3,0.5,0.7)
(0.7,0.5,0.7)
(0.3,0.1,0.6)
(0.3,0.5,0.7)
(0.3,0.5,0.7)
(0.1,0.1,0.6)
(0.1,0.5,0.7)
(0.1,0.5,0.7)

(0.2,0.6,0.8)
(0.5,0.2,0.8)
(0.4,0.1,0.8)
(0.2,0.6,0.4)
(0.6,0.2,0.4)
(0.4,0.1,0.2)
(0.2,0.6,0.8)
(0.4,0.2,0.8)
(0.4,0.2,0.8)

(0.5,0.2,0.8)
(0.4,0.2,0.7)
(0.9,0.2,0.4)
(0.5,0.1,0.8)
(0.4,0.1,0.7)
(0.5,0.1,0.4)
(0.8,0.6,0.8)
(0.2,0.6,0.7)
(0.2,0.6,0.4)

0.2
0.1
0.2
0.4
0.1
0.5
0.4
0.1
0.6
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Table 2. Tabular representation of truth membership of (ﬁf ,EXE )

U X1 x x3 &

(e1,e1) 0.7 02 05 0.2
(e1,e2) 03 05 04 0.1
(e1,e3) 0.7 04 09 0.2
(e2,€1) 03 02 05 04
(e2,e2) 03 0.6 04 0.1
(e2,e3) 03 04 05 0.5
(es,e;) 0.1 02 08 04
(es,e;) 0.1 04 02 0.1
(es,e3) 0.1 04 02 0.6

Table 3. Tabular representation of indeterminacy membership of (ﬁf ,EXE )

U X1 x» x3 &

(e1,e1) 03 06 02 0.2
(e1,e2) 05 02 02 0.1
(e1,e3) 0.5 0.1 02 02
(e2,€;) 0.1 06 0.1 04
(e2,e2) 05 0.2 0.1 0.1
(e2,e3) 0.5 0.1 0.1 0.5
(es,e;) 0.1 0.6 06 04
(es,e2) 05 02 0.6 0.1
(es,e3) 05 02 0.6 0.6

Table 4. Tabular representation of falsity membership of (ﬁf ,EXE )

U X1 x x3 &

(e1,e;) 0.6 0.2
(61, 82) 0.7 0.1
(61, 63) 0.7 0.2
(e2,e1) 0.6 04 08 04
(e2,e2) 0.7 04 0.7 0.1
(62, 83) 0_7 02 04 05
(es,e;) 0.6 0.8 04
(e3,e) 0.7 0.1
(63, 6’3) 0.7 0.6

)
oo
o
oo

(]
o0
=ab
J

(]
oo
o
~

Sl
o0 |00 |00
=
B~

Now, we compute the score of each component of (ﬂf ,E X E) by using Tables 2—4, respectively as
follows:
Score(x) =(0.7x0.2) =0.14,
Score(x;) = (0.5%x0.1) + (0.6 x0.1) + (0.4 x 0.1) + (0.4 x 0.6) = 0.39,
Score(x3) = (0.9 x0.2) + (0.5 x0.4) + (0.5 x0.5) + (0.8 x 0.4) = 0.95.
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Score(x;) =(0.5x0.1) + (0.5x0.2) + (0.5 x 0.1) + (0.5 X 0.5) = 0.45,
Score(x;) = (0.6 x0.2) + (0.6 x0.4) + (0.6 x 0.4) = 0.6,
Score(x3) = (0.6 x0.4) + (0.6 x 0.1) + (0.6 x 0.6) = 0.66.

Score(x;) =(0.7x0.1) + (0.7 x0.5) = 042,
Score(x;) =(0.8x0.2) + (0.8 x0.1) + (0.8 X 0.2) + (0.8 x 0.4) + (0.8 x 0.1) + (0.8 x 0.6) = 1.28,
Score(x;) = (0.8 x0.2) + (0.8 x0.4) + (0.7 x 0.1) + (0.8 x 0.4) = 0.87.
Then, we calculate the final score as follows:
Score(x1) =0.14+0.45-0.42 =0.17,
Score(x;) =039+0.6-1.28 =-0.29,
Score(x3) =0.95 +0.66 — 0.87 = 0.74.
The optimal selection is xj3.
We conclude that the optimal selection of GNSS by using Sahin and Kucuk algorithm [18] is laptop
number 3.
Now, we find the following effective set by using the basic fuzzy intersection (min):

a dad dsz day ay dp daz dag
A T B I N S T e M
() {0.7’ 0809 0.6}’ (%) {0.4’ 04’05 0.2}’
ay a dsz day
A’(963)_{0.2’0’ 5’ .3}

Then, by applying Definitions 3.8 and 3.1, we obtain the GENSS (ﬁf ,E % E) as follows:

A

X1 X2 X3
ﬁf,E E = ’ ’ ’ ’ ,0'57 >
( % )Af {(61 e { <0.93,0.3,0.15>" < 0.5,0.6,0.5 >" < 0.63,0.2,0.6 >) }

(e1,e2),

al e 3 0.51
<083.05.018> <0.69.02.05> <093.02.053>) [

al 2 3 0.57
<093.05.018> <0.63.0.1.05> <085.02.03>) ~'[

X1 X2 X3 0.68
<0.83,0.1,0.15 > < 0.5,0.6,0.25 >’ < 0.63,0.1,0.6 > )" ’

all 2 ki 0.73
<083.05.018> <0.63.0.1.0.13> <063.0.1.03>) "°[

il e ik 0.68
<078.01.015> <05.0605> <04.0606>/) " °[

( ) X X2 e 0.51
@ 11<078,05,0.18>° < 0.63,02,05 > < 04,06,053 >~ J°

—— S A A A=

oo X1 X 3 0.51
> 11<083,05,0.18 > <0.75,0.2,025 > < 0.55,0.1,053 >~ |’

all e 3 0.78
<078.05.018 > <0.63.02.05> <04.06.03>) °[[
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The generalized effective neutrosophic soft set (GENSS) (ﬂf ,E % E)A represented in Table 5 below as
follows: t

Table 5. Tabular representation of (19»f ,E X E)A .

t

U Xy X2 X3 &

(er,e) (0.93,0.3,0.15) (0.5,0.6,0.5)  (0.63,0.2,0.6) 0.57
(e1,e) (0.83,0.5,0.18) (0.69,0.2,0.5) (0.93,0.2,0.53) 0.51
(e1,e3) (0.93,0.5,0.18) (0.63,0.1,0.5) <0.85,0.2,0.3) 0.57
(ez,e1) (0.83,0.1,0.15) <(0.5,0.6,0.25) (0.63,0.1,0.6) 0.68
(e2,e7) (0.83,0.5,0.18) (0.75,0.2,0.25) (0.55,0.1,0.53) 0.51
(e2,e3) (0.83,0.5,0.18) (0.63,0.1,0.13) (0.63,0.1,0.3) 0.73
(e3,e1) (0.78,0.1,0.15) (0.5,0.6,0.5) (0.4,0.6,0.6) 0.68
(e3,ep) (0.78,0.5,0.18) <(0.63,0.2,0.5) <(0.4,0.6,0.53) 0.51
(e3,e3) (0.78,0.5,0.18) (0.63,0.2,0.5) (0.4,0.6,0.3)  0.78

Table 6. Tabular representation of truth membership of (19’5 ,E X E)A .

t

U X X X3 &
(e1,e1) 093 05 0.63 0.57
(e1,e2) 0.83 0.69 093 0.51
(e1,e3) 093 0.63 0.85 0.57
(e2,e1) 0.83 0.5 0.63 0.68
(e2,e2) 0.83 0.75 0.55 0.51
(e2,e3) 0.83 0.63 0.63 0.73
(es,e;) 078 0.5 04 0.68
(e3,e;) 0.78 0.63 04 04
(es,e3) 0.78 0.63 04 0.78

Table 7. Tabular representation of indeterminacy membership of (19’5 ,E % E)A .

t

U xi X x3 &
(e1,e1) 03 0.6 02 0.57
(e1,e2) 0.5 02 02 0.51
(e1,e3) 05 0.1 0.2 0.57
(e2,€1) 0.1 0.6 0.1 0.68
(e2,62) 0.5 02 0.1 0.51
0.1
0.6
0.6
0.6

(e2,e3) 0.5 0.1 0.73
(e3,e;) 0.1 0.6 0.68
(e3,e2) 0.5 0.2 0.51
(es,e3) 0.5 0.2 0.78
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Table 8. Tabular representation of falsity membership of (ﬁf ,E X E)A .

t

U X x  x &

(e1,e;) 0.15 05 06 0.57
(e1,e2) 0.18 0.5 0.53 0.51
(e1,e3) 0.18 0.5 03 0.57
(e2,€1) 0.15 025 0.6 0.68
(e2,€2) 0.18 0.25 0.53 0.51
(e2,e3) 0.18 0.13 03 0.73
(es,e;) 0.15 05 0.6 0.68
(e3,e;) 0.18 0.5 0.53 0.51
(e3,e3) 0.18 05 03 0.78

Now, we compute the score of each component of (19’5 ,E X E)A by using Tables 68, respectively
as follows: t
Score(x;) = (0.93 X 0.57) + (0.93 X 0.57) + (0.83 x 0.68) + (0.83 x 0.51) + (0.83 x 0.73) + (0.78 %
0.68) + (0.78 x 0.51) + (0.78 x 0.78) = 4.19,
Score(x,) =0,

Score(x3) = (0.93 x 0.51) = 0.47.

Score(x;) =(0.5x0.51) + (0.5 x0.57) + (0.5 x0.51) + (0.5 x 0.73)) = 1.16,
Score(x;) = (0.6 X0.57) + (0.6 X 0.68) + (0.6 X 0.68) = 1.16,
Score(x3) = (0.6 X 0.68) + (0.6 X 0.51) + (0.6 x 0.78) = 1.18.

Score(x;) =0,
Score (x;) = (0.5%x0.57)+ (0.5 x0.78) = 0.77,
Score(x3) = (0.6 X0.57) + (0.53 X 0.51) + (0.6 X 0.68) + (0.53 x 0.51) + (0.3 x 0.73) + (0.6 x 0.68) +
(0.53x0.51) = 2.19.
Then, we calculate the final score as follows:
Score(x;) =4.19+1.16 -0 = 5.35,
Score(x) =0+1.16-0.77 = 1.93,
Score(x;) =047 +1.18 - 2.19 = -0.54.
The optimal selection is x;.
We conclude that the optimal selection of GENSS by using 4.1.1 is laptop number 1. Hence, GENSS
changes the optimal selection from laptop number 3 to laptop number 1.

5. An application of GENSS in medical diagnosis

There are many applications and ideas that strive to simplify the process of medical diagnosis
however, each of these applications and theories consider only the symptoms that affect the patient
without considering external effects that might radically modify the diagnosis. In this section, we will
attempt to discover the most accurate diagnosis of the condition based on the symptoms and external
effects by adding the degree of possibility u(e;) associated with each parameter attached to ENSS,
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enhancing the realism of the concept.

Example 5.1. Assume that P = {pi, p2, p3, ps} be a set of 4 patients in the hospital. The hospital
diagnostic expert identified the following symptoms to find out what patients were suffering from
S = {51, 52, 83, 54, 55, 56, 57, 58, 59, 5105 S11» S12> 5135 S14» 515, S165 S17, 5185 519, S20} . Where 51 =dry cough,
s, =fever, s3 =breathing difficulties or shortness of breath,s, =headache, ss =muscle pain, s¢ =fatigue
and weakness, s; =Chills, s3 =anorexia, sy =sore throat, s\y =vomiting and nausea, s\ =
photosensitive, s\, =loose motion, s;3 = dizziness, s14 =red eyes, face or tongue, s;s =swelling
of one or both glands, s\ = sweating, s;7 = severe pneumonia, S1g3 =aches, sy9 =runny nose and
§o0 =diarrhea. Also, let D = {d,, d,, ds, ds} be a set of diseases such that d, = mumpus, d, = covid-19,
ds = yellow fever, dy = influenza. Let A = {a;, a», a3, a4, as, as, a7, ag, as}, where a; = he has a retina in
the heart, ay = he close contacted (less than 6 feet) with anyone who is suffering from covid-19, a; =
he was infected with the gallbladder a, = he had a stroke, as = he was infected with the helminthic
germ ag = he was in an area with stagnant water, especially at dawn and dusk, a; = he used to sleep
without a cover or mosquito net, ag = eating food that is raw or undercooked, and ay = eating foods
and beverages purchased from street vendors.
We find out the daily routines and lifestyles of patients as in Table 9.

Table 9. Patients daily activities and lives.

P\A a a as ay as ag az ag ag

P1 Yes Yes No No Yes Yes No Yes No
)2 No No No Yes Yes No Yes No No
D3 Yes No Yes No No No No Yes Yes
D4 No No No No Yes Yes Yes No Yes

The relationship between the mentioned disease and the aforementioned effective parameters is
shown in Table 10 as follows:

Table 10. Diseases and effective parameters relation.

D\A a a a a a5 a a7 ag ay |A]
d, Yes No Yes Yes Yes No No No Yes 5
d> No Yes Yes Yes Yes No No No Yes 5
ds No No No No No Yes Yes Yes No 3
dy No No Yes Yes No No No No Yes 3

Tables 11-14 represented A4,(p;) for every patient in view of the mentioned diseases as follows:

Table 11. Tabular representation of Ay, (p;).

P\NA a a a3 ay as as a; ag ay Sum
pid, 1 0 0 0 1 0 O O 0 2
pdg 0 1 0 O 1 O 0 0 0 2
pdy,, 0 0 0O O O 1 O 1 0 2
psdge, 0O 0 O O O O O O 0 O
Total 6
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Table 12. Tabular representation of Ay, (p;).

P\NA a a a3 a4 as as a; ag ay Sum
pd, O 0 O 1T 1 0 O 0 0 2
ppdp 0O O O 1 1 O O 0 0 2
pid, 0 O O O O O 1 0 0 1
pid, O O O 1T O O O O 0 1
Total 6
Table 13. Tabular representation of Ay, (p;).
P\NA a a a3 ay as as a; ag ay Sum
pdys 1 0 1 0 0 O 0 0 1 3
ppds 0 0O 1 O O O O O 1 2
pids; 0 O O O O O 0O 1 0 1
pseds O O 1 O O O O 0 1 2
Total 8
Table 14. Tabular representation of Ay, (p;).
P\NA a a a3 as as a¢ a; ag ay Sum
pd, 0O O O O 1 O O O 1 2
pd, 0 0 O O 1 O O 0 1 2
pds, 0 0 O O O 1 1 0 0 2
pddg, 0O O O O O O 0 0 1 1
Total 7

Let the tabular representation of (I'#, §) (patient symptom) given in Tables 15-18.

Table 15. Tabular representation of (I'*, §) part 1.

P \ S S 52 53 S4 A
P1 (0.6,0.1,0.4) (0.2,0.1,0.6) <(0.7,0.2,0.4) (0.4,0.2,0.8) <(0.7,0.1,0.4)
P2 (0.5,0.3,0.1) (0.6,0.4,0.8) <0.9,0.4,0.7) (0.4,0.1,0.3) ¢0.4,0.2,0.7)
D3 0.7,0.2,0.5) (0.9,04,0.2) <(0.2,0.1,0.7) (0.4,0.1,0.6) <(0.7,0.2,0.5)
P4 0.4,0.1,0.6) (0.4,0.1,0.9) <(0.7,0.2,0.3) (0.2,0.1,0.5) <0.9,0.5,0.2)
u 0.6 0.5 0.9 0.4 0.2
AIMS Mathematics Volume 18, Issue 12, 29628-29666.
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Table 16. Tabular representation of (I'¥,S) part 2.

P\S 56 857 53 59 510
D1 (0.8,0.2,0.5) <(0.2,0,0.7) (0.9,0.4,0.6) (0.9,0.1,0.6) (0.4,0.2,0.8)
)22 (0.9,0.5,0.1) (0.4,0.2,0.7) (0.5,0.1,0.8) (0.3,0.5,0.1) <0.3,0.1,0.8)
D3 (0.1,0.4,0.9) <(0.6,0.3,0.9) <(0.5,0,0.3) (0.2,0.7,0.4) (0.3,0.1,0.6)
D4 (0.7,0.3,0.5) (0.4,0.2,0.7) (0.7,0.1,0.4) <0.4,0.2,0.8) (0.9,0.3,0.6)
u 0.1 0.3 0.2 0.5 0.6
Table 17. Tabular representation of (I'#, S part 3.
P\S i 512 513 S14 s15
D1 (0.7,0.5,0.2) (0.6,0.1,0.3) <(0.9,0.6,0.2) <0.2,0,0.9) (0.7,0.2,0.4)
D2 (0.7,0.1,0.4) <(0.5,0.1,0.3) <(0.3,0,0.9) (0.1,0,0.5) (0.8,0.2,0.5)
D3 (0.4,0.1,0.9) (0.4,0.2,0.7) (0.4,0.1,0.7) <0.9,0.3,0.5) <0.1,0.3,0.7)
D4 (0.5,0.3,0.1) (0.9,0.2,0.4) (0.1,0.5,0.3) (0.2,0.6,0.4) <0.1,0.7,0.4)
u 0.8 0.6 0.9 0.4 0.7
Table 18. Tabular representation of (I'*, §) part 4.
P\S 516 517 518 519 520
D1 (0.3,0.1,0.5) (0.7,0.2,0.5) (0.4,0.2,0.7) (0.8,0,0.1) (0.2,0.7,0.4)
D2 (0.4,0.3,0.9) (0.9,0.4,0.1) (0.1,0.3,0.9) <0.5,0.1,0.8) <0.9,0.5,0.1)
D3 (0.8,0.5,0.3) (0.6,0.2,0.9) (0.5,0.2,0.7) <0.8,0.4,0.6) (0.7,0.5,0.2)
D4 (0.2,0.4,0.9) (0.1,0.6,0.4) (0.9,0.4,0.6) (0.6,0.1,0.3) (0.9,0.2,0.5)
u 0.1 0.7 0.4 0.2 0.5

The tabular representation of (¥, S) (model symptom) is given in the following Tables 19 —22.

Table 19. Tabular representation of (7, S) part 1.

D\S S 52 53 S4 S5

d, (0.5,0.5,0.5) (1,1,0) <(0,0,1) «1,1,0) (1,1,0)

d, (1,1,0) (1, 1,0y (1,1,0) <(1,1,0) <(0.5,0.5,0.5)
d; (1,1,0) 0,0,1) <(0,0,1) (1,1,0) (1,1,0)

dy (1,1,0) (1,1,0) (1,1,0) (1,1,0) (1,1,0)

n 1 1 1 1 1
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Table 20. Tabular representation of (", S) part 2.

D\S 6 87 S3 89 S10
d, (1,1,0) (0.5,0.5,0.5) (1,1,0) (0.5,0.5,0.5) <0,0,1)
dy (0,0,1) <(0,0,1) (0,0,1) <(0.5,0.5,0.5) <0,0,1)
d; (0,0,1) (0,0,1) (1, 1,0y <(0,0,1) (1,1,0)
d, (1, 1,0y (1,1,0) 0,0,1)y (1,1,0) (0.5,0.5,0.5)
n 1 1 1 1 1
Table 21. Tabular representation of (7, S) part 3.
D\S sy S12 513 S14 515
d (0,0,1) (0,0,1) (0.5,0.5,0.5) (0,0,1) (1,1,0)
d, (0,0,1) (1,1,0) (0,0,1) (0,0,1) (0,0,1)
d; (1,1,0) <(0,0,1) <(1,1,0) (1,1,0) (0,0, 1)
d, 0,0,1) <(0,0,1) (0.5,0.5,0.5) (1,1,0) <0,0,1)
n 1 1 1 1 1
Table 22. Tabular representation of (7, S) part 4.
D\S si6 517 518 519 520
d (0.5,0.5,0.5) (0,0,1) (0,0,1) (0.5,0.5,0.5) (0,0,1)
d, (0,0, 1) (1,1,0) ¢0.5,0.5,0.5) (0.5,0.5,0.5) <(0,0,1)
d; (0.5,0.5,0.5) <0,0,1) (0.5,0.5,0.5) <(0,0,1) (0,0, 1)
dy (1,1,0) (0,0,1) <(0,0,1) (1,1,0) (0.5,0.5,0.5)
n 1 1 1 1 1

Now, we compute the GENSS by appling Definition 3.1 and Tables 15—18 as given in Tables 23-38.
We calculate the first column as follows:
(0.67,0.1,0.24) where 0.6 + 0.4(2/5) = 0.76, 0.1, 0.4 — 0.4(2/5) = 0.24,
(0.7,0.3,0.06) where 0.5 + 0.5(2/5) = 0.7, 0.3, 0.1 — 0.1(2/5) = 0.06,
(0.82,0.2,0.3) where 0.7 + 0.3(2/5) = 0.82, 0.2, 0.5 - 0.5(2/5) = 0.3,
(0.4,0.1,0.6) where 0.4 + 0.6(0/5) = 0.4, 0.1, 0. — 0.(0/5) = 0.6,
p=0.6— puy, 0.6 +0.4(6/36) = 0.67.

Table 23. Tabular representation of (I, §), part L.

P \ S S1 S §3 S4 S5

D1 (0.67,0.1,0.24) (0.52,0.1,0.36) <(0.82,0.2,0.24) (0.64,0.2,0.48) (0.82,0.1,0.24)
D2 (0.7,0.3,0.06) (0.76,0.4,0.48) <(0.94,0.4,0.42) (0.64,0.1,0.18) (0.64,0.2,0.42)
D3 (0.82,0.2,0.3) (0.94,04,0.12) (0.52,0.1,0.42) <(0.64,0.1,0.36) <(0.82,0.2,0.3)
D4 (0.4,0.1,0.6) (0.4,0.1,0.9) (0.7,0.2,0.3) (0.2,0.1,0.5) (0.9,0.5,0.2)
Ma,,  0.67 0.58 0.92 0.5 0.33
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Table 24. Tabular representation of (I, §),, part 2.

P\S s 57 53 89 510

12 (0.88,0.2,0.3)  (0.52,0,0.42) (0.94,0.4,0.36) (0.94,0.1,0.36) <(0.64,0.2,0.48)
)2 (0.94,0.5,0.06) 0.64,0.2,0.42) (0.7,0.1,0.48) (0.58,0.5,0.06) (0.58,0.1,0.48)
D3 (0.46,0.4,0.54) (0.76,0.3,0.54) <(0.7,0,0.18) (0.52,0.7,0.24) (0.58,0.1,0.36)
Da4 (0.7,0.3,0.5) 0.4,0.2,0.7) (0.7,0.1,0.4) (0.4,0.2,0.8) (0.9,0.3,0.6)
Ma,, 025 0.42 0.33 0.58 0.67
Table 25. Tabular representation of (I, §),,, part 3.
P\S s 512 513 S14 s15
P1 (0.82,0.5,0.12) (0.76,0.1,0.18) (0.94,0.6,0.12) <0.52,0,0.54) <(0.82,0.2,0.24)
)2 (0.82,0.1,0.24) (0.7,0.1,0.18)  (0.58,0,0.54) (0.46,0,0.3) (0.88,0.2,0.3)
D3 (0.64,0.1,0.54) (0.64,0.2,0.42) <(0.64,0.1,0.42) <0.94,0.3,0.3) (0.46,0.3,0.42)
D (0.5,0.3,0.1) (0.9,0.2,0.4) (0.9,0.2,0.4) 0.2,0.6,0.4) (0.1,0.7,0.4)
Ma,  0.83 0.67 0.92 0.5 0.75
Table 26. Tabular representation of (I'*, § ), ., part4.
P\S 516 517 S18 519 520
D1 (0.58,0.1,0.3) (0.82,0.2,0.3) (0.64,0.2,0.42) <(0.88,0,0.06) (0.52,0.7,0.24)

22 (0.64,0.3,0.54) (0.94,0.4,0.06) <(0.46,0.3,0.54) <(0.7,0.1,0.48) (0.94,0.5,0.06)

D3 (0.88,0.5,0.18) (0.76,0.2,0.54) (0.7,0.2,0.42) (0.88,0.4,0.36) <(0.82,0.5,0.12)
D4 (0.2,0.4,0.9) (0.1,0.6,0.4) (0.9,0.4,0.6) (0.6,0.1,0.3) (0.9,0.2,0.5)
Hag, 0.25 0.75 0.5 0.33 0.58

Table 27. Tabular representation of (I'*, §') ., part 1.
P\S s AY) S3 S4 S5
D1 (0.76,0.1,0.17) (0.52,0.1,0.36) (0.82,0.2,0.24) <(0.64,0.2,0.48) <(0.82,0.1,0.24)
D2 (0.7,0.3,0.06) (0.76,0.4,0.48) (0.94,0.4,0.42) <(0.64,0.1,0.18) (0.64,0.2,0.42)
D3 0.76,0.2,0.4) (0.92,0.4,0.16) (0.36,0.1,0.56) <(0.52,0.1,0.48) (0.76,0.2,0.4)
Da4 (0.52,0.1,0.48) (0.52,0.1,0.72) (0.76,0.2,0.24) <(0.36,0.1,0.4) (0.92,0.5,0.16)
Hag, 0.67 0.58 0.92 0.5 0.33

Table 28. Tabular representation of (I, §),,, part 2.
P\S sq $7 Sg S9 S10
1 (0.88,0.2,0.3) (0.52,0,0.42) (0.94,0.4,0.36) (0.94,0.1,0.36) (0.64,0.2,0.48)
)2 (0.94,0.5,0.06) (0.64,0.2,0.42) (0.7,0.1,0.48) (0.58,0.5,0.06) <(0.58,0.1,0.48)
D3 (0.28,0.4,0.72) (0.68,0.3,0.72) (0.6,0,0.24) (0.36,0.7,0.32) (0.44,0.1,0.48)
P4 (0.76,0.3,0.4)  (0.52,0.2,0.56) (0.76,0.1,0.32) <(0.52,0.2,0.64) <(0.92,0.3,0.48)
MAg, 0.25 0.42 0.33 0.58 0.67
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Table 29. Tabular representation of (I, §),,, part 3.

P\S i S12 513 S14 515
P1 (0.82,0.5,0.12) (0.76,0.1,0.18) <¢0.94,0.6,0.12) <(0.52,0,0.54) (0.82,0.2,0.24)
)2 (0.82,0.1,0.24) (0.83,0.1,0.18) (0.58,0,0.54) (0.46,0,0.3) (0.88,0.2,0.3)
D3 (0.52,0.1,0.72) (0.52,0.2,0.56) (0.52,0.1,0.56) <0.92,0.3,0.4) (0.28,0.3,0.56)
P4 (0.6,0.3,0.08) (0.92,0.2,0.32) <(0.92,0.2,0.32) <(0.36,0.6,0.32) <(0.28,0.7,0.32)
HAa, 0.83 0.67 0.92 0.5 0.75
Table 30. Tabular representation of (I'*, S') ., part 4.
P\S si6 517 518 519 520
P1 (0.58,0.1,0.3) (0.82,0.2,0.3) (0.64,0.2,0.42) <(0.88,0,0.06) (0.6,0.7,0.24)
J223 (0.64,0.3,0.54) (0.94,0.4,0.06) (0.46,0.3,0.54) <(0.7,0.1,0.48) (0.94,0.5,0.06)
D3 (0.84,0.5,0.24) (0.68,0.2,0.72) (0.6,0.2,0.56) (0.84,0.4,0.48) (0.76,0.5,0.16)
D4 (0.36,0.4,0.72) (0.28,0.6,0.32) (0.92,0.4,0.48) (0.68,0.1,0.24) (0.92,0.2,0.4)
Hag, 0.25 0.75 0.5 0.33 0.58
Table 31. Tabular representation of (I'*, § ), 4, part 1.
P \ S S1 A\ 83 S4 A
P1 (1,0.1,0) (1,0.1,0) (1,0.3,0.1) (1,0.2,0) (1,0.1,0)
)2 (0.83,0.3,0.03) (0.87,0.4,0.27) (0.97,0.4,0.23) <(0.8,0.1,0.1) (0.8,0.2,0.23)
D3 (0.8,0.2,0.33) (0.93,0.4,0.13) (0.47,0.1,0.47) (0.6,0.1,0.4) (0.8,0.2,0.33)
D4 (0.8,0.1,0.2) (0.8,0.1,0.3) (0.9,0.2,0.1) (0.73,0.1,0.17) (0.97,0.5,0.06)
Hag, 0.69 0.61 0.92 0.53 0.38
Table 32. Tabular representation of (I, §)x 4, part 2.
P\S s $7 S8 59 510
D1 (1,0.2,0) (1,0,0) (1,0.4,0) (1,0.1,0) (1,0.2,0)
)2 (0.97,0.5,0.03) (0.8,0.2,0.23) (0.83,0.1,0.27) <0.77,0.5,0.03) <(0.77,0.1,0.27)
D3 (0.4,0.4,0.6) (0.73,0.3,0.6) (0.67,0,0.2) (0.47,0.7,0.27) (0.53,0.1,0.4)
D4 0.9,0.3,0.17)  (0.8,0.2,0.23) (0.9,0.1,0.13) (0.8,0.2,0.27) (0.97,0.3,0.2)
Mg, 0.3 0.46 0.38 0.61 0.69
Table 33. Tabular representation of (I'*, § ), 4, part 3.
P\S§ s S12 S13 S14 S15
D1 (1,0.5,0) (1,0.1,0) (1,0.6,0) (1,0,0) (1,0.2,0)
D2 0.9,0.1,0.13)  (0.83,0.1,0.1)  (0.77,0,0.3) (0.7,0,0.17) (0.93,0.2,0.17)
D3 (0.6,0.1,0.6) 0.6,0.2,047y (0.6,0.1,0.47) (0.93,0.3,0.33) (0.4,0.3,0.47)
D4 (0.83,0.3,0.03) (0.97,0.2,0.13) (0.97,0.2,0.13) <(0.73,0.6,0.13) (0.7,0.7,0.13)
Hag, 0.84 0.69 0.92 0.53 0.77
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Table 34. Tabular representation of (I, §),,, part 4.

P\S si6 S17 S18 S19 520

D1 (1,0.1,0) (1,0.2,0) (1,0.2,0) (1,0,0) (1,0.7,0)

P2 (0.8,0.3,0.3) (0.97,0.4,0.03) (0.7,0.3,0.3) (0.83,0.1,0.27) (0.97,0.5,0.03)
D3 (0.87,0.5,0.2) <0.73,0.2,0.6) (0.67,0.2,0.47) <(0.87,0.4,0.4) (0.8,0.5,0.13)
D4 (0.73,0.4,0.3) (0.7,0.6,0.13) (0.96,0.4,0.2) (0.87,0.1,0.1) (0.97,0.2,0.16)
Mg, 0.3 0.77 0.53 0.38 0.61

Table 35. Tabular representation of (I, §),,, part 1.

P \ S S1 S2 83 S4 S5

D1 (0.87,0.1,0.13) (0.73,0.1,0.2) (0.9,0.2,0.13) (0.8,0.2,0.27)  (0.9,0.1,0.13)
D2 (0.83,0.3,0.03) (0.87,0.4,0.27) <(0.97,0.4,0.23) <(0.8,0.1,0.1) (0.8,0.2,0.23)
D3 (0.9,0.2,0.1) (0.97,0.4,0.07) (0.73,0.1,0.23) (0.8,0.1,0.2) (0.9,0.2,0.16)
D4 (0.6,0.1,0.4) (0.6,0.1,0.6) (0.83,0.2,0.2) (0.47,0.1,0.33) (0.93,0.5,0.13)
Ha,,  0.68 0.6 0.92 0.52 0.36

Table 36. Tabular representation of (I, §),,, part 2.

P\S 6 57 53 89 510

P1 (0.93,0.2,0.17) (0.73,0,0.23) <(0.97,0.4,0.2) <0.97,0.1,0.2) (0.8,0.2,0.27)
D2 (0.97,0.5,0.03) (0.8,0.2,0.23) (0.83,0.1,0.26) <(0.76,0.5,0.03) <(0.77,0.1,0.27)
D3 (0.7,0.4,0.3) (0.87,0.3,0.3) (0.83,0,0.1) (0.73,0.7,0.13) ¢0.77,0.1,0.2)
P4 (0.8,0.3,0.33) (0.6,0.2,047) <(0.8,0.1,0.27) <0.6,0.2,0.53) (0.93,0.3,0.4)
Mg, 0.28 0.44 0.36 0.6 0.68

Table 37. Tabular representation of (I, §),,, part 3.

P\S§ sp 512 513 S14 515

P1 (0.9,0.5,0.07) (0.87,0.1,0.1) (0.97,0.6,0.07) <0.73,0,0.3) (0.9,0.2,0.13)
)23 (0.9,0.1,0.13) (0.83,0.1,0.1) (0.77,0,0.3) (0.7,0,0.17) (0.93,0.2,0.17)
)22 (0.8,0.1,0.3) (0.8,0.2,0.23) (0.8,0.1,0.23) (0.97,0.3,0.16) <(0.7,0.3,0.23)
P4 (0.67,0.3,0.07) <(0.93,0.2,0.27) <(0.93,0.2,0.27) <0.47,0.6,0.27) (0.4,0.7,0.27)
HA, 0.84 0.68 0.92 0.52 0.76

Table 38. Tabular representation of (I, §),,, part 4.

P\S si6 517 518 519 520

1 0.77,0.1,0.17) (0.9,0.2,0.17) 0.8,0.2,0.23)  (0.93,0,0.03) (0.73,0.7,0.13)
)23 (0.8,0.3,0.3) (0.97,0.4,0.03) (0.7,0.3,0.3) (0.83,0.1,0.27) (0.97,0.5,0.03)
)22 (0.93,0.5,0.1) (0.87,0.2,0.3) (0.83,0.2,0.23) <0.93,0.4,0.2) (0.9,0.5,0.06)
P4 0.47,04,0.6) (0.4,0.6,0.27) <(0.93,04,04) <0.73,0.1,0.2) (0.93,0.2,0.33)
Mg, 0.28 0.76 0.52 0.36 0.6
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Finally, we find the score table by finding the similarity between each row in Tables 23-38 with
each row in Tables 19-22 and determine the maximum value for each patient as well as the diseases
associated with those values. To find the similarity, we apply the following formula:

ST syn,, (P(s1) = Tipn.s)(d)(s)l
sy, (PGD + Tansy(d(snl
Z[zoll(l"ﬂ,S)Adj (P (sp) = Ly s)(dj)(s))]

) Z[zoll(l"l‘,S),\dj (P)(sp) + Tgns)(d))(sp)]
S F s, (P)(s1) = Fons)(d(s)l
© EPF sy, (P + Fansy(d (sl

Tipapy =1

Ijpap =1

Fipap =1

Where,

Tipiay + Lpiay + Fipiay
§ (Pi, d j) = 3 )

and

S Ay, (P(s1) = (D()(sD)]
Pl@)a, (P () + (Pl

s(('ul)Ad./’ 77) =1-

Then,
S (pl-,dj) = s(pi,dj) X S(QJI)Adi,U)-

The result can be obtained as follows:

10.67 — 0.5| +10.52 — 1] +[0.82 — 0] + [0.64 — 1] +[0.82 — 1| + |0.88 — 1|
" 10.67 + 0.5+ [0.52 + 1|+ [0.82 + O] + [0.64 + 1| + [0.82 + 1| + 0.88 + 1|
+0.52 — 0.5] +[0.94 — 1] + [0.94 — 0.5] + |0.64 — 0] +]0.82 — 0] +]0.76 — O
+0.52 + 0.5] + [0.94 + 1] + [0.94 + 0.5 + |0.64 + O] + |0.82 + 0] + [0.76 + O
+0.94 — 0.5] +]0.52 — 0] +|0.82 — 1] +[0.58 — 0.5] + 0.82 — O] + 0.64 — O
+0.94 + 0.5] + [0.52 + 0] + [0.82 + 1] + [0.58 + 0.5] + |0.82 + O] + |0.64 + O

_ +10.88 - 0.5 +10.52-0.5] 843
T 40.88+0.5/+[0.52+05 = 23.69

Tpray =

= 0.64.

0.1 = 0.5+ 0.1 = 1| +1]0.2 = 0] +[0.2 = 1| + 0.1 = 1| + [0.2 = 1| + |0 — 0.5]
101 +05/+(0.1+1[+[02+0[+[02+ 1[+]0.1+ 1[+]0.2 + 1| +]0 + 0.5]
+0.4 = 1] + 0.1 = 0.5] + 0.2 = 0] + 0.5 = 0] + [0.1 = O] + 0.6 — 0.5 + 0 — O
+0.4 + 1]+ [0.1 + 0.5 + [0.2 + 0] + 0.5 + 0] + [0.1 + O] + 0.6 + 0.5 + 0 + O]
+0.2 = 1] +10.1 = 0.5/ +10.2 = 0] + 102 = 0| + [0 = 0.5] + 0.7 =0] _ 9.2

=1-——==0.30.
+0.2+1]+10.1 + 0.5/ +10.2+0[+10.2+ 0] + |0 + 0.5 + |0.7 + O] 13.2

Lipyay =
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10.24 — 0.5] +10.36 — 0] +10.24 — 1| + |0.48 — 0] + |0.24 — 0| + 0.3 = 0|

F =1
(prdi) 0.24 + 0.5/ + [0.36 + O] + [0.24 + 1] + [0.48 + O] + |0.24 + 0] + [0.3 + O]
+0.42 — 0.5] +[0.36 — 0] +[0.36 — 0.5] +0.48 — 1| +]0.12 — 1| +10.18 — 1]

+(0.42 + 0.5] +10.36 + 0] + 10.36 + 0.5 + [0.48 + 1| +10.12 + 1| + |0.18 + 1|
+(0.12 - 0.5] +10.54 = 1| +10.24 - 0| + 0.3 = 0.5| + 0.3 — 1| + |0.42 — 1]

+0.12 + 0.5 +10.54 + 1| +10.24 + 0] + [0.3 + 0.5] + 0.3 + 1| + [0.42 + 1|’
+10.06 — 0.5 +10.24 — 1] 8.96

+0.06 +0.5/+1024 + 1] 16.9

S(pl’dl) =

s (aq (PO@).0(P1(@)) = 1

= 0.47.

0.64 +0.30 + 0.47

3

=047.

|0.67 — 1] +10.58 — 1] +10.92 = 1| + /0.5 — 1] +10.33 = 1|

|0.67 + 1] +]0.58 + 1] +10.92 + 1| + /0.5 + 1] +10.33 + 1|

+0.25 -1/ +10.42 -1/ +10.33 - 1] +|0.58 — 1| + |0.67 — 1|

+(0.25 + 1] +10.42 + 1] +10.33 + 1| + |0.58 + 1| + |0.67 + 1|
+(0.83 = 1] +10.67 — 1| +10.92 = 1| + [0.5 = 1| + |0.75 - 1|

+/0.83 + 1| +[0.67 + 1| +[0.92 + 1| + 0.5 + 1| +10.75 + 1|’
+0.25 -1/ +10.75 - 1] +10.5 - 1] +10.33 = 1| + |0.58 — 1]

+0.25+ 1] +10.75 + 1| +10.5 + 1] +10.33 + 1| + |0.58 + 1|

Then, S (p1,d;) = 0.47 x 0.72 = 0.34.

Similarly, we calculate the following Tables 39—41 as follows:

Table 39. s(p.d;).

d dy

ds

dy

P1
P2
p3
P4

0.47 0.54
0.51 0.49
0.7 049
049 046

0.44
0.38
0.38
0.51

0.46
0.49
0.53
0.46

AIMS Mathematics

Table 40. s (w,)Adj, n).

n

0.72

:u/\d1
Hag,
HAg,
HA,

0.72
0.75
0.74
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Table 41. S (p;.d;) = s (pi. d;) % s (), - 7)-
dl dz d3 d4
pi 034 039 033 0.34
p» 037 035 029 0.36
ps 051 035 029 0.39
ps 035 033 038 0.34

We receive the score table in Table 41 as a result of similar calculations. It is clear from Table 41
that the first patient suffers from COVID-19, the second patient suffers from mumps, the third patient
suffers mumps and patient four suffers yellow fever.

6. Conclusions

In this research, we introduced the concept of the generalized effective neutrosophic soft set
(GENSS), which offers enhanced effectiveness and a range of advantageous properties. Additionally,
we defined fundamental operations on the effective neutrosophic soft set, including complement, union,
intersection, AND and OR operations. Finally, we showcased the practical application of GENSS in
decision-making problems and medical diagnostics.
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