Research article Special Issues

Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems

  • Received: 31 August 2023 Revised: 11 November 2023 Accepted: 14 November 2023 Published: 29 November 2023
  • MSC : 33B15, 34A34, 35A20, 35A22, 44A10

  • This paper presents a novel approach for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems by using the unification of the Adomian decomposition method and ZZ transformation. The suggested method combines the Aboodh transform and the Adomian decomposition method, both of which are trustworthy and efficient mathematical tools for solving fractional differential equations (FDEs). This method's theoretical analysis is addressed for nonlinear FDE systems. To find exact solutions to the equations, the method is applied to fractional Kersten-Krasil'shchik linked KdV-mKdV systems. The results show that the suggested method is efficient and practical for solving fractional Kersten-Krasil'shchik linked KdV-mKdV systems and that it may be applied to other nonlinear FDEs. The suggested method has the potential to provide new insights into the behavior of nonlinear waves in fluid and plasma environments, as well as the development of new mathematical tools for modeling and studying complicated wave phenomena.

    Citation: Yousef Jawarneh, Humaira Yasmin, Abdul Hamid Ganie, M. Mossa Al-Sawalha, Amjid Ali. Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems[J]. AIMS Mathematics, 2024, 9(1): 371-390. doi: 10.3934/math.2024021

    Related Papers:

  • This paper presents a novel approach for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems by using the unification of the Adomian decomposition method and ZZ transformation. The suggested method combines the Aboodh transform and the Adomian decomposition method, both of which are trustworthy and efficient mathematical tools for solving fractional differential equations (FDEs). This method's theoretical analysis is addressed for nonlinear FDE systems. To find exact solutions to the equations, the method is applied to fractional Kersten-Krasil'shchik linked KdV-mKdV systems. The results show that the suggested method is efficient and practical for solving fractional Kersten-Krasil'shchik linked KdV-mKdV systems and that it may be applied to other nonlinear FDEs. The suggested method has the potential to provide new insights into the behavior of nonlinear waves in fluid and plasma environments, as well as the development of new mathematical tools for modeling and studying complicated wave phenomena.



    加载中


    [1] Y. Shen, B. Tian, T. Y. Zhou, In nonlinear optics, fluid dynamics and plasma physics: Symbolic computation on a (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff system, Eur. Phys. J. Plus, 136 (2021), 572. https://doi.org/10.1140/epjp/s13360-021-01323-0 doi: 10.1140/epjp/s13360-021-01323-0
    [2] D. F. Escande, Contributions of plasma physics to chaos and nonlinear dynamics, Plasma Phys. Control. Fusion, 58 (2016), 113001. https://doi.org/10.1088/0741-3335/58/11/113001 doi: 10.1088/0741-3335/58/11/113001
    [3] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [4] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
    [5] J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 31 (2023), 2350033. https://doi.org/10.1142/S0218348X23500330 doi: 10.1142/S0218348X23500330
    [6] J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Soliton. Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603
    [7] S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrodinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
    [8] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [9] A. Atangana, A. Secer, The time-fractional coupled-Korteweg-de-Vries equations, Abstr. Appl. Anal., 2013 (2013), 947986. http://doi.org/10.1155/2013/947986 doi: 10.1155/2013/947986
    [10] L. Akinyemi, O. S. Iyiola, A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ., 2020 (2020), 169. https://doi.org/10.1186/s13662-020-02625-w
    [11] K. S. Albalawi, I. Alazman, J. G. Prasad, P. Goswami, Analytical solution of the local fractional KdV equation, Mathematics, 11 (2023), 882. https://doi.org/10.3390/math11040882 doi: 10.3390/math11040882
    [12] H. Li, R. Peng, Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153. https://doi.org/10.1137/18M1167863 doi: 10.1137/18M1167863
    [13] H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
    [14] H. He, J. Peng, H. Li, Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds, U.P.B. Sci. Bull. Ser. A, 84 (2022), 25–36.
    [15] H. He, J. Peng, H. Li, Implicit viscosity iterative algorithm for nonexpansive mapping on Hadamard manifolds, Fixed Point Theor., 24 (2023), 213–220. https://doi.org/10.24193/fpt-ro.2023.1.10 doi: 10.24193/fpt-ro.2023.1.10
    [16] H. X. Chen, W. Chen, X. Liu, X. H. Liu, Establishing the first hidden-charm pentaquark with strangeness, Eur. Phys. J. C, 81 (2021), 409. https://doi.org/10.1140/epjc/s10052-021-09196-4 doi: 10.1140/epjc/s10052-021-09196-4
    [17] X. Lyu, X. Wang, C. Qi, R. Sun, Characteristics of cavity dynamics, forces, and trajectories on vertical water entries with two spheres side-by-side. Phys. Fluids, 35 (2023), 92101. https://doi.org/10.1063/5.0166794
    [18] S. Alyobi, R. Shah, A. Khan, N. A. Shah, K. Nonlaopon, Fractional analysis of nonlinear boussinesq equation under Atangana-Baleanu-Caputo operator, Symmetry, 14 (2022), 2417. https://doi.org/10.3390/sym14112417 doi: 10.3390/sym14112417
    [19] Z. Li, P. Li, T. Han, White noise functional solutions for wick-type stochastic fractional mixed KdV-mKdV equation using extended G'/G-expansion method, Adv. Math. Phys., 2021 (2021), 9729905. https://doi.org/10.1155/2021/9729905 doi: 10.1155/2021/9729905
    [20] A. Jamal, A. Ullah, S. Ahmad, S. Sarwar, A. Shokri, A survey of (2+1)-dimensional KdV-mKdV equation using nonlocal Caputo fractal-fractional operator, Results Phys., 46 (2023), 106294. https://doi.org/10.1016/j.rinp.2023.106294 doi: 10.1016/j.rinp.2023.106294
    [21] M. A. Noor, S. T. Mohyud-Din, Homotopy perturbation method for solving nonlinear higher-order boundary value problems, Int. J. Nonlin. Sci. Numer. Simulat., 9 (2008), 395–408. https://doi.org/10.1515/IJNSNS.2008.9.4.395 doi: 10.1515/IJNSNS.2008.9.4.395
    [22] S. Momani, An explicit and numerical solutions of the fractional KdV equation. Math Comput. Simulat., 70 (2005), 110–118. https://doi.org/10.1016/j.matcom.2005.05.001
    [23] D. J. Zhang, S. L. Zhao, Y. Y. Sun, J. Zhou, Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014), 1430006. https://doi.org/10.1142/S0129055X14300064 doi: 10.1142/S0129055X14300064
    [24] H. N. A. Ismail, K. R. Raslan, G. S. E. Salem, Solitary wave solutions for the general KDV equation by Adomian decomposition method, Appl. Math. Comput., 154 (2004), 17–29. https://doi.org/10.1016/S0096-3003(03)00686-6 doi: 10.1016/S0096-3003(03)00686-6
    [25] T. Geyikli, D. Kaya, An application for a modified KdV equation by the decomposition method and finite element method, Appl. Math. Comput., 169 (2005), 971–981. https://doi.org/10.1016/j.amc.2004.11.017 doi: 10.1016/j.amc.2004.11.017
    [26] R. Yang, Y. Kai, Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled Schrodinger equation in fiber Bragg gratings, Mod. Phys. Lett. B, 2023. https://doi.org/10.1142/S0217984923502391
    [27] D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869
    [28] C. Luo, L. Wang, Y. Xie, B. Chen, A new conjugate gradient method for moving force identification of vehicle-bridge system. J. Vib. Eng. Technol., 2022. https://doi.org/10.1007/s42417-022-00824-1
    [29] B. Chen, J. Hu, Y. Zhao, B. K. Ghosh, Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach, Neurocomputing, 481 (2022), 322–332. https://doi.org/10.1016/j.neucom.2022.01.038 doi: 10.1016/j.neucom.2022.01.038
    [30] Q. Gu, S. Li, Z. Liao, Solving nonlinear equation systems based on evolutionary multitasking with neighborhood-based speciation differential evolution, Expert Syst. Appl., 238 (2024), 122025. https://doi.org/10.1016/j.eswa.2023.122025 doi: 10.1016/j.eswa.2023.122025
    [31] A. M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102 (1999), 77–86. https://doi.org/10.1016/S0096-3003(98)10024-3 doi: 10.1016/S0096-3003(98)10024-3
    [32] J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Frac. Calc., 3 (2012), 73–99.
    [33] K. S. Aboodh, Application of new transform "Aboodh Transform" to partial differential equations, Glob. J. Pure Appl. Math., 10 (2014), 249–254.
    [34] K. S. Aboodh, Solving fourth order parabolic PDE with variable coefficients using Aboodh transform homotopy perturbation method, Pure Appl. Math. J., 4 (2015), 219–224. https://doi.org/10.11648/j.pamj.20150405.13 doi: 10.11648/j.pamj.20150405.13
    [35] R. M. Jena, S. Chakraverty, D. Baleanu, M. M. Alqurashi, New aspects of ZZ transform to fractional operators with Mittag-Leffler Kernel, Front. Phys., 8 (2020), 352.
    [36] L. Riabi, K. Belghaba, M. Hamdi Cherif, D. Ziane, Homotopy perturbation method combined with ZZ transform to solve some nonlinear fractional differential equations, Int. J. Anal. Appl., 17 (2019), 406–419.
    [37] Z. U. A. Zafar, Application of ZZ transform method on some fractional differential equations, Int. J. Adv. Eng. Glob. Technol, 4 (2016), 1355–1363.
    [38] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2015, arXiv: 1602.03408v1.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1419) PDF downloads(72) Cited by(5)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog