Research article Special Issues

Existence and multiplicity of positive solutions for one-dimensional $ p $-Laplacian problem with sign-changing weight


  • Received: 15 January 2023 Revised: 15 February 2023 Accepted: 15 March 2023 Published: 23 March 2023
  • In this paper, we show the positive solutions set for one-dimensional $ p $-Laplacian problem with sign-changing weight contains a reversed $ S $-shaped continuum. By figuring the shape of unbounded continuum of positive solutions, we identify the interval of bifurcation parameter in which the $ p $-Laplacian problem has one or two or three positive solutions according to the asymptotic behavior of nonlinear term at 0 and $ \infty $. The proof of the main result is based upon bifurcation technique.

    Citation: Liangying Miao, Man Xu, Zhiqian He. Existence and multiplicity of positive solutions for one-dimensional $ p $-Laplacian problem with sign-changing weight[J]. Electronic Research Archive, 2023, 31(6): 3086-3096. doi: 10.3934/era.2023156

    Related Papers:

  • In this paper, we show the positive solutions set for one-dimensional $ p $-Laplacian problem with sign-changing weight contains a reversed $ S $-shaped continuum. By figuring the shape of unbounded continuum of positive solutions, we identify the interval of bifurcation parameter in which the $ p $-Laplacian problem has one or two or three positive solutions according to the asymptotic behavior of nonlinear term at 0 and $ \infty $. The proof of the main result is based upon bifurcation technique.



    加载中


    [1] M. del Pino, M. Elgueta, R. Manásevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t, u) = 0, u(0) = u(T) = 0, p>1$, J. Differ. Equations, 80 (1989), 1–13. https://doi.org/10.1016/0022-0396(89)90093-4 doi: 10.1016/0022-0396(89)90093-4
    [2] Y. H. Lee, I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian, J. Differ. Equations, 229 (2006), 229–256. https://doi.org/10.1016/j.jde.2006.03.021 doi: 10.1016/j.jde.2006.03.021
    [3] Y. H. Lee, S. U. Kim, E. K. Lee, Three solutions theorem for $p$-Laplacian problems with a singular weight and its application, Abstr. Appl. Anal., 2014 (2014), 1–9. https://doi.org/10.1155/2014/502756 doi: 10.1155/2014/502756
    [4] G. Dai, R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian, J. Differ. Equations, 252 (2012), 2448–2468. https://doi.org/10.1016/j.jde.2011.09.026 doi: 10.1016/j.jde.2011.09.026
    [5] G. Dai, Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros, Discrete Contin. Dyn. Syst., 36 (2016), 5323–5345. https://doi.org/10.1016/j.jde.2004.10.005 doi: 10.1016/j.jde.2004.10.005
    [6] M. del Pino, R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Laplacian, J. Differ. Equations, 92 (1991), 226–251. https://doi.org/10.1016/0022-0396(91)90048-E doi: 10.1016/0022-0396(91)90048-E
    [7] F. Ye, X. Han, Global bifurcation for $N$-dimensional $p$-Laplacian problem and its applications, Complex Var. Elliptic Equations, 67 (2022), 3074–3091. https://doi.org/10.1080/17476933.2021.1984437 doi: 10.1080/17476933.2021.1984437
    [8] P. Drábek, Y. Huang, Bifurcation problems for the $p$-Laplacian in $\mathbb{R}^N$, Trans. Am. Math. Soc., 349 (1997), 171–188. https://doi.org/10.1090/S0002-9947-97-01788-1 doi: 10.1090/S0002-9947-97-01788-1
    [9] R. Ma, X. Liu, J. Xu, Nodal solutions of the $p$-Laplacian with sign-changing weight, Abstr. Appl. Anal., 2013 (2015), 8. https://doi.org/10.1155/2013/406350 doi: 10.1155/2013/406350
    [10] G. Dai, X. Han, R. Ma, Unilateral global bifurcation and nodal solutions for the $p$-Laplacian with sign-changing weight, Complex Var. Elliptic Equations, 59 (2014), 847–862. https://doi.org/10.1080/17476933.2013.791686 doi: 10.1080/17476933.2013.791686
    [11] I. Sim, S. Tanaka, Three positive solutions for one-dimensional $p$-Laplacian problem with sign-changing weight, Appl. Math. Lett., 49 (2015), 42–50. https://doi.org/10.1016/j.aml.2015.04.007 doi: 10.1016/j.aml.2015.04.007
    [12] T. Chen, R. Ma, Three positive solutions of $N$-dimensional $p$-Laplacian with indefinite weight, (2019), 1–14. https://doi.org/10.14232/EJQTDE.2019.1.19
    [13] T. Kusano, M. Naito, Sturm-Liouville eigenvalue problems from half-linear ordinary differential equations, Rocky Mt. J. Math., 31 (2001), 1039–1054. https://doi.org/10.1216/rmjm/1020171678 doi: 10.1216/rmjm/1020171678
    [14] J. L. Díaz, Non-Lipschitz heterogeneous reaction with a $p$-Laplacian operator, AIMS Math., 7 (2022), 3395–3417. https://doi.org/10.3934/math.2022189 doi: 10.3934/math.2022189
    [15] Y. Yang, Q. Wang, Multiple positive solutions for one-dimensional third order $p$-Laplacian equations with integral boundary conditions, Acta Math. Appl. Sin. Engl. Ser., 38 (2022), https://doi.org/10.1007/s10255-022-1065-9 doi: 10.1007/s10255-022-1065-9
    [16] Y. Ning, D. Lu, A. Mao, Existence and subharmonicity of solutions for nonsmooth $p$-Laplacian systems, AIMS Math., 6 (2021), 10947–10963. https://doi.org/10.3934/math.2021636 doi: 10.3934/math.2021636
    [17] F. Zeng, P. Shi, M. Jiang, Global existence and finite time blow-up for a class of fractional $p$-Laplacian Kirchhoff type equations with logarithmic nonlinearity, AIMS Math., 6 (2021), 2559–2578. https://doi.org/10.3934/math.2021155 doi: 10.3934/math.2021155
    [18] V. A. Galaktionov, Three types of self-similar blow-up for the fourth-order $p$-Laplacian equation with source, J. Comput. Appl. Math., 223 (2009), 326–355. https://doi.org/10.1016/j.cam.2008.01.027 doi: 10.1016/j.cam.2008.01.027
    [19] J. D. Palencia, A. Otero, Oscillatory solutions and smoothing of a higher-order $p$-Laplacian operator, Electron. Res. Arch., 30 (2022), 3527–3547. https://doi.org/10.3934/era.2022180 doi: 10.3934/era.2022180
    [20] S. Rahman, J. D. Palencia, Regularity and analysis of solutions for a MHD flow with a $p$-Laplacian operator and a generalized Darcy-Forchheimer term, Eur. Phys. J. Plus, 137 (2022), 1–16. https://doi.org/10.1140/epjp/s13360-022-03555-0 doi: 10.1140/epjp/s13360-022-03555-0
    [21] R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009), 4364–4376. https://doi.org/10.1016/j.na.2009.02.113 doi: 10.1016/j.na.2009.02.113
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1092) PDF downloads(111) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog