Research article

Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions


  • Received: 08 February 2023 Revised: 07 March 2023 Accepted: 08 March 2023 Published: 23 March 2023
  • This paper regards the dual effects of discrete-space and discrete-time in stochastic genetic regulatory networks via exponential Euler difference and central finite difference. Firstly, the global exponential stability of such discrete networks is investigated by using discrete constant variation formulation. In particular, the optimal exponential convergence rate is explored by solving a nonlinear optimization problem under nonlinear constraints, and an implementable computer algorithm for computing the optimal exponential convergence rate is given. Secondly, random periodic sequence for such discrete networks is investigated based on the theory of semi-flow and metric dynamical systems. The researching findings show that the spatial diffusions with nonnegative intensive coefficients have no influence on global mean square boundedness and stability, random periodicity of the networks. This paper is pioneering in considering discrete spatial diffusions, which provides a research basis for future research on genetic regulatory networks.

    Citation: Bin Wang. Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions[J]. Electronic Research Archive, 2023, 31(6): 3097-3122. doi: 10.3934/era.2023157

    Related Papers:

  • This paper regards the dual effects of discrete-space and discrete-time in stochastic genetic regulatory networks via exponential Euler difference and central finite difference. Firstly, the global exponential stability of such discrete networks is investigated by using discrete constant variation formulation. In particular, the optimal exponential convergence rate is explored by solving a nonlinear optimization problem under nonlinear constraints, and an implementable computer algorithm for computing the optimal exponential convergence rate is given. Secondly, random periodic sequence for such discrete networks is investigated based on the theory of semi-flow and metric dynamical systems. The researching findings show that the spatial diffusions with nonnegative intensive coefficients have no influence on global mean square boundedness and stability, random periodicity of the networks. This paper is pioneering in considering discrete spatial diffusions, which provides a research basis for future research on genetic regulatory networks.



    加载中


    [1] M. Pasquini, D. Angeli, On convergence for hybrid models of gene regulatory networks under polytopic uncertainties: a Lyapunov approach, J. Math. Biol., 83 (2021), 64. https://doi.org/10.1007/s00285-021-01690-3 doi: 10.1007/s00285-021-01690-3
    [2] N. Augier, A. G. Yabo, Time-optimal control of piecewise affine bistable gene-regulatory networks, Int. J. Robust Nonlinear Control, (2022), 1–22. https://doi.org/10.1002/rnc.6012 doi: 10.1002/rnc.6012
    [3] E. Kim, I. Ivanov, E. R. Dougherty, Network classification based on reducibility with respect to the stability of canalizing power of genes in a gene regulatory network-a Boolean network modeling perspective, IEEE Trans. Comput. Biol. Bioinf., 19 (2022), 558–568. https://doi.org/10.1109/TCBB.2020.3005313 doi: 10.1109/TCBB.2020.3005313
    [4] T. Hillerton, D. Secilmi, S. Nelander, E. L. L. Sonnhammer, A. Valencia, Fast and accurate gene regulatory network inference by normalized least squares regression, Bioinformatics, 38 (2022), 2263–2268. https://doi.org/10.1093/bioinformatics/btac103 doi: 10.1093/bioinformatics/btac103
    [5] I. Stamova, G. Stamov, Lyapunov approach for almost periodicity in impulsive gene regulatory networks of fractional order with time-varying delays, Fractal Fract., 5 (2021), 268. https://doi.org/10.3390/fractalfract5040268 doi: 10.3390/fractalfract5040268
    [6] N. Padmaja, P. Balasubramaniam, Mixed $H$-infinity/passivity based stability analysis of fractional-order gene regulatory networks with variable delays, Math. Comput. Simulat., 192 (2022), 167–181. https://doi.org/10.1016/j.matcom.2021.08.023 doi: 10.1016/j.matcom.2021.08.023
    [7] T. Stamov, I. Stamova, Design of impulsive controllers and impulsive control strategy for the Mittag-Leffler stability behavior of fractional gene regulatory networks, Neurocomputing, 424 (2021), 54–62. https://doi.org/10.1016/j.neucom.2020.10.112 doi: 10.1016/j.neucom.2020.10.112
    [8] Y. H. Qiao, H. Y. Yan, L. J. Duan, J. Miao, Finite-time synchronization of fractional-order gene regulatory networks with time delay, Neural Networks, 126 (2020), 1–10. https://doi.org/10.1016/j.neunet.2020.02.004 doi: 10.1016/j.neunet.2020.02.004
    [9] C. Aouiti, F. Dridi, Study of genetic regulatory networks with Stepanov-like pseudo-weighted almost automorphic coefficients, Neural Comput. Appl., 33 (2021), 10175–10187. https://doi.org/10.1007/s00521-021-05780-7 doi: 10.1007/s00521-021-05780-7
    [10] L. Duan, F. J. Di, Z. Y. Wang, Existence and global exponential stability of almost periodic solutions of genetic regulatory networks with time-varying delays, J. Exp. Theor. Artif. Intell., 32 (2019), 453–463. https://doi.org/10.1080/0952813X.2019.1652357 doi: 10.1080/0952813X.2019.1652357
    [11] Y. Wang, Z. Ma, J. Shen, Z. Liu, L. Chen, Periodic oscillation in delayed gene networks with SUM regulatory logic and small perturbations, Math. Biosci., 220 (2009), 34–44. https://doi.org/10.1016/j.mbs.2009.03.010 doi: 10.1016/j.mbs.2009.03.010
    [12] C. R. Feng, H. Z. Zhao, B. Zhou, Pathwise random periodic solutions of stochastic differential equations, J. Differ. Equations, 251 (2011), 119–149. https://doi.org/10.1016/j.jde.2011.03.019 doi: 10.1016/j.jde.2011.03.019
    [13] C. R. Feng, B. Y. Qu, H. Z. Zhao, Random quasi-periodic paths and quasi-periodic measures of stochastic differential equations, J. Differ. Equations, 286 (2021), 119–163. https://doi.org/10.1016/j.jde.2021.03.022 doi: 10.1016/j.jde.2021.03.022
    [14] C. R. Feng, Y. Liu, H. Z. Zhao, Numerical approximation of random periodic solutions of stochastic differential equations, Z. Angew. Math. Phys., 68 (2017), 119. https://doi.org/10.1007/s00033-017-0868-7 doi: 10.1007/s00033-017-0868-7
    [15] K. Uda, Random periodic solutions for a class of hybrid stochastic differential equations, Stochastics, 95 (2023), 211–234. https://doi.org/10.1080/17442508.2022.2070019 doi: 10.1080/17442508.2022.2070019
    [16] A. Coulier, S. Hellander, A. Hellander, A multiscale compartment-based model of stochastic gene regulatory networks using hitting-time analysis, J. Chem. Phys., 154 (2021), 184105. https://doi.org/10.1063/5.0010764 doi: 10.1063/5.0010764
    [17] G. X. Xu, H. B. Bao, J. D. Cao, Mean-square exponential input-to-state stability of stochastic gene regulatory networks with multiple time delays, Neural Process. Lett., 51 (2020), 271–286. https://doi.org/10.1007/s11063-019-10087-9 doi: 10.1007/s11063-019-10087-9
    [18] S. Busenberg, J. Mahaffy, Interaction of spatial diffusion and delays in models of genetic control by repression, J. Math. Biol., 22 (1985), 313–333. https://doi.org/10.1007/BF00276489 doi: 10.1007/BF00276489
    [19] Y. Xie, L. Xiao, M. F. Ge, L. Wang, G. Wang, New results on global exponential stability of genetic regulatory networks with diffusion effect and time-varying hybrid delays, Neural Process. Lett., 53 (2021), 3947–3963. https://doi.org/10.1007/s11063-021-10573-z doi: 10.1007/s11063-021-10573-z
    [20] L. Sun, J. Wang, X. Chen, K. Shi, H. Shen, $H_\infty$ fuzzy state estimation for delayed genetic regulatory networks with random gain fluctuations and reaction-diffusion, J. Franklin I., 358 (2021), 8694–8714. https://doi.org/10.1016/j.jfranklin.2021.08.047 doi: 10.1016/j.jfranklin.2021.08.047
    [21] X. N. Song, M. Wang, S. Song, C. K. Ahn, Sampled-data state estimation of reaction diffusion genetic regulatory networks via space-dividing approaches, IEEE Trans. Comput. Biol. Bioinf., 18 (2021), 718–730. https://doi.org/10.1109/TCBB.2019.2919532 doi: 10.1109/TCBB.2019.2919532
    [22] C. Y. Zou, X. Y. Wang, Robust stability of delayed Markovian switching genetic regulatory networks with reaction–diffusion terms, Comput. Math. Appl., 79 (2020), 1150–1164. https://doi.org/10.1016/j.camwa.2019.08.024 doi: 10.1016/j.camwa.2019.08.024
    [23] X. Zhang, Y. Han, L. G. Wu, Y. Wang, State estimation for delayed genetic regulatory networks with reaction-diffusion terms, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 299–309. https://doi.org/10.1109/TNNLS.2016.2618899 doi: 10.1109/TNNLS.2016.2618899
    [24] Y. Xue, C. Y. Liu, X. Zhang, State bounding description and reachable set estimation for discrete-time genetic regulatory networks with time-varying delays and bounded disturbances, IEEE Trans. Syst., Man, Cybern.: Syst., 52 (2022), 6652–6661. https://doi.org/10.1109/TSMC.2022.3148715 doi: 10.1109/TSMC.2022.3148715
    [25] S. Pandiselvi, R. Raja, Q. Zhu, G. Rajchakit, A state estimation $H_\infty$ issue for discrete-time stochastic impulsive genetic regulatory networks in the presence of leakage, multiple delays and Markovian jumping parameters, J. Franklin I., 355 (2018), 2735–2761. https://doi.org/10.1016/j.jfranklin.2017.12.036 doi: 10.1016/j.jfranklin.2017.12.036
    [26] C. Y. Liu, X. Wang, Y. Xue, Global exponential stability analysis of discrete-time genetic regulatory networks with time-varying discrete delays and unbounded distributed delays, Neurocomputing, 372 (2020), 100–108. https://doi.org/10.1016/j.neucom.2019.09.047 doi: 10.1016/j.neucom.2019.09.047
    [27] D. Yue, Z. H. Guan, J. Chen, G. Ling, Y. Wu, Bifurcations and chaos of a discrete-time model in genetic regulatory networks, Nonlinear Dyn., 87 (2017), 567–586. https://doi.org/10.1007/s11071-016-3061-1 doi: 10.1007/s11071-016-3061-1
    [28] T. W. Zhang, Y. K. Li, Global exponential stability of discrete-time almost automorphic Caputo–Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl.-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [29] Z. K. Huang, S. Mohamad, F. Gao, Multi-almost periodicity in semi-discretizations of a general class of neural networks, Math. Comput. Simulat., 101 (2014), 43–60. https://doi.org/10.1016/j.matcom.2013.05.017 doi: 10.1016/j.matcom.2013.05.017
    [30] T. W. Zhang, S. F. Han, J. W. Zhou, Dynamic behaviours for semi-discrete stochastic Cohen-Grossberg neural networks with time delays, J. Franklin I., 357 (2020), 13006–13040. https://doi.org/10.1016/j.jfranklin.2020.09.006 doi: 10.1016/j.jfranklin.2020.09.006
    [31] T. W. Zhang, Z. H. Li, J. W. Zhou, $2p$-th mean dynamic behaviors for semi-discrete stochastic competitive neural networks with time delays, AIMS Math., 5 (2020), 6419–6435. https://doi.org/10.3934/math.2020413 doi: 10.3934/math.2020413
    [32] P. Hu, C. M. Huang, Delay dependent asymptotic mean square stability analysis of the stochastic exponential Euler method, J. Comput. Appl. Math., 382 (2021), 113068. https://doi.org/10.1016/j.cam.2020.113068 doi: 10.1016/j.cam.2020.113068
    [33] T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [34] H. Bessaih, M. J. Garrido-Atienza, V. Köpp, B. Schmalfuß, M. Yang, Synchronization of stochastic lattice equations, Nonlinear Differ. Equations Appl., 27 (2020), 36. https://doi.org/10.1007/s00030-020-00640-0 doi: 10.1007/s00030-020-00640-0
    [35] X. Y. Han, P. E. Kloeden, Sigmoidal approximations of Heaviside functions in neural lattice models, J. Differ. Equations, 268 (2020), 5283–5300. https://doi.org/10.1016/j.jde.2019.11.010 doi: 10.1016/j.jde.2019.11.010
    [36] X. Y. Han, P. E. Kloden, B. Usman, Upper semi-continuous convergence of attractors for a Hopfield-type lattice model, Nonlinearity, 33 (2020), 1881–1906. https://doi.org/10.1088/1361-6544/ab6813 doi: 10.1088/1361-6544/ab6813
    [37] J. C. Kuang, Applied Inequalities, Shandong Science and Technology Press, Shandong, 2012.
    [38] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
    [39] T. W. Zhang, J. W. Zhou, Y. Z. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives, IEEE T. Cybern., 52 (2022), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946
    [40] T. W. Zhang, L. L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [41] C. Aouiti, H. Jallouli, State feedback controllers based finite-time and fixed-time stabilisation of high order BAM with reaction-diffusion term, Int. J. Syst. Sci., 52 (2021), 905–927. https://doi.org/10.1080/00207721.2020.1849861 doi: 10.1080/00207721.2020.1849861
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1202) PDF downloads(84) Cited by(1)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog