Nipah virus (NiV) is a zoonotic virus that causes outbreaks of fatal disease in humans. Fruit bat, also known as the flying fox, is the animal host reservoir for NiV. It is known to cause illness in pigs, which are considered an intermediate host. In this paper, we propose a model for NiV disease transmission taking into account all human-to-host animal transmission as well as the loss of immunity in those who have recovered. Furthermore, we take into consideration seasonal effects such as varying transmission rate from bats and birth rate of bats. We studied the existence and uniqueness of a disease-free $ \omega $-periodic solution and later deals with the basic reproduction number and stability analysis. To support the analytical results we provide numerical examples and assess the effect of parameter changes on disease dynamics, which might help to understand how to avoid a yearly periodic recurrence of the disease.
Citation: Saumen Barua, Mahmoud A. Ibrahim, Attila Dénes. A compartmental model for the spread of Nipah virus in a periodic environment[J]. AIMS Mathematics, 2023, 8(12): 29604-29627. doi: 10.3934/math.20231516
Nipah virus (NiV) is a zoonotic virus that causes outbreaks of fatal disease in humans. Fruit bat, also known as the flying fox, is the animal host reservoir for NiV. It is known to cause illness in pigs, which are considered an intermediate host. In this paper, we propose a model for NiV disease transmission taking into account all human-to-host animal transmission as well as the loss of immunity in those who have recovered. Furthermore, we take into consideration seasonal effects such as varying transmission rate from bats and birth rate of bats. We studied the existence and uniqueness of a disease-free $ \omega $-periodic solution and later deals with the basic reproduction number and stability analysis. To support the analytical results we provide numerical examples and assess the effect of parameter changes on disease dynamics, which might help to understand how to avoid a yearly periodic recurrence of the disease.
[1] | R. A. Weiss, N. Sankaran, Emergence of epidemic diseases: Zoonoses and other origins, Fac. Rev., 11 (2022). https://doi.org/10.12703/r/11-2 doi: 10.12703/r/11-2 |
[2] | Aditi, M. Shariff, Nipah virus infection: A review, Epidemiol. Infect., 147 (2019), E95. https://doi.org/10.1017/s0950268819000086 doi: 10.1017/s0950268819000086 |
[3] | K. J. Goh, C. T. Tan, N. K. Chew, P. S. K. Tan, A. Kamarulzaman, S. A. Sarji, et al., Clinical features of Nipah virus encephalitis among pig farmers in Malaysia, N. Engl. J. Med., 342 (2000), 1229–1235. https://doi.org/10.1056/nejm200004273421701 doi: 10.1056/nejm200004273421701 |
[4] | M. Chadha, J. A. Comer, L. Lowe, P. A. Rota, P. E. Rollin, W. J. Bellini, et al., Nipah virus-associated encephalitis outbreak, Siliguri, India, Emerg. Infect. Dis., 12 (2006), 235–240. https://doi.org/10.3201/eid1202.051247 doi: 10.3201/eid1202.051247 |
[5] | M. Rahman, A. Chakraborty, Nipah virus outbreaks in Bangladesh: A deadly infectious disease, WHO South-East Asia J. Public Health, 1 (2012), 208–212. |
[6] | Md. H. A. Biswas, Optimal control of Nipah virus (NiV) infections: A Bangladesh scenario, J. Pure Appl. Math. Adv. Appl., 12 (2014), 77–104. |
[7] | J. Sultana, C. N. Podder, Mathematical analysis of Nipah virus infections using optimal control theory, J. Appl. Math. Phys., 4 (2016), 1099–1111. https://doi.org/10.4236/jamp.2016.46114 doi: 10.4236/jamp.2016.46114 |
[8] | M. K. Mondal, M. Hanif, Md. H. A. Biswas, A mathematical analysis for controlling the spread of Nipah virus infection, Int. J. Model. Simul., 37 (2017), 185–197. https://doi.org/10.1080/02286203.2017.1320820 doi: 10.1080/02286203.2017.1320820 |
[9] | N. H. Shah, N. D. Trivedi, F. A. Thakkar, M. H. Satia, Control strategies for Nipah virus, Int. J. Appl. Eng. Res., 13 (2018), 15149–15163. |
[10] | P. Agarwal, R. Singh, Modelling of transmission dynamics of Nipah virus (NiV): A fractional order Approach, Physica A, 547 (2020), 124243. https://doi.org/10.1016/j.physa.2020.124243 doi: 10.1016/j.physa.2020.124243 |
[11] | A. D. Zewdie, S. Gakkhar, A mathematical model for Nipah virus infection, J. Appl. Math., 2020 (2020), 6050834. https://doi.org/10.1155/2020/6050834 doi: 10.1155/2020/6050834 |
[12] | S. Das, P. Das, P. Das, Control of Nipah virus outbreak in commercial pig-farm with biosecurity and culling, Math. Model. Nat. Phenom., 15 (2020), 64. https://doi.org/10.1051/mmnp/2020047 doi: 10.1051/mmnp/2020047 |
[13] | A. D. Zewdie, S. Gakkhar, S. K. Gupta, Human–animal Nipah virus transmission: Model analysis and optimal control, Int. J. Dynam. Control, 11 (2023), 1974–1994. https://doi.org/10.1007/s40435-022-01089-y doi: 10.1007/s40435-022-01089-y |
[14] | F. Evirgen, Transmission of Nipah virus dynamics under Caputo fractional derivative, J. Comput. Appl. Math., 418 (2023), 114654. https://doi.org/10.1016/j.cam.2022.114654 doi: 10.1016/j.cam.2022.114654 |
[15] | Samreen, S. Ullah, R. Nawaz, S. A. AlQahtani, S. Li, A. M. Hassan, A mathematical study unfolding the transmission and control of deadly Nipah virus infection under optimized preventive measures: New insights using fractional calculus, Results Phys., 51 (2023), 106629. https://doi.org/10.1016/j.rinp.2023.106629 doi: 10.1016/j.rinp.2023.106629 |
[16] | D. Baleanu, P. Shekari, L. Torkzadeh, H. Ranjbar, A. Jajarmi, K. Nouri, Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study, Chaos Soliton. Fract., 166 (2023), 112990. https://doi.org/10.1016/j.chaos.2022.112990 doi: 10.1016/j.chaos.2022.112990 |
[17] | S. Barua, A. Dénes, Global dynamics of a compartmental model for the spread of Nipah virus, Heliyon, 9 (2023), e19682. https://doi.org/10.1016/j.heliyon.2023.e19682 doi: 10.1016/j.heliyon.2023.e19682 |
[18] | E. S. Gurley, S. T. Hegde, K. Hossain, H. M. S. Sazzad, M. J. Hossain, M. Rahman, et al., Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh, Emerg. Infect. Dis., 23 (2017), 1446–1453. https://doi.org/10.3201/eid2309.161922 doi: 10.3201/eid2309.161922 |
[19] | J. H. Epstein, S. J. Anthony, A. Islam, A. M. Kilpatrick, S. A. Khan, M. D. Balkey, et al., Nipah virus dynamics in bats and implications for spillover to humans, Proc. Natl. Acad. Sci., 117 (2020), 29190–29201. https://doi.org/10.1073/pnas.2000429117 doi: 10.1073/pnas.2000429117 |
[20] | J. B. Koilraj, G. Agoramoorthy, G. Marimuthu, Copulatory behavior of Indian flying fox Pteropus giganteus, Curr. Sci., 80 (2001), 15–16. |
[21] | N. Bacaër, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0 doi: 10.1007/s00285-006-0015-0 |
[22] | W. Wang, X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8 doi: 10.1007/s10884-008-9111-8 |
[23] | C. Rebelo, A. Margheri, N. Bacaër, Persistence in seasonally forced epidemiological models, J. Math. Biol., 64 (2012), 933–949. https://doi.org/10.1007/s00285-011-0440-6 doi: 10.1007/s00285-011-0440-6 |
[24] | X. Wang, X. Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J. Appl. Dyn. Syst., 16 (2017), 853–881. https://doi.org/10.1137/16M1087916 doi: 10.1137/16M1087916 |
[25] | S. Ruan, Modeling the transmission dynamics and control of rabies in China, Math. Biosci., 286 (2017), 65–93. https://doi.org/10.1016/j.mbs.2017.02.005 doi: 10.1016/j.mbs.2017.02.005 |
[26] | R. Djidjou-Demasse, G. J. Abiodun, A. M. Adeola, J. O. Botai, Development and analysis of a malaria transmission mathematical model with seasonal mosquito life-history traits, Stud. Appl. Math., 144 (2020), 389–411. https://doi.org/10.1111/sapm.12296 doi: 10.1111/sapm.12296 |
[27] | M. A. Ibrahim, A. Dénes, Threshold and stability results in a periodic model for malaria transmission with partial immunity in humans, Appl. Math. Comput., 392 (2021), 125711. https://doi.org/10.1016/j.amc.2020.125711 doi: 10.1016/j.amc.2020.125711 |
[28] | J. K. K. Asamoah, Z. Jin, G. Q. Sun, Non-seasonal and seasonal relapse model for Q fever disease with comprehensive cost-effectiveness analysis, Results Phys., 22 (2021), 103889. https://doi.org/10.1016/j.rinp.2021.103889 doi: 10.1016/j.rinp.2021.103889 |
[29] | M. A. Ibrahim, A. Dénes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal.-Real, 60 (2021), 103310. https://doi.org/10.1016/j.nonrwa.2021.103310 doi: 10.1016/j.nonrwa.2021.103310 |
[30] | T. Zheng, L. Nie, H. Zhu, Y. Luo, Z. Teng, Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza, Nonlinear Anal.-Real, 67 (2022), 103567. https://doi.org/10.1016/j.nonrwa.2022.103567 doi: 10.1016/j.nonrwa.2022.103567 |
[31] | K. Liu, Y. Lou, A periodic delay differential system for mosquito control with Wolbachia incompatible insect technique, Nonlinear Anal.-Real, 73 (2023), 103867. https://doi.org/10.1016/j.nonrwa.2023.103867 doi: 10.1016/j.nonrwa.2023.103867 |
[32] | Y. Luo, Z. Teng, X. Q. Zhao, Transmission dynamics of a general temporal spatial vector-host epidemic model with an application to the dengue fever in Guangdong, China, Discrete Cont. Dyn. Syst. Ser. B, 28 (2023), 134–169. https://doi.org/10.3934/dcdsb.2022069 doi: 10.3934/dcdsb.2022069 |
[33] | D. J. Middleton, H. A. Westbury, C. J. Morrissy, B. M. van der Heide, G. M. Russell, M. A. Braun, et al., Experimental Nipah virus infection in pigs and cats, J. Comp. Pathol., 126 (2002), 124–136. https://doi.org/10.1053/jcpa.2001.0532 doi: 10.1053/jcpa.2001.0532 |
[34] | H. Weingartl, S. Czub, J. Copps, Y. Berhane, D. Middleton, P. Marszal, et al., Invasion of the central nervous system in a porcine host by Nipah virus, J. Virol., 79 (2005), 7528–7534. https://doi.org/10.1128/JVI.79.12.7528-7534.2005 doi: 10.1128/JVI.79.12.7528-7534.2005 |
[35] | D. J. Middleton, C. J. Morrissy, B. M. van der Heide, G. M. Russell, M. A. Braun, H. A. Westbury, et al., Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus), J. Comp. Pathol., 136 (2007), 266–272. https://doi.org/10.1016/j.jcpa.2007.03.002 doi: 10.1016/j.jcpa.2007.03.002 |
[36] | J. P. Tian, J. Wang, Some results in Floquet theory, with application to periodic epidemic models, Appl. Anal., 94 (2015), 1128–1152. https://doi.org/10.1080/00036811.2014.918606 doi: 10.1080/00036811.2014.918606 |
[37] | F. Zhang, X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085 doi: 10.1016/j.jmaa.2006.01.085 |
[38] | H. L. Smith, P. Waltman, The theory of the chemostat, Cambridge: Cambridge University Press, 1995. https://doi.org/10.1017/cbo9780511530043 |
[39] | X. Q. Zhao, Dynamical systems in population biology, Springer Cham, 2017. https://doi.org/10.1007/978-3-319-56433-3 |
[40] | C. Mitchell, C. Kribs, A comparison of methods for calculating the basic reproductive number for periodic epidemic systems, Bull. Math. Biol., 79 (2017), 1846–1869. https://doi.org/10.1007/s11538-017-0309-y doi: 10.1007/s11538-017-0309-y |
[41] | World Health Organization, Global health observatory data repository: Crude birth and death rate–Data by country. Available from: http://apps.who.int/gho/data/node.main.CBDR107?lang = en. |
[42] | S. K. Lam, K. B. Chua, Nipah virus encephalitis outbreak in Malaysia, Clin. Infect. Dis., 34 (2002), S48–S51. https://doi.org/10.1086/338818 doi: 10.1086/338818 |
[43] | U. S. Food & Drug Administration, Production cycle of swine, Available from: https://www.wifss.ucdavis.edu/wp-content/uploads/2015/FDA/feed/animalclass_swine_FINAL.pdf. |
[44] | European Centre for Disease Prevention and Control, Factsheet on Nipah virus disease, Available from: https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/nipah-virus-disease/factsheet-nipah-virus-disease. |
[45] | World Health Organization, Nipah virus, 2018, Available from: https://www.who.int/news-room/fact-sheets/detail/nipah-virus. |
[46] | Centers for Disease Control and Prevention, Nipah virus (NiV), 2020, Available from: https://www.cdc.gov/vhf/nipah/about/index.html. |
[47] | H. M. Weingartl, Hendra and Nipah viruses: Pathogenesis, animal models and recent breakthroughs in vaccination, Vaccine Dev. Ther., 5 (2015), 59–74. https://doi.org/10.2147/VDT.S86482 doi: 10.2147/VDT.S86482 |