Research article

A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation

  • Received: 26 June 2020 Accepted: 06 September 2020 Published: 21 September 2020
  • MSC : 26A33, 34A08, 35R11

  • In this study, it is the first time that conformable Laplace decomposition method (CLDM) is applied to fractional Newell-Whitehead-Segel (NWS) equation which is one of the most significant amplitude equations in physics. The method consists of the unification of conformable Laplace transform and Adomian decomposition method (ADM) and it is used for finding approximate analytical solutions of linear-nonlinear fractional PDE's. The results show that this CLDM is quite powerful in solving fractional PDE's.

    Citation: Muammer Ayata, Ozan Özkan. A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation[J]. AIMS Mathematics, 2020, 5(6): 7402-7412. doi: 10.3934/math.2020474

    Related Papers:

  • In this study, it is the first time that conformable Laplace decomposition method (CLDM) is applied to fractional Newell-Whitehead-Segel (NWS) equation which is one of the most significant amplitude equations in physics. The method consists of the unification of conformable Laplace transform and Adomian decomposition method (ADM) and it is used for finding approximate analytical solutions of linear-nonlinear fractional PDE's. The results show that this CLDM is quite powerful in solving fractional PDE's.


    加载中


    [1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
    [3] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer Science & Business Media, 2011.
    [4] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898.
    [5] S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 182 (2006), 1083-1092.
    [6] A. Kurt, H. Rezazadeh, M. Senol, et al. Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves, Journal of Ocean Engineering and Science, 4 (2019), 24-32.
    [7] R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
    [8] A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, 2015.
    [9] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
    [10] A. Korkmaz, Exact solutions to (3+1) conformable time fractional Jimbo-Miwa, ZakharovKuznetsov and modified Zakharov-Kuznetsov equations, Commun. Theor. Phys., 67 (2017), 479-482.
    [11] O. Özkan, A. Kurt, On conformable double Laplace transform, Opt. Quant. Electron., 50 (2018), 1-9.
    [12] O. Özkan, A. Kurt, The analytical solutions for conformable integral equations and integrodifferential equations by conformable Laplace transform, Opt. Quant. Electron., 50 (2018), 1-8.
    [13] A. Prakash, M. Goyal, S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Engineering, 8 (2019), 164-171.
    [14] H. K. Jassim, Homotopy perturbation algorithm using Laplace transform for Newell-WhiteheadSegel equation, Int. J. Adv. Appl. Math. Mech., 2 (2015), 8-12.
    [15] R. Ezzati, K. Shakibi, Using adomian's decomposition and multiquadric quasi-interpolation methods for solving Newell-Whitehead equation, Procedia Computer Science, 3 (2011), 1043-1048.
    [16] A. Aasaraai, Analytic solution for Newell-Whitehead-Segel Equation by differential transform method, Middle East J. Sci. Res., 10 (2011), 270-273.
    [17] B. A. Tayyan, A. H. Sakka, Lie symmetry analysis of some conformable fractional partial differential equations, Arabian Journal of Mathematics, 9 (2020), 201-212.
    [18] A. Kurt, O. Tasbozan, D. Baleanu, New solutions for conformable fractional Nizhnik-NovikovVeselov system via G'/G expansion method and homotopy analysis methods, Opt. Quant. Electron., 49 (2017), 1-16.
    [19] M. T. Islam, M. A. Akbar, M. A. K. Azad, Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative, AIMS Mathematics, 3 (2018), 625-646.
    [20] M. Eslami, H. Rezazadeh, The first integral method for WuZhang system with conformable timefractional derivative, Calcolo, 53 (2016), 475-485.
    [21] M. A. Hammad, R. Khalil, Abel's formula and wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications, 13 (2014), 177-183.
    [22] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917.
    [23] Y. Qi, X. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44-49.
    [24] F. Z. Ladrani, A. B. Cherif, Oscillation tests for conformable fractional differential equations with damping, Punjab University Journal of Mathematics, 52 (2020), 73-82.
    [25] A. Khan, T. S. Khan, M. I. Syam, et al. Analytical solutions of time-fractional wave equation by double Laplace transform method, Eur. Phys. J. Plus, 134 (2019), 1-5.
    [26] S. Alfaqeih, I. Kayijuka, Solving system of conformable fractional differential equations by conformable double Laplace decomposition method, J. Part. Diff. Eq., 33 (2020), 275-290.
    [27] H. Eltayeb, S. Mesloub, A note on conformable double Laplace transform and singular conformable pseudoparabolic equations, J. Funct. Space., 2020 (2020), 1-12.
    [28] S. Nourazar, M. Ramezanpour, A. Doosthoseini, A new algorithm to solve the gas dynamics equation: An application of the Fourier transform Adomian decomposition method, Applied Mathematical Sciences, 7 (2013), 4281-4286.
    [29] S. G. Hosseini, S. Abbasbandy, Solution of Lane-Emden type equations by combination of the spectral method and Adomian decomposition method, Math. Probl. Eng., 2015 (2015), 1-10.
    [30] M. Keyanpour, A. Mahmoudi, A hybrid method for solving optimal control problems, International Journal of Applied Mathematics, 42 (2012), 80-86.
    [31] F. Geng, M. Cui, A novel method for nonlinear two-point boundary value problems: combination of ADM and RKM, Appl. Math. Comput., 217 (2011), 4676-4681.
    [32] R. Rach, A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl., 102 (1984), 415-419.
    [33] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Math. Comput. Model., 13 (1990), 17-43.
    [34] Y. Cherruault, G. Saccomandi, B. Some, New results for convergence of Adomian's method applied to integral equations, Math. Comput. Model., 16 (1992), 85-93.
    [35] O. González-Gaxiola, R. Bernal-Jaquez, Applying Adomian decomposition method to solve Burgers equation with a non-linear source, International Journal of Applied and Computational Mathematics, 3 (2017), 213-224.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3761) PDF downloads(291) Cited by(20)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog