
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(12): 29604–29627.
DOI: 10.3934/math.20231516
Received: 25 July 2023
Revised: 14 September 2023
Accepted: 21 September 2023
Published: 01 November 2023

Research article

A compartmental model for the spread of Nipah virus in a periodic
environment

Saumen Barua1,∗, Mahmoud A. Ibrahim1,2 and Attila Dénes3
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Abstract: Nipah virus (NiV) is a zoonotic virus that causes outbreaks of fatal disease in humans. Fruit
bat, also known as the flying fox, is the animal host reservoir for NiV. It is known to cause illness in
pigs, which are considered an intermediate host. In this paper, we propose a model for NiV disease
transmission taking into account all human-to-host animal transmission as well as the loss of immunity
in those who have recovered. Furthermore, we take into consideration seasonal effects such as varying
transmission rate from bats and birth rate of bats. We studied the existence and uniqueness of a disease-
free ω-periodic solution and later deals with the basic reproduction number and stability analysis. To
support the analytical results we provide numerical examples and assess the effect of parameter changes
on disease dynamics, which might help to understand how to avoid a yearly periodic recurrence of the
disease.
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1. Introduction

With about 60% of human infections originating from animals [1], zoonotic diseases pose one of
the greatest health threats as shown by the recent outbreaks of severe acute respiratory syndrome
coronavirus (SARS-CoV-2), Ebola virus, Middle East respiratory syndrome coronavirus
(MERS-CoV). One of the most menacing emerging zoonotic diseases, Nipah virus (NiV) disease is
highly infectious and spreads in the community via infected animals, infected people or contaminated
food and objects, causing severe neurological and respiratory diseases with high mortality rates in
some instances [2]. Nipah virus, whose animal host reservoir is the fruit bat, also known as the flying
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fox, causes lethal encephalitis in humans and has recently been reported in Malaysia, Bangladesh,
Singapore and India [3–5].

Since the outbreak, very few mathematical models have been available for studies of NiV disease.
A basic SIR (susceptible–infected–recovered) model with optimal control was presented by Biswas
in [6]. A dynamic model of NiV infections with variable size population and two control strategies
was formulated in [7]. Incorporating quarantine of infectious individuals, Mondal et al. [8] analyzed
an SEIR (susceptible–exposed–infected–recovered) model where birth and death rates were assumed
unequal. Shah et al. [9] presented a two-layered model for humans and bats. Agarwal and Singh [10]
presented a mathematical model of seven compartments, including virus dynamics, flying foxes and
humans. They considered that this disease has no recovered individuals. Considering no bat
population and the role of deceased individuals who died from Nipah fever, Zewdie and
Gakkhar [11, 12] concentrated on an optimal control study of some adjustable parameters for a
coupled pig-human NiV disease model. In [13], the authors examined a compartmental model that
incorporated bats, humans, and an intermediate host. Recently, [14] proposed a numerical model of
NiV that focuses on tracking the influence of the fractional order derivative, considering transmission
from dead bodies. In [15], the authors developed a mathematical model comprising a nonlinear
fractional-order system of differential equations to examine the dynamics and optimal control
strategies for NiV using the Caputo derivative. Similarly, Baleanu et al. [16] considered a fractional
order model that incorporated the potential transmission pathway of unsafe contact with an infectious
corpse. Barua et al. [17] proposed a three-layered model in which bat and pig transmission was also
considered.

The above literature review demonstrates that despite the threat posed by NiV disease, so far, little
research has been done regarding its transmission. Furthermore, most of the models did not consider
all important characteristics of the disease and several studies focused on optimal control problems
rather than the dynamics of the proposed models. Another important aspect of transmission, which has
not been considered in models for NiV transmission, is the periodicity of the environment. The only
location where spillover events can be reliably seen annually is Bangladesh, where seasonal patterns
of consuming raw date-palm-sap in the “Nipah belt” correlate with outbreak timing and distribution
(November to April) [18]. Data from a six-year multidisciplinary research conducted on bats reveal
that one of the causes of outbreaks in Pteropus bats is driven by a gradual loss of immunity, culminating
in periods of interepizootic activity that last for several years [19]. Furthermore, the bats’ reproduction
also shows periodicity as studies reported that the bats’ mating season occurs from July to October and
mothers give birth to one or two newborns from February to March [20].

Motivated by the above, in the present work we propose a model for Nipah virus disease
transmission in a periodic environment in which all possible ways of transmission among humans, the
reservoir species of bats and the intermediate host pigs are considered. To our knowledge, this is the
first paper considering Nipah virus disease spread taking into consideration the seasonal nature of
disease transmission and reproduction. Several studies have been established for the mathematical
modeling of epidemics considering a seasonal environment since the generalization of the basic
reproduction number for periodic models was first defined by Bacaër and Guernaoui [21] as the
spectral radius of an integral operator acting on the space of continuous periodic functions. The proof
of the existence and stability of the disease-free ω-periodic solution was first established by Wang and
Zhao [22]. The persistence of a class of seasonally forced epidemiological models is investigated by
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Rebelo et al. [23]. The methods established in the above papers have since been improved and applied
to study the spread of many infectious diseases; see, e.g., [24–32]. However, to the authors’
knowledge, no model has studied the spread of an infectious disease considering a transmission chain
consisting of three species. Hence, although we follow the general approach established in the
above-mentioned studies and applied in many modeling works since then, in the present work we
further improve this theory by adjusting the general methods to our three-species system. By doing
so, we study the existence and uniqueness of a disease-free ω-periodic solution in Section 3, while
Section 4 deals with the basic reproduction number and stability analysis. In Section 5, we provide
some numerical examples to support the analytical results and to assess the effect of parameter
changes on disease dynamics. In the numerical experiments, we choose the periodic transmission and
birth functions (which are kept general in the analytical part of the paper) to correspond to the special
seasonal pattern of date palm sap consumption and the bats’ breeding behaviour, respectively. The
results might help to understand how to avoid a periodic yearly recurrence of the disease. The paper is
closed with a short discussion.

2. Model formulation

We develop a compartmental model considering all possible transmissions from animals to humans,
animals to animals and from humans to animals, also including periodicity of various parameters due
to seasonal patterns in demography and transmission rates.

The total human population N(t) at time t is divided into susceptibles (S (t)), exposed (E(t)), infected
(I(t)) and recovered (R(t)). Hence,

N(t) = S (t) + E(t) + I(t) + R(t).

The total population of pigs (intermediate host) Np(t) at time t is divided into susceptible (S p(t)),
exposed (Ep(t)), infected (Ip(t)) and recovered (Rp(t)) individuals, so that

Np(t) = S p(t) + Ep(t) + Ip(t) + Rp(t).

Similarly, the total bat population (animal host reservoir) Nb(t) at time t is divided into susceptible
(S b(t)), exposed (Eb(t)), infected (Ib(t)) and recovered (Rb(t)) individuals, such that

Nb(t) = S b(t) + Eb(t) + Ib(t) + Rb(t).

We denote the birth and death rates of humans by Π and µ, respectively. There is also a
disease-induced death rate, denoted by δ. The force of infection for humans to humans, humans to
pigs and humans to bats for NiV transmission is given by βI, βhpI, and βhbI, respectively. Again, the
force of infection for NiV transmission from pigs to humans, pigs to pigs and pigs to bats is expressed
here as βphIp, βpIp and βpbIp. Furthermore, the force of infection for NiV transmission from bats to
humans, bats to pigs and bats to bats is expressed here as βbh(t)Ib, βbIb and βbp(t)Ib. Here, the
parameters are the effective contact rate of susceptible individuals who become infected from either
humans or animals who became NiV infected. Note that unlike other papers, such as [13, 17], in this
work, we also allow transmission from humans to both animal species as well as pig-to-human
transmission, although it is hard to find any sources mentioning these ways of transmission (see, e.g.,
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under laboratory conditions [33–35]). However, as bat-to-human and bat-to-pig transmission
frequently occurs via indirect contact, we presume that (at least) indirect transmission can also happen
the other way around, hence, in this model, we decided to allow all possible ways of transmission.

In this context, the average duration of the infectious period is 1/γ days, so infected individuals are
transferred to the recovered compartment at the rate γ and θ is the rate of loss of temporary immunity
acquired by recovered individuals, meaning that recovered individuals remain immune for 1/θ days on
average. The average length of the incubation period is defined by 1/ν. We define all other parameters
for pigs and bats and apply the subscripts p and b, respectively, for them. Note that the time-dependent
parameters in our model are βbh(t), βbp(t) and Πb(t).

The transmission diagram of our model is shown in Figure 1. A complete description of the model
parameters is summarized in Table 1. With the above notations, our model takes the following form:

dS
dt

= Π − βS I − βphS Ip − βbh(t)S Ib − µS + θR,

dE
dt

= βS I + βphS Ip + βbh(t)S Ib − νE − µE,

dI
dt

= νE − (µ + δ + γ)I,

dR
dt

= γI − (µ + θ)R,

(2.1a)

dS p

dt
= Πp − βpS pIp − βhpS pI − βbp(t)S pIb − µpS p + θpRp,

dEp

dt
= βpS pIp + βhpS pI + βbp(t)S pIb − νpEp − µpEp,

dIp

dt
= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

(2.1b)

dS b

dt
= Πb(t) − βbS bIb − βhbS bI − βpbS bIp − µbS b + θbRb,

dEb

dt
= βbS bIb + βhbS bI + βpbS bIp − νbEb − µbEb,

dIb

dt
= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb.

(2.1c)

The following initial conditions are associated with system (2.1), define φ = (S (0), E(0), I(0),R(0),
S p(0), Ep(0), Ip(0),Rp(0), S b(0), Eb(0), Ib,Rb(0)) where S (0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, S p(0) >
0, Ep(0) ≥ 0, Ip(0) ≥ 0, Rp(0) ≥ 0, S b(0) > 0, Eb(0) ≥ 0, Ib(0) ≥ 0, and Rb(0) ≥ 0.
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Figure 1. Transmission diagram. Red dashed arrows indicate the transition from one
compartment to another. Green arrows and gray indicate new entry and exit for death,
respectively. The blue arrow represents virus transmission. Light blue, gray, and yellow
colored boxes depict compartments for humans, bats and pigs, respectively.

Table 1. Description of parameters of model (2.1).

Parameters Description
Π Recruitment rate for humans
Πb(t),Πp Recruitment rate for bats and pigs
µ Natural death rate of humans
µb, µp Natural death rate of bats and pigs
δ Disease-induced death rate for humans
δp, δb Disease-induced death rate for pigs and bats
γ Recovery rate for humans
γp, γb Recovery rate for pigs and bats
β Human-to-human transmission rate
βhp Human-to-pig transmission rate
βhb Human-to-bat transmission rate
βp Pig-to-pig transmission rate
βph Pig-to-human transmission rate
βpb Pig-to-bat transmission rate
βb Bat-to-bat transmission rate
βbh(t) Bat-to-human transmission rate
βbp(t) Bat-to-pig transmission rate
1/ν Average incubation time for humans
1/νp, 1/νb Average incubation time for pigs and bats
1/θ Average length of immunity for humans
1/θp, 1/θb Average length of immunity for pigs and bats
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3. The disease-free periodic solution

3.1. Existence and uniqueness of the disease-free ω-periodic solution

In this section, we will study the existence and uniqueness of the disease-free periodic solution
of system (2.1). For this let us consider the subsystem (2.1a) in case of no disease transmission for
humans. For the susceptible human population, we have the linear differential equation:

S ′(t) = Π − µS (t). (3.1)

Clearly, S (t) is bounded and Eq (3.1) has a unique, globally asymptotically stable equilibrium S ∗ =

Π/µ. Similarly one can prove that the pig subsystem (2.1b) has a unique, globally asymptotically stable
equilibrium S ∗p = Πp/µp and S p(t) is bounded. Now let us consider the subsystem (2.1c) for bats. To
find the disease-free periodic solution of this subsystem, we consider the equation for susceptible bats
in case of no disease transmission in the form

S ′b(t) = Πb(t) − µbS b(t), (3.2)

with initial condition

S b(0) = S b0 B
e−µbω

∫ ω

0
eµbξΠb(ξ)dξ

1 − e−µbω
.

For this initial value problem, we have

S ∗b(t) = e−µbt

(
S b0 +

∫ t

0
eµbξΠb(ξ) dξ

)
> 0, (3.3)

which is globally attractive in R+. Thus, the system (2.1) has a unique disease-free periodic solution

E∗ = (S ∗, 0, 0, 0, S ∗p, 0, 0, 0, S
∗
b(t), 0, 0, 0), (3.4)

where S ∗ = Π/µ, S ∗p = Πp/µp, and S ∗b(t) is defined in (3.3). To introduce the following result, we set
hL = supt∈[0,ω) h(t) for a continuous positive ω-periodic function h(t).

Lemma 1. There exists N∗b =
ΠL

b
µb
> 0 such that each solution in R12

+ of (2.1) eventually enters

GN∗ = {(S , E, I,R, S p, Ep, Ip,Rp, S b, Eb, Ib,Rb) ∈ R12
+ : Nh ≤ N∗h , Np ≤ N∗p, Nb ≤ N∗b},

and for each Nb(t) ≥ N∗b , GN∗ is positively invariant for system (2.1).

Proof. It can be easily seen from (2.1) that for the bat subsystem (2.1c), we have

N′b(t) = Πb(t) − µbNb(t) − δbIb(t) ≤ ΠL
b − µbNb(t) ≤ 0, if Nb(t) ≥ N∗b ,

which implies that GN∗ is positively invariant when Nb(t) ≥ N∗b , and over time, every forward orbit
eventually enters into GN∗ . �
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4. Basic reproduction number and stability analysis

4.1. Basic reproduction number

In this section, we will follow the technique introduced in [22] to study the local stability
properties of the disease-free periodic solution depending on the basic reproduction number. First, we
can calculate the disease-free periodic solution E∗ defined in (3.4) of system (2.1) for appropriate
parameter values. To introduce the basic reproduction number R0 for system (2.1) we calculate

F (t,X(t)) =



βS I + βphS Ip + βbh(t)S Ib

0
βpS bIp + βhpS pI + βbp(t)S pIb

0
βbS bIb + βhbS bI + βpbS bIp

0
0
0
0
0
0
0



,

and

V−(t,X(t)) =



(ν + µ)E
(µ + δ + γ)I
(νp + µp)Ep

(µp + δp + γp)Ip

(νb + µb)Eb

(µb + δb + γb)Ib

βS I + βphS Ip + βbh(t)S Ib + µS
(µ + θ)R

βpS pIp + βhpS pI + βbp(t)S pIb + µpS p

(µp + θp)Rp

βbS bIb + βhbS bI + βpbS bIp + µbS b

(µb + θb)Rb



, V+(t,X(t)) =



0
νE
0

νpEp

0
νbEb

Π + θR
γI

Πp + θpRp

γpIp

Πb(t) + θbRb

γbIb



,

where X = (E, I, Ep, Ip, Eb, Ib, S ,R, S p,Rp, S b,Rb)T . Here E, I, Ep, Ip, Eb, Ib are the infected
compartments and S ,R, S p,Rp, S b,Rb are the uninfected compartments. Now, let us check conditions
(A1)–(A5) from [22, p. 701]. System (2.1) can be written as

X′(t) = F (t,X(t)) −V(t,X(t)) = f (t,X(t)), (4.1)

where V(t,X(t)) = V−(t,X(t)) − V+(t,X(t)). It can be easily seen that conditions (A1)–(A5) hold.
We also introduce here the function f (t,X(t)) = F (t,X(t)) − V(t,X(t)) and the matrix
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M =
(∂ fi(t,X∗(t))

∂X j

)
7≤i, j≤12, where fi(t,X(t)) stands for the i-th coordinate of f (t,X(t)) and Xi is the i-th

entry of X. The matrix M has the form

M =



−µ θ 0 0 0 0
0 −µ − θ 0 0 0 0
0 0 −µp θp 0 0
0 0 0 −µp − θp 0 0
0 0 0 0 −µb θb

0 0 0 0 0 −µb − θb


. (4.2)

We denote by ΦM(t) the monodromy matrix of z′ = Mz. We apply the usual notation ρ(ΦM(t)) for
the spectral radius of ΦM(ω). We obtain that ρ(ΦM(t)) < 1, from which it follows thatX∗(t) is a linearly
asymptotically stable solution in X = (0, 0, 0, 0, 0, 0, 0, 0, 0, S , S p, S b) ∈ R12

+ , the disease-free subspace.
Hence, condition (A6) is also fulfilled.

We introduce the matrix functions F(t) =
(∂Fi(t,X∗(t))

∂X j

)
1≤i, j≤6 and V(t) =

(∂Vi(t,X∗(t))
∂X j

)
1≤i, j≤6 (here again,

a lower index i corresponds to the i-th coordinate). The two vector functions can be calculated as

F(t) =



0 βS ∗ 0 βphS ∗ 0 βbh(t)S ∗

0 0 0 0 0 0
0 βhpS ∗p 0 βpS ∗p 0 βbp(t)S ∗p
0 0 0 0 0 0
0 βhbS ∗b(t) 0 βpbS ∗b(t) 0 βbS ∗b(t)
0 0 0 0 0 0


and

V(t) =



µ + ν 0 0 0 0 0
−ν γ + δ + µ 0 0 0 0
0 0 µp + νp 0 0 0
0 0 −νp γP + δp + µp 0 0
0 0 0 0 µb + νb 0
0 0 0 0 −νb γb + δb + µb


.

Note that F(t) is a non-negative matrix function, while −V(t) is cooperative. Suppose X(t, s), t ≥ s,
is the evolution operator of the linear system

dx(t)
dt

= −V(t)x(t).

Thus, for s ∈ R, X(t, s) satisfies the equation

dX(t, s)
dt

= −V(t)X(t, s), ∀t ≥ s, X(s, s) = I,

where I denotes the 6 × 6 identity matrix.
Denote by ψ(s) the distribution of infected individuals, ω-periodic in s. Then, F(s)ψ(s) provides

the rate of new cases due to those infected whose infection occurred at time s. For t ≥ s, the term
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X(t, s)F(s)ψ(s) is the distribution of those infected who became infected at time s and who continue to
be infectious at time t. Therefore,

g(t) B
∫ t

−∞

X(t, s)F(s)ψ(s)ds =

∫ ∞

0
X(t, t − a)F(t − a)ψ(t − a)da,

gives the distribution of cumulative new infections at time t generated by all infected individuals ψ(s)
who were introduced at any time s ≤ t.

Denote by Cω the ordered Banach space of ω-periodic functions from R to R6, provided with the
usual maximum norm ‖·‖∞ and define the positive cone

C+
ω B {ψ ∈ Cω : ψ(t) ≥ 0,∀t ∈ R}.

The linear next infection operator L : Cω → Cω is introduced as

(Lψ)(t) =

∫ ∞

0
X(t, t − a)F(t − a)ψ(t − a)da, ∀t ∈ R, ψ ∈ Cω.

The basic reproduction number of (2.1) is defined as R0 B ρ(L) [22].
To be able to provide a numerical approximation of the value of R0, following [22], let W(t, λ) be a

fundamental matrix of the linear ω-periodic equation

dw
dt

=

(
−V(t) +

F(t)
λ

)
w, ∀t ∈ R,

with parameter λ ∈ (0,∞). Furthermore, without loss of generality, we assume that W(0, λ) is the
identity matrix I. Now, at this point, it is important to recall that W(ω, λ) is the monodromy matrix of
the aforementioned linear ω-periodic system.

Theorem 2 ([22, Theorem 2.1]). The following statements are valid.

(i) If ρ(W(ω, λ)) = 1 has a positive solution λ0, then λ0 is a eigenvalue of operator L, and hence
R0 > 0.

(ii) If R0 > 0, then λ0 = R0 is a unique solution of ρ(W(ω, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W(ω, λ)) < 1 for all λ > 0.

4.2. Local asymptotic stability of the disease-free periodic solution

Based on the results in the previous subsection, we can formulate a theorem concerning the local
stability properties of the disease-free periodic solution E∗ of model (2.1). Before we state the main
result of this subsection, we recall Theorem 2.2 from [22].

Theorem 3 ([22, Theorem 2.2]). The following statements are valid.

(i) R0 = 1 if and only if ρ(ΦF−V(ω)) = 1;

(ii) R0 > 1 if and only if ρ(ΦF−V(ω)) > 1;

(iii) R0 < 1 if and only if ρ(ΦF−V(ω)) < 1.
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Theorem 4. The disease-free periodic solution E∗ of (2.1) is locally asymptotically stable if R0 < 1,
and it is unstable if R0 > 1.

Proof. The Jacobian of (2.1) calculated at E∗ is

J(t) =

[
F(t) − V(t) 0

A(t) M

]
,

with M defined in (4.2) and A(t) given by

A(t) =



0 −βS ∗ 0 −βphS ∗ 0 −βbh(t)S ∗

0 γ 0 0 0 0
0 −βhpS ∗p 0 −βpS ∗p 0 −βbp(t)S ∗p
0 0 0 γp 0 0
0 −βhbS ∗b(t) 0 −βpbS ∗b(t) 0 −βbS ∗b(t)
0 0 0 0 0 γb


.

By [36], E∗ is a locally asymptotically stable periodic solution if ρ(ΦM(ω)) < 1 as well as
ρ(ΦF−V(ω)) < 1 hold. From condition (A6), we have ρ(ΦM(ω)) < 1. It then follows that the stability
of E∗ is determined by ρ(ΦF−V(ω)). Hence, E∗ is locally asymptotically stable if ρ(ΦF−V(ω)) < 1 , and
unstable if ρ(ΦF−V(ω)) > 1. By using Theorem 3, we complete the proof. �

4.3. Global stability of the disease-free solution

We will show the global asymptotic stability of the disease-free periodic solution E∗ for R0 < 1. We
will need the following results.

Lemma 5 ([37, Lemma 2.1]). Let µ = 1
ω

ln ρ(ΦA(·)(ω)). Then there exists a positive,ω-periodic function
ν(t) such that eµtν(t) is a positive solution of x′ = A(t)x.

Theorem 6. The disease-free periodic solution E∗ of (2.1) is globally asymptotically stable if R0 < 1.

Proof. From Theorem 3, we know that if R0 < 1, then E∗ is locally asymptotically stable. Therefore,
it is only left to show that for R0 < 1, E∗ is globally attractive, which, together with local asymptotic
stability, implies global asymptotic stability. Because I(t) ≥ 0, Ip(t) ≥ 0 and Ib(t) ≥ 0 from Lemma 1,
it can be shown that

N′h(t) = Π − µNh(t) − δI(t) ≤ Π − µNh(t),
N′p(t) = Πp − µpNp(t) − δpIp(t) ≤ Πp − µNp(t),

which implies that

lim sup
t→∞

Nh(t) ≤
Π

µ
= S ∗, and lim sup

t→∞
Np(t) ≤

Πp

µp
= S ∗p.

Therefore, there exists a T > 0 such that S (t) ≤ Nh(t) ≤ S ∗ + ε, and S p(t) ≤ Np(t) ≤ S ∗p + ε, and
from Lemma 1, S b(t) ≤ Nb(t) ≤ S ∗b(t) + ε, for an arbitrary positive ε if t > T .
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Using these estimations for system (2.1), we get

dE
dt
≤ (βI + βphIp + βbh(t)Ib)(S ∗ + ε) − νE − µE,

dI
dt

= νE − (µ + δ + γ)I,

dR
dt

= γI − (µ + θ)R,

dEp

dt
≤ (βpIp + βhpI + βbp(t)Ib)(S ∗p + ε) − νpEp − µpEp,

dIp

dt
= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

dEb

dt
≤ (βbIb + βhbI + βpbIp)(S ∗b(t) + ε) − νbEb − µbEb,

dIb

dt
= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb,

(4.3)

for t > T . Let Mε(t) be the matrix function

−µ − ν β(S ∗ + ε) 0 βph(S ∗ + ε) 0 βbh(t)(S ∗ + ε)
ν −γ − δ − µ 0 0 0 0
0 βhp(S ∗p + ε) −µp − νp βp(S ∗p + ε) 0 βbp(t)(S ∗p + ε)
0 0 νp −γP − δp − µp 0 0
0 βhb(S ∗b(t) + ε) 0 βpb(S ∗b(t) + ε) −µb − νb βb(S ∗b(t) + ε)
0 0 0 0 νb −γb − δb − µb


,

and let us consider the auxiliary equation

dU(t)
dt

= Mε(t)U(t), (4.4)

where U(t) = (E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t)). From Theorem 3, we have R0 < 1 if and only if
ρ(ΦF−V(ω)) < 1. It is clear that limε→0 ΦMε

(ω) = ΦF−V(ω). As ρ(ΦF−V(ω)) is continuous, ε > 0 can be
chosen small enough such that ρ(φMε

(ω)) < 1 holds. Now following Lemma 5, we see that there exists
a positive ω-periodic function p(t) such that p(t)eξt is a solution of (4.4) and ξ = 1

ω
ln ρ(ΦMε

(ω)) < 0.
For arbitrary h(0) ∈ R6

+, we can find k∗ such that h(0) ≤ k∗p(0) where
h(t) = (E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t))T . Now applying the comparison principle [38, Theorem B.1],
we get h(t) ≤ p(t)eξt for all t > 0, from which we get

lim
t→∞

(E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t))T = (0, 0, 0, 0, 0, 0)T .

One directly obtains Nh(t)→ N∗h , Np(t)→ N∗p, and Nb(t)→ N∗b as t → ∞. Let ε > 0, we can choose
tε > 0 such that I(t) 6 ε, Ip(t) 6 ε and Ib(t) 6 ε for all t > tε . Then, from the equations for R′(t), R′p(t)
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and R′b(t) of (2.1) we get

R′(t) 6 γε − (µ + θ)R(t),
R′p(t) 6 γpε − (µp + θp)Rp(t),

R′b(t) 6 γbε − (µb + θb)Rb(t),

for large enough t, hence R(t)→ 0 , Rp(t)→ 0 and Rb(t)→ 0 as t → +∞.
Thus, the equations for S ′(t), S ′p(t) and S ′b(t) in system (2.1) provide that

lim
t→∞

S (t) = S ∗, lim
t→∞

S p(t) = S ∗p, lim
t→∞

(S b(t) − S ∗b(t)) = 0.

The proof is complete. �

4.3.1. Existence of positive periodic solutions for R0 > 1

To show the existence of positive periodic solutions, we first introduce the notations

X B
{
(S , E, I,R, S p, Ep, Ip,Rp, S b, Eb, Ib,Rb) ∈ R12

+

}
,

X0 B
{
(S , E, I,R, S p, Ep, Ip,Rp, S b, Eb, Ib,Rb) ∈ X : E > 0, I > 0, Ep > 0, Ip > 0, Eb > 0, Ib > 0

}
,

and
∂X0 B X\X0 =

{
(S , E, I,R, S p, Ep, Ip,Rp, S b, Eb, Ib,Rb) ∈ X : EIEpIpEbIb = 0

}
.

Let us define the Poincaré map P : R12
+ → R

12
+ corresponding to (2.1) as

P(x0) = u(ω, x0), x0 ∈ R12
+ ,

where u(t, x0) is the single solution of (2.1) started with initial condition x0 ∈ R12
+ . Then,

Pm(x0) = u(mω, x0), for all m ≥ 0.

Proposition 7. The set X0 and ∂X0 are both positively invariant w.r.t. the flow defined in (2.1).

Proof. Let us consider the initial condition φ ∈ X0. By solving (2.1) for all t > 0, we get that

S (t) = e
∫ t

0 (−µ−a1(s))ds

(
S (0) +

∫ t

0
e
∫ ξ

0 (µ+a1(s))ds(Π + θR(ξ)) dξ
)
> 0,

E(t) = e−(µ+ν)t
(
E(0) +

∫ t

0
e(µ+ν)sa1(s)S (s)ds

)
> 0,

I(t) = e−(γ+δ+µ)t
(
I(0) + ν

∫ t

0
e(γ+δ+µ)sE(s)ds

)
> 0,

R(t) = e−(θ+µ)t
(
R(0) + γ

∫ t

0
e(θ+µ)sI(s)ds

)
> 0,

S p(t) = e
∫ t

0 (−µp−a2(s))ds

(
S p(0) +

∫ t

0
e
∫ ξ

0 (µp+a2(s))ds(Πp + θpRp(ξ)) dξ
)
> 0,
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Ep(t) = e−(µp+νp)t
(
Ep(0) +

∫ t

0
e(µp+νp)sa2(s)S p(s)ds

)
> 0,

Ip(t) = e−(γp+δp+µp)t
(
Ip(0) + νp

∫ t

0
e(γp+δp+µp)sEp(s)ds

)
> 0,

Rp(t) = e−(θp+µp)t
(
Rp(0) + γp

∫ t

0
e(θp+µp)sIp(s)ds

)
> 0,

S b(t) = e
∫ t

0 (−µb−a3(s))ds

(
S b(0) +

∫ t

0
e
∫ ξ

0 (µb+a3(s))ds(Πb(t) + θbRb(ξ)) dξ
)
> 0,

Eb(t) = e−(µb+νb)t
(
Eb(0) +

∫ t

0
e(µb+νb)sa3(s)S b(s)ds

)
> 0,

Ib(t) = e−(γb+δb+µb)t
(
Ib(0) + νb

∫ t

0
e(γb+δb+µb)sEb(s)ds

)
> 0,

Rb(t) = e−(θb+µb)t
(
Rb(0) + γb

∫ t

0
e(θb+µb)sIb(s)ds

)
> 0,

where

a1(t) = βI(t) + βphIp(t) + βbh(t)Ib(t),
a2(t) = βpIp(t) + βhpI(t) + βbp(t)Ib(t),
a3(t) = βbIb(t) + βhbI(t) + βpbIp(t).

Thus X0 is a positively invariant set. Since X is positively invariant and ∂X0 is relatively closed in
X, then it is clear that ∂X0 is positively invariant. �

Lemma 8. If R0 > 1, then there exists a σ > 0 such that for any x0 ∈ X0, with ‖x0 − E∗‖ < σ we have

lim sup
m→∞

d(Pm(x0), E∗) ≥ σ.

Proof. By Theorem 3 we have ρ(ΦF−V(ω)) > 1 if R0 > 1. Then we can choose an η > 0 such that
ρ(ΦF−V−Mη

(ω)) > 1 where the matrix function Mη(t) is defined as

Mη(t) =



0 βη 0 βphη 0 βbh(t)η
0 0 0 0 0 0
0 βhpη 0 βpη 0 βbp(t)η
0 0 0 0 0 0
0 βhbη 0 βpbη 0 βbη

0 0 0 0 0 0


.

Let us use the notation φ for an initial condition of (2.1). The continuous dependence of the
solutions on initial values implies that we can find a σ = σ(η) > 0 such that for arbitrary φ ∈ X0 with
‖φ − E∗‖ ≤ σ,

‖u(t, φ) − u(t, E∗)‖ ≤ η, for 0 ≤ t ≤ ω,
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holds, moreover,

lim sup
m→∞

d(Pm(x0), E∗) ≥ σ. (4.5)

Indeed, suppose by contradiction that (4.5) is not true, then

lim sup
m→∞

d(Pm(x0), E∗) < σ,

hence, it follows from the above that

‖u(t,Pm(φ)) − u(t, E∗)‖ < η, for all m ≥ 0, t ∈ [0, ω].

For an arbitrary t ≥ 0, let us write t as t = mω + t̂, where t̂ ∈ [0, ω) and m =
[ t
ω

]
, the integer part of

t
ω

. We obtain
‖u(t, x0) − u(t, E∗)‖ = ‖u(t̂,Pm(x0)) − u(t̂, E∗)‖ < η, for all t ≥ 0.

From this, we have

S (t) ≥ S ∗ − η, S p(t) ≥ S ∗p − η, and S b(t) ≥ S ∗b(t) − η,

and hence for ‖φ − E∗‖ < σ, we get

dE
dt
≥ (βI + βphIp + βbh(t)Ib)(S ∗ − η) − νE − µE,

dI
dt

= νE − (µ + δ + γ)I,

dR
dt

= γI − (µ + θ)R,

dEp

dt
≥ (βpIp + βhpI + βbp(t)Ib)(S ∗p − η) − νpEp − µpEp,

dIp

dt
= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

dEb

dt
≥ (βbIb + βhbI + βpbIp)(S ∗b(t) − η) − νbEb − µbEb,

dIb

dt
= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb.

Introduce now the auxiliary linear system

U′(t) = (F(t) − V(t) − Mη(t))U(t), (4.6)

with U(t) = (E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t)). Now we have ρ(F(t) − V(t) − Mη(t)) > 1, while from
Lemma 5 we know that there exists a positive, ω-periodic function p1(t) such that h(t) = eξt p1(t) is a
solution of (4.6) and ξ = 1

ω
ln ρ(ΦF−V−Mη

(ω)) > 0. Let t = nω and n be a non-negative integer, we get

h(nω) = enωξp1(nω)→ (∞,∞,∞,∞,∞,∞,∞,∞,∞)T .
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For any h(0) ∈ R9
+, we can choose a real number n0 > 0 such that h(0) ≥ n0 p1(0) where

h(t) = (E(t), I(t),R(t), Ep(t), Ip(t),Rp(t), Eb(t), Ib(t),Rb(t))T .

Applying the comparison principle [38, Theorem B.1], we obtain h(t) ≥ p1(t)eξt for all t > 0, which
implies that

lim
t→∞

(E(t), I(t),R(t), Ep(t), Ip(t),Rp(t), Eb(t), Ib(t),Rb(t))T = (∞,∞,∞,∞,∞,∞,∞,∞,∞)T .

This leads to a contradiction that completes the proof. �

Theorem 9. Let R0 > 1. Then system (2.1) has at least one positive periodic solution and there exists
an ε1 > 0 such that

lim inf
t→∞

(E(t), I(t),R(t), Ep(t), Ip(t),Rp(t), Eb(t), Ib(t),Rb(t))T ≥ (ε1, ε1, ε1, ε1, ε1, ε1, ε1, ε1, ε1)T ,

for all φ ∈ X0.

Proof. First, we prove that the Poincaré map P is uniformly persistent with respect to (X0, ∂X0), from
this, applying [39, Theorem 3.1.1], it follows that the solution of (2.1) is uniformly persistent with
respect to (X0, ∂X0). From Proposition 7, we have that both X and X0 are positively invariant, and ∂X0

is relatively closed in X. Furthermore, from Lemma 1 it follows that system (2.1) is point dissipative.
Let us introduce

M∂ = {φ ∈ ∂X0 : Pm(φ) ∈ ∂X0,∀m ≥ 0}.

To apply the theory developed in [39] (see also [37, Theorem 2.3]), we first show that

M∂ = {(S , 0, 0, S p, 0, 0, S b, 0, 0) : S ≥ 0, S p ≥ 0, S b ≥ 0}. (4.7)

Let us note that M∂ ⊇ (S , 0, 0, S p, 0, 0, S b, 0, 0) : S ≥ 0, S p ≥ 0, S b ≥ 0. It is sufficient to prove that
M∂ ⊂ {(S , 0, 0, S p, 0, 0, S b, 0, 0) : S ≥ 0, S p ≥ 0, S b ≥ 0}, i.e., for arbitrary initial condition φ ∈

∂X0, E(nω) = 0 or I(nω) = 0 or R(nω) = 0 or Ep(nω) = 0 or Ip(nω) = 0 or Rp(nω) = 0 or Eb(nω) = 0
or Ib(nω) = 0 or Rb(nω) = 0 for all n ≥ 0.

Assume by contradiction the existence of an integer n1 ≥ 0 for which

(E(n1ω), I(n1ω),R(n1ω), Ep(n1ω), Ip(n1ω),Rp(n1ω), Eb(n1ω), Ib(n1ω),Rb(n1ω))
> (0, 0, 0, 0, 0, 0, 0, 0, 0).

Then, by putting t = n1ω into the place of the initial time t = 0 in Proposition 7, we get that S (t) > 0,
E(t) > 0, I(t) > 0, R(t) > 0, S p(t) > 0, Ep(t) > 0, Ip(t) > 0, Rp(t) > 0, S b(t) > 0, Eb(t) > 0, Ib(t) > 0,
and Rb(t) > 0. This is in contradiction with the positive invariance of ∂X0.

By Lemma 8, P is weakly uniformly persistent w.r.t. (X0, ∂X0). Lemma 1 guarantees the existence
of a global attractor of P. Then E∗ is an isolated invariant set in X and W s(E∗)∩ X0 = ∅. Each solution
in M∂ tends to E∗ and it is clearly acyclic in M∂.

By [39, Theorem 1.3.1 and Remark 1.3.1], we can deduce that P is uniformly (strongly) persistent
w.r.t. (X0, ∂X0). Hence, there exists an ε1 > 0 such that

lim inf
t→∞

(E(t), I(t),R(t), Ep(t), Ip(t),Rp(t), Eb(t), Ib(t),Rb(t))T ≥ (ε1, ε1, ε1, ε1, ε1, ε1, ε1, ε1, ε1)T ,
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for all φ ∈ X0.

By [39, Theorem 1.3.6], P has a fixed point φ̃ ∈ X0, and hence the system (2.1) has at least one
periodic solution u(t, φ̃) with

φ̃ = (S̃ (0), Ẽ(0), Ĩ(0), R̃(0), S̃ p(0), Ẽp(0), Ĩp(0), R̃p(0)S̃ b(0), Ẽb(0), Ĩb(0), R̃b(0)) ∈ X0.

Now, let us prove that S̃ (0), S̃ p(0) and S̃ b(0) are positive. If (S̃ (0) = 0, S̃ p(0) = 0, S̃ p(0)) = 0,
then we obtain S̃ (0) > 0, S̃ p(0) > 0 and S̃ b(0) > 0 for all t > 0. However, using the periodicity of
the solution, we have S̃ (0) = S̃ (nω) = 0, S̃ p(0) = S̃ p(nω) = 0 and S̃ b(0) = S̃ b(nω) = 0, which is a
contradiction and hence the statement of the theorem is proved. �

5. Numerical simulation

To illustrate our analytical results, we perform some numerical simulations. These simulations will
also give us suggestions regarding the changes in model parameters that might lead to a periodic yearly
recurrence of Nipah virus disease and how to avoid such a recurrence. The periodic transmission rates
are described by functions of the form

βx(t) = β̃x ·

sin(4t/365 ∗ Π) + a, 0 ≤ t ≤ 365/4 mod 365,
a, 365/4 < t < 365 mod 365,

where x ∈ {bp, bh}, β̃x is a baseline value for the transmission rate and a is a positive constant. The
form of this periodic transmission function corresponds to the increase of contacts between humans and
bats due to date palm consumption in the period between December and February, with its peak value
in January. The periodic function describing the birth rate of bats is defined in a similar way, taking
into account the breeding season of the bats. We show three examples that correspond to different
values of the basic reproduction number. To numerically approximate this value, we follow the method
described in [40]. Note that all simulations were performed using Wolfram Mathematica.

A thorough analysis employing Latin hypercube sampling in conjunction with the partial rank
correlation coefficient (PRCC) approach was done, involving 10,000 Monte Carlo simulations per
iteration. The PRCC technique has allowed us to quantify the effect of changing these factors on the
model’s feedback using a variety of parameter values. As a result, we have developed statistical
connections between the eight parameters used as input and the cumulative number of infections up
until the end of the specified time period chosen as the output parameter. It is worth mentioning that
increasing parameters with positive PRCC values causes the cumulative number of cases to increase,
whereas increasing parameters with negative PRCC values causes the cumulative case count to drop.
The results, as shown in Figure 2, highlight the variables that have the biggest effects, particularly the
rates of transmission from bats to humans (βbh), pigs to humans (βph) and bats to pigs (βbp). Our
experiment suggests that human-to-human transmission has a lesser effect than animal-to-human
transmission.
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Pig-to-human transmission rate (βph)

Bat-to-human transmission rate (βbh)

Human-to-pig transmission rate (βhp)

Human-to-bat transmission rate (βhb)

Immunity losing rate for human (θ)

Average time of infectiousness (1/γ)

Disease induced death rate for humans (δ)

Figure 2. Partial rank correlation coefficients (PRCC).

Table 2. Parameters for model (2.1) providing values for extinction and persistence (in units
of per day).

Parameter Extinction (Example 1) Extinction (Example 2) Persistence Source
Π 6.69852 6.69852 6.69852 [41]
Πp 300.3 300.3 300.3 [42]
Π̃b 0.411 0.411 0.411 Assumed
µ 0.0000379 0.0000379 0.0000379 [41]
µp 0.002747 0.002747 0.002747 [43]
µb 0.00013699 0.00013699 0.00013699 Assumed
β 2.28 × 10−9 2.0 × 10−9 2.0 × 10−9 [11]
βph 1.3 × 10−8 2.0 × 10−8 2.0 × 10−8 Assumed
β̃bh 1.0 × 10−6 1.0 × 10−6 1.04 × 10−6 Assumed
βp 6.71 × 10−8 6.71 × 10−8 1.32 × 10−6 Assumed
βhp 7.0 × 10−8 7.0 × 10−8 7.0 × 10−8 Assumed
β̃bp 1.0 × 10−7 1.0 × 10−7 1.0 × 10−5 Assumed
βb 6.71 × 10−6 6.71 × 10−6 6.71 × 10−5 [19]
βhb 7.0 × 10−10 7.0 × 10−10 7.0 × 10−10 Assumed
βpb 7.0 × 10−10 7.0 × 10−10 7.0 × 10−10 Assumed
ν 0.047 0.0476 0.0476 [44]
νp 0.066 0.066 0.066 [45]
νb 0.066 0.066 0.066 Assumed
θ 0.033 0.0333 0.0333 Assumed
θp 0.001 0.001 0.001 Assumed
θb 0.00046 0.000456 0.000456 [19]
γ 0.045 0.0177 0.0177 [46]
γp 0.049 0.049 0.0499 [45]
γb 0.0225 0.0197 0.05 Assumed
δ 0.09 0.02065 0.09 Assumed
δp 0.00232 0.000325 0.000265 [47]
δb 0.000746 0.000575 0.000501 Assumed
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In our first example, the basic reproduction number has the value R0 = 0.86, i.e., it is significantly
smaller than 1. The parameter values corresponding to this example can be found in the first column
of Table 2, while the number of infected humans, pigs and bats are plotted in Figure 3. One can see
that-just like expected based on our analytical results-the disease will die out in all three species and
the population reaches a (globally asymptotically stable) disease-free steady state.
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Figure 3. Extinction of NiV when R0 = 0.86 < 1 with parameter values in Table 2
(Example 1).

In Example 2, we consider another set of parameters with which the reproduction number is still
below 1, however, in this case, the value R0 = 0.985 is very close to the threshold value. In this case,
one can see that again the disease goes extinct in all three species, as expected from the analytical
results. The results of the numerical simulations for the three species are shown in Figure 4.
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Figure 4. Extinction of the disease for R0 = 0.985 < 1 with parameter values shown in
Table 2 (Example 2).

In our last example, shown in Figure 5, the applied parameter values (shown in the last column
of Table 2) result in a basic reproduction number R0 = 3.965 with a value larger than 1. In this
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case, we can see that the disease persists and the figures suggest that all solutions tend to an endemic
periodic solution corresponding to the annual recurrence of the disease. Comparing the parameter
values applied in our last example with those of the two previous cases, one can see that a significant
increase in all transmission rates was needed to obtain a situation where the disease remains endemic,
along with an increase in the length of the infectious period. On the other hand, the simulations suggest
that keeping the transmission rates as low as possible is sufficient to prevent huge seasonal outbreaks
of the disease.
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Figure 5. Persistence of NiV when R0 = 3.965 > 1 with parameter values in Table 2.

6. Discussion and conclusions

In this study, we developed a three-species compartmental model to characterize the spread of the
Nipah virus infection among bats, pigs, and humans, taking into account all possible directions of
transmission between the three species. To make our model more realistic, we included periodicity in
our model considering the periodic birth rate of the reservoir species bats and periodic transmission
rates due to the seasonal nature of date palm sap consumption, an important way of disease
transmission from bats to humans. We also included the loss of immunity in those who have
recovered, as according to studies conducted on bats, one of the factors contributing to outbreaks in
Pteropus bats is the gradual loss of immunity over the course of six years. The novelty of our model is
that we tried to incorporate several of the key characteristics of the disease, namely, the transmission
chain consisting of the reservoir bats, the intermediate host pigs and humans, periodic transmission,
long latent period and loss of immunity.

Using the methods established by Wang and Zhao [22] and adapting them to our special model,
we calculated the basic reproduction number (R0) and determined the existence and uniqueness of a
disease-free ω-periodic solution. We showed that this solution is globally asymptotically stable if R0 is
less than 1, while it is unstable otherwise. In the latter case, the disease becomes endemic in the three
populations, and we also proved the existence of at least one positive periodic solution. To support
the analytical findings and evaluate the impact of parameter changes on disease dynamics, we present
several numerical examples. For three values of R0, we performed numerical simulations to highlight
our analytical findings with reference to the NiV disease. When R0 < 1, the simulations in the first two
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examples supported the conclusion that the disease has been eradicated in people, pigs, and bats. This
is consistent with the mathematical expectations and points to a disease-free solution. With R0 > 1,
however, the simulations showed sustained disease transmission, as in the final example, pointing to an
endemic periodic solution that corresponds to periodic recurrence. The simulations showed that higher
transmission rates and longer infectious periods were necessary for the disease to remain endemic
when comparing the parameter values between the examples. On the other hand, simulations showed
that reducing transmission rates could successfully stop significant seasonal disease outbreaks. These
examples may assist readers in understanding how to prevent the disease from recurring on an annual
basis.

Our work certainly has its limitations. One of the more important is the lack of sufficient data as
fortunately, up to now, there have not been any very large-scale Nipah outbreaks in humans. A future
better understanding of the characteristics of this disease will contribute to more precise models that
might include some additional compartments, i.e., convalescent, infected with relapsed onset or
deceased who may contribute to disease transmission. Temperature, humidity and climatic conditions
can impact the survival and transmission of the Nipah virus, with higher temperatures and increased
rainfall that potentially increase virus dissemination and infection rates. Future research should take
these environmental aspects into account to fully comprehend the dynamics of disease. Due to the
poor understanding of many disease parameters, the numerical analysis of the model is difficult.
Future studies should concentrate on examining an extended system that takes into account other
variables and makes use of extensive and well-supported data in order to address this. To improve
comprehension, enable more precise predictions, and permit recommendations for disease control and
prevention efforts, the model’s scope should be expanded and credible data should be included.
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