Research article Special Issues

Non-singular solutions of $ p $-Laplace problems, allowing multiple changes of sign in the nonlinearity

  • Received: 20 September 2021 Revised: 30 November 2021 Accepted: 30 November 2021 Published: 18 March 2022
  • For the $ p $-Laplace Dirichlet problem (where $ \varphi (t) = t|t|^{p-2} $, $ p > 1 $)

    $ \varphi(u'(x))'+ f(u(x)) = 0 \; \; \; \; {\rm{for}}\; -1<x<1 , \; \; u(-1) = u(1) = 0 $

    assume that $ f'(u) > (p-1)\frac{f(u)}{u} > 0 $ for $ u > \gamma > 0 $, while $ \int _u^{\gamma} f(t) \, dt < 0 $ for all $ u \in (0, \gamma) $. Then any positive solution, with $ \max _{(-1, 1)} u(x) = u(0) > \gamma $, is non-singular, no matter how many times $ f(u) $ changes sign on $ (0, \gamma) $. The uniqueness of solution follows.

    Citation: Philip Korman. Non-singular solutions of $ p $-Laplace problems, allowing multiple changes of sign in the nonlinearity[J]. Electronic Research Archive, 2022, 30(4): 1414-1418. doi: 10.3934/era.2022073

    Related Papers:

  • For the $ p $-Laplace Dirichlet problem (where $ \varphi (t) = t|t|^{p-2} $, $ p > 1 $)

    $ \varphi(u'(x))'+ f(u(x)) = 0 \; \; \; \; {\rm{for}}\; -1<x<1 , \; \; u(-1) = u(1) = 0 $

    assume that $ f'(u) > (p-1)\frac{f(u)}{u} > 0 $ for $ u > \gamma > 0 $, while $ \int _u^{\gamma} f(t) \, dt < 0 $ for all $ u \in (0, \gamma) $. Then any positive solution, with $ \max _{(-1, 1)} u(x) = u(0) > \gamma $, is non-singular, no matter how many times $ f(u) $ changes sign on $ (0, \gamma) $. The uniqueness of solution follows.



    加载中


    [1] A. Aftalion, F. Pacella, Uniqueness and nondegeneracy for some nonlinear elliptic problems in a ball, J. Differ. Equ., 195 (2003), 389–397. https://doi.org/10.1016/S0022-0396(02)00194-8 doi: 10.1016/S0022-0396(02)00194-8
    [2] Y. An, C.-G. Kim, J. Shi, Exact multiplicity of positive solutions for a $p$-Laplacian equation with positive convex nonlinearity, J. Differ. Equ., 260 (2016), 2091–2118. https://doi.org/10.1016/j.jde.2015.09.058 doi: 10.1016/j.jde.2015.09.058
    [3] J. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian, J. Math. Anal. Appl., 311 (2005), 381–388. https://doi.org/10.1016/j.jmaa.2005.02.057 doi: 10.1016/j.jmaa.2005.02.057
    [4] P. C. Huang, S. H. Wang, T. S. Yeh, Classification of bifurcation diagrams of a p-Laplacian nonpositone problem, Commun. Pure Appl. Anal., 12 (2013), 2297–2318. https://doi.org/10.3934/cpaa.2013.12.2297 doi: 10.3934/cpaa.2013.12.2297
    [5] P. Korman, Existence and uniqueness of solutions for a class of $p$-Laplace equations on a ball, Adv. Nonlinear Stud., 11 (2011), 875–888. https://doi.org/10.1515/ans-2011-0406 doi: 10.1515/ans-2011-0406
    [6] P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific, Hackensack, NJ, 2012. https://doi.org/10.1142/8308
    [7] P. Korman, Non-singular solutions of two-point problems, with multiple changes of sign in the nonlinearity, Proc. Amer. Math. Soc., 144 (2016), 2539–2546. https://doi.org/10.1090/proc/12905 doi: 10.1090/proc/12905
    [8] P. Korman, D. S. Schmidt, Continuation of global solution curves using global parameters, arXiv preprint, (2020), arXiv: 2001.00616.
    [9] B. P. Rynne, A global curve of stable, positive solutions for a $p$-Laplacian problem, Electron. J. Differ. Equ., 58 (2010), 1–12.
    [10] R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, no. 1458, Springer-Verlag, 1990. https://doi.org/10.1007/BFb0098346
    [11] M. Tang, Uniqueness of positive radial solutions for $\Delta u-u+u^p = 0$ on an annulus, J. Differ. Equ., 189 (2003), 148–160. https://doi.org/10.1016/S0022-0396(02)00142-0 doi: 10.1016/S0022-0396(02)00142-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1237) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog