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Abstract: In this paper, we show the positive solutions set for one-dimensional p-Laplacian prob-
lem with sign-changing weight contains a reversed S -shaped continuum. By figuring the shape of
unbounded continuum of positive solutions, we identify the interval of bifurcation parameter in which
the p-Laplacian problem has one or two or three positive solutions according to the asymptotic behav-
ior of nonlinear term at 0 and∞. The proof of the main result is based upon bifurcation technique.
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1. Introduction

Consider the following one-dimensional p-Laplacian problem
(
φp(u′)

)′
+ λm(x) f (u) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where φp(s) := |s|p−2s, p > 1, λ > 0 is a parameter, f ∈ C(R,R) with s f (s) > 0 for s , 0 and
m ∈ C[0, 1] changes sign.

Notice that (1.1) is the one-dimensional version of the Dirichlet problem associated with the p-
Laplacian equation div

(
φp(∇u)

)
+ λm(x) f (u) = 0, in Ω,

u = 0, on ∂Ω,
(1.2)

where λ > 0 is a parameter, m ∈ C(Ω̄), f ∈ C(R,R), Ω is a bounded domain in RN ,N ≥ 1.
Recently, the p-Laplacian problems with sign-definite weight have been studied by many authors.

For example, Del Pino et al. [1] established the global bifurcation theorem for problem (1.1) in the
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case m ≡ 1. When m(x) ≥ 0 and m may be singular at x = 0 and/or x = 1, Lee et al. [2, 3] obtained
many different types of global existence results of positive solutions for problem (1.1). Dai et al. [4, 5]
established a Dancer-type unilateral global bifurcation result for one-dimensional p-Laplacian problem
(1.1).

On the other hand, in high-dimensional case, Del Pino and Manásevich [6] studied the global be-
havior of continuum of positive solutions for problem (1.2) on the general domain of RN . In 2022, Ye
and Han [7] studied the global structure of problem (1.2) by using bifurcation technique.

To the authors’ best knowledge, the study of solutions for p-Laplacian problems with sign-changing
weight can be traced back to Drábek and Huang [8]. In 1997, the authors proved a Dancer-type
bifurcation result for problem (1.2) with sign-changing weight. Since then, there have been many
studies on problems (1.1) and (1.2) with sign-changing weight, see [9–12]. For example, Ma, Liu and
Xu [9] in 2013 used bifurcation technique to show that (1.1) has a nodal solution, where the weight
function m changes sign. In 2014, Dai [10] also proved a Dancer-type unilateral global bifurcation
result for problem (1.2) with sign-changing weight m on the unit ball of RN . In 2015, Sim and Tanaka
[11] proved in their Theorem 1.1 that the solution set of problem (1.1) with m changes sign has an
S -shaped continuum. Here m satisfies
(F1) there exist x1, x2 ∈ [0, 1] such that x1 < x2, m(x) > 0 on (x1, x2), and m(x) ≤ 0 on [0, 1] \ [x1, x2].
As applications of this bifurcation result, they determined the intervals of the parameter λ in which
the problem (1.1) has one, two, or three positive solutions. In 2019, Chen and Ma [12] extended [11,
Theorem 1.1] to the radial problem

(
rN−1φp(u′)

)′
+ λrN−1m(r) f (u) = 0,

u′(0) = u(1) = 0,
(1.3)

where λ > 0 is a parameter, f ∈ C([0,∞), [0,∞)), f (0) = 0, f (s) > 0 for s > 0, and m is a sign-changing
function satisfying H(B) = {m ∈ C(B̄) is radially symmetric|m(x) > 0, x ∈ Ω1 and m(x) ≤ 0, x ∈ B̄\Ω1}

with the annular domain Ω1 = {x ∈ RN : r1 < |x| < r2} ⊂ B for some 0 < r1 < r2 < 1.
Note that the solution of (1.3) is the radially symmetric solutions of the N-dimensional Dirichlet

problem (1.2), where Ω = B is the unit ball of RN ,N ≥ 2.
It is worth remarking that [11,12] only studied the case of f0 ∈ (0,∞) and f∞ ∈ (0,∞), which means

that there is a constant C > 0 such that f (s) ≤ Csp−1 for all s ≥ 0, where f0 := lim
s→0

f (s)
sp−1 , f∞ := lim

s→∞

f (s)
sp−1 .

However, if f is superlinear near ∞ (i.e., f∞ = lim
s→∞

f (s)
sp−1 = ∞), similar results have not been studied.

One possible reason is that in this case we cannot use standard bifurcation techniques by linearization.
Another reason is that we cannot prove the direction of bifurcation using the method in [11].

Naturally, a new question is, can we study the existence and multiplicity of positive solutions to
problem (1.1) when f0 ∈ (0,∞), f∞ = ∞ and the weight function m changes sign?

Motivated by the interesting studies of [11, 12] and some earlier works in the literature, in present
paper, we prove that an unbounded subcontinuum of positive solutions of (1.1) bifurcates from the
trivial solution and grows to the left from the initial point, to the right at some point and to the left near
λ = 0. Roughly speaking, we obtain that there exists a reversed S -shaped continuum in the positive
solution set of problem (1.1).

Throughout this paper, we assume that
(H1) f ∈ C(R,R) with s f (s) > 0 for s , 0;
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(H2) m ∈ C[0, 1] changes sign and meas{x ∈ [0, 1]|m(x) = 0} = 0;
(H3) there exist constants α > 0, f0 > 0, and f1 > 0 such that

lim
s→0+

f (s) − f0sp−1

sp−1+α = f1;

(H4) f∞ = lim
s→∞

f (s)
sp−1 = ∞;

(H5) there exists s0 > 0 such that 0 ≤ s ≤ s0 implies that

f (s) ≤
f0

µ1

∫ 1

0
|m(x)|dx

sp−1
0 ,

where µ1 is the first eigenvalue for the following linear eigenvalue problem(φp(u′(x)))′ + µm(x)φp(u(x)) = 0, x ∈ (0, 1),
u(0) = u(1) = 0.

(1.4)

It is well-known that µ1 is simple, isolated and the associated eigenfunction ϕ1 has fixed sign in [0, 1)
(see for example [11, 13]).

Arguing the shape of bifurcation, we have the following main result:
Theorem 1.1 (see Figure 1). Assume that (H1)–(H5) hold. Then there exist λ∗ ∈ (0, µ1

f0
) and λ∗ > µ1

f0
such that
(i) (1.1) has at least one positive solution if 0 < λ < λ∗;
(ii) (1.1) has at least two positive solutions if λ = λ∗;
(iii) (1.1) has at least three positive solutions if λ∗ < λ < µ1/ f0;
(iv) (1.1) has at least two positive solutions if µ1/ f0 < λ ≤ λ

∗;
(v) (1.1) has at least one positive solution if λ = λ∗;
(vi) (1.1) has no positive solution if λ > λ∗.

Figure 1. reversed S -shaped continuum.
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Remark 1.1. Let us consider the function

f (s) = ksp−1 + sp−1 ln(1 + s), k > 0, s ∈ [0,∞).

Obviously, f satisfies (H3) and (H4) with α = 1, f0 = k, f1 = 1. It is easy to see that if k > 0 is
sufficiently large, then the function f satisfies (H5).

Remark 1.2. We note that, in [11], condition (F1) is the key condition to obtain the S -shaped con-
tinuum in the positive solutions set of problem (1.1). In other words, if the condition (F1) is replaced
by (H1), the method in [11] cannot prove whether there is S -shaped continuum in the solution set of
problem (1.1), even if f0, f∞ ∈ (0,+∞).

Remark 1.3. Recently, many scholars have studied other problems with p-Laplacian operator, such as
about characterization of solutions, see [14–17]; Extensions of a p-Laplacian operator to higher order
operator, see [18, 19]; Aplication of p-Laplacian operator to a physical phenomena, see [20].

The rest of this paper is arranged as follows. In Section 2, we show global bifurcation phenomena
from the trivial branch. Section 3 is devoted to showing that there are at least two direction turns of the
continuum and completing the proof of Theorem 1.1.

2. Existence of unbounded continuum

Let X = {u ∈ C[0, 1] : u(0) = u(1) = 0} with the norm ||u||∞ = supx∈[0,1] u(x). Let E be the Banach
space C1

0[0, 1] with the norm ||u|| = max{||u||∞, ||u′||∞}. Let Y = L1(0, 1) with its usual normal || · ||L1 .
Consider the following boundary value problem(φp(u′(x)))′ + h(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(2.1)

where h ∈ L1(0, 1). Problem (2.1) is equivalently

u(x) = Gp(h)(x) :=
∫ x

0
φ−1

p
(
a(h) +

∫ s

0
h(τ)dτ

)
ds,

where a : Y → R is a continuous function satisfying∫ 1

0
φ−1

p (a(h) +
∫ s

0
h(τ)dτ)ds = 0.

It is known that Gp : Y → E is continuous and maps equi-integrable sets of E into relatively compacts
of E (see [2]).

Lemma 2.1 ( [11, Lemma 2.1]). Assume that (H1)–(H3) hold. Then there exists an unbounded sub-
continuum C of the set of solution of problem (1.1) in R × X bifurcating from (µ1/ f0, 0) such that

C ⊆
(
(R+ × intP) ∪ {(

µ1

f0
, 0)}

)
.

Here P = {u ∈ C[0, 1] : u(t) ≥ 0} is the positive cone in X.
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Lemma 2.2. Assume that (H1) and (H2) hold. Let u be a positive solution of (1.1). If there is a constant
f∗ ∈ (0,∞) such that 0 ≤ f (s) ≤ f∗sp−1. Then

|u′(x)| ≤ λ
1

p−1
(

f∗

∫ 1

0
|m(x)|dx

) 1
p−1
||u||∞, x ∈ [0, 1].

Proof. By Rolle’s theorem, there exists τ ∈ (0, 1) such that u′(τ) = 0. Integrating the equation of (1.1)
over [x, τ], we have

φp(u′(x)) = λ
∫ τ

x
m(t) f (u(t))dt, x ∈ [0, 1].

By (H1) and (H2), we get

|u′(x)|p−1 = λ
∣∣∣∣ ∫ τ

x
m(t) f (u(t))dt

∣∣∣∣ ≤ λ f∗||u||p−1
∞

∣∣∣∣ ∫ τ

x
|m(t)|dt

∣∣∣∣ ≤ λ f∗||u||p−1
∞

∫ 1

0
|m(x)|dx, x ∈ [0, 1].

The proof is complete. □

Lemma 2.3 ( [9, Lemma 10]). Let (H2) holds. Let I = [a, b] be such that I ⊂ I+ := {x ∈ [0, 1]|m(x) > 0}
and meas I > 0. Let gn : [0, 1]→ (0,∞) be such that

lim
n→∞

gn(x) = ∞, uniformly on I.

Let yn ∈ E be a solution of the equation

(φp(y′n))′ + m(x)gn(x)φp(yn) = 0, x ∈ (0, 1).

Then the number of zeros of yn|I goes to infinity as n→ ∞.

Lemma 2.4. Assume that (H1)–(H3) hold. If f0 ∈ (0,∞) and f∞ ∈ (0,∞), then for any λ ∈
(µ1/ f∞, µ1/ f0) ∪ (µ1/ f0, µ1/ f∞), problem (1.1) has one solution u such that u is positive on (0, 1).
Proof. The arguments are quite similar to those from the proof of Theorem 11 in [9]. However, for
the sake of completeness, we give a sketch of the proof below.

Let ζ ∈ C(R) such that f (s) = f0φp(s) + ζ(s) with lims→0 ζ(s)/φp(s) = 0. By Lemma 2.1, there
exists an unbounded subcontinuum C, such that

C ⊆
(
(R+ × intP) ∪ {(

µ1

f0
, 0)}

)
.

Let (λn, un) ∈ C satisfy λn+ ||un|| → ∞. We note that λn > 0 for all n ∈ N since (0, 0) is the only solution
of problem (1.1) for λ = 0 and C ∩ ({0} × E) = ∅.

We divide the rest proofs into two steps.
Step 1. We show that there exists a constant M such that λn ∈ (0,M] for n ∈ N large enough.
On the contrary, we suppose that limn→∞ λn = ∞. Note that

−(φp(u′n(x)))′ = λnm f̃n(x)φp(un(x)),

where

f̃n(x) =


f (un)
φp(un)

, if un , 0,

f0, if un = 0.
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Conditions (H1), (H3) and the fact that f∞ ∈ (0,∞) imply that there exists a positive constant ρ such
that f̃n(x) ≥ ρ for any x ∈ (0, 1). By Lemma 2.3, we get that un must change its sign in (0, 1) for n large
enough, and this contradicts the fact that un ∈ C.

Step 2. We show that C joins (µ1/ f0, 0) to (µ1/ f∞,∞)
It follows from Step 1 that ||un|| → ∞. Let ξ ∈ C(R) be such that f (s) = f∞φp(s) + ξ(s). Then

lims→∞ ξ(s)/φp(s) = 0. Let ξ̃(u) = maxu≤s≤2u |ξ(s)|. Then ξ̃ is nondecreasing and

lim
u→∞

ξ̃(u)
φp(u)

= 0. (2.2)

We divide the equation

−(φp(u′n(x)))′ = λnm(x)( f∞φp(un(x)) + ξ(un))

by ||un|| and set ūn = un/||un||. Since ūn is bounded in E, after taking a subsequence if necessary, we
have ūn ⇀ ū for some ū ∈ E and ūn → ū in Y with ||ū|| = 1. Moreover, from (2.2) and the fact that ξ̃ is
nondecreasing, we have

lim
n→∞

ξ(un(x))
||un||

p−1 = 0,

since
ξ(un(x))
||un||

p−1 ≤
ξ̃(|un(x)|)
||un||

p−1 ≤
ξ̃(||un(x)||)
||un||

p−1 .

By the continuity and compactness of Gp, it follows that

ū = Gp(µ̄m(x) f∞φp(ū)),

where µ̄ = limn→∞ λn, again choosing a subsequence and relabeling if necessary.
It is clear that ||ū|| = 1 and ū ∈ C since C is closed in R × E. Thus, µ̄ f∞ = µ1, i.e., µ̄ = µ1/ f∞.

Therefore, C joins (µ1/ f0, 0) to (µ1/ f∞,∞). □

Lemma 2.5. ( [21]) Let X be a Banach space and let Cn be a family of closed connected subsets of X.
Assume that:

(i) there exist zn ∈ Cn, n = 1, 2, · · · , and z∗ ∈ X, such that zn → z∗;
(ii) rn = sup{||x|||x ∈ Cn} = ∞;
(iii) for every R > 0, (

⋃∞
n=1 Cn) ∩ B̄R(0) is a relatively compact set of X.

Then D := lim supn→∞Cn is unbounded, closed and connected.

Lemma 2.6. If f0 ∈ (0,∞) and f∞ = ∞, then the unbounded subcontinuum C of positive solutions for
(1.1) joins (µ1

f0
, 0) to (0,∞).

Proof. Note that Lemma 2.6 cannot be proved using standard bifurcation techniques by linearization.
To overcome this difficulty we shall employ a limiting procedure. Let us define a function fn as the
following

fn(s) =



f (s), s ∈ [−n, n],
nφp(2n) − f (n)

n
(s − n) + f (n), s ∈ (n, 2n),

nφp(2n) + f (−n)
n

(s + n) + f (−n), s ∈ [−2n,−n),

nφp(s), s ∈ (−∞,−2n] ∪ [2n,∞).
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Next, we consider the following problem
(
φp(u′(x))

)′
+ λm(x) fn(u(x)) = 0, x ∈ (0, 1),

u(0) = u(1) = 0.
(2.3)

Clearly, limn→∞ fn(s) = f (s), ( fn)0 = f0 and ( fn)∞ = n. Lemma 2.1 implies that there exists a sequence
of unbounded continua Cn of solutions to problem (2.3) emanating from (µ1

f0
, 0) and joining to (µ1

n ,∞).
By Lemma 2.5, there exists an unbounded component C of lim supn→∞ Cn such that (µ1

f0
, 0) ∈ C and

(0,∞) ∈ C. This completes the proof. □

3. Direction turn of bifurcation

In this section, we show that there are at least two direction turns of the continuum under conditions
(H3) and (H5), and accordingly we finish the proof of Theorem 1.1.

Lemma 3.1. Assume that (H1)–(H3) hold. Let {(λn, un)} be a sequence of positive solutions of (1.1)
which satisfies ||un|| → 0 and λn →

µ1
f0

. Let ϕ1(x) be the eigenfunction of (1.4) which satisfies ||ϕ1|| = 1.
Then there exists a subsequence of {un}, again denoted by {un}, such that un

||un ||
converges uniformly to

ϕ1 on [0, 1].

Proof. As the proof is very similar to that in [11, Lemma 2.3], we omit it.

Lemma 3.2. Assume that (H2) holds. Let α > 0 and let ϕ1 > 0 be a first eigenfunction of (1.4). Then∫ 1

0
m(x)[ϕ1(x)]p+αdx > 0.

Proof. Multiplying the equation of (1.4) by ϕα+1
1 and integrating it over [0, 1], we obtain

µ1

∫ 1

0
m(x)[ϕ1(x)]p+αdx = −

∫ 1

0
(φp(ϕ′1(x)))′[ϕ1(x)]α+1dx = (α + 1)

∫ 1

0
φp(ϕ′1(x))[ϕ1(x)]αϕ′1(x)dx

= (α + 1)
∫ 1

0
|ϕ′1(x)|p[ϕ1(x)]αdx > 0.

□
Lemma 3.3. Let the hypotheses of Lemma 2.1 hold. Then there exists δ > 0 such that (λ, u) ∈ C and
|λ − µ1/ f0| + ||u|| ≤ δ imply λ < µ1/ f0.
Proof. For contradiction we assume that there exists a sequence {(βn, un)} such that (βn, un) ∈ C
satisfying

βn → µ1/ f0, ||un|| → 0 and βn ≥ µ1/ f0.

By Lemma 3.1, there exists a subsequence of {un}, again denoted by {un}, such that un/||un|| converges
uniformly to ϕ1 on [0, 1], where ϕ1 is the eigenfunction of (1.4) which satisfies ||ϕ1|| = 1. Multiplying
the equation of (1.1) with (λ, u) = (βn, un) by un and integrating it over [0, 1], we obtain∫ 1

0
βnm(r) f (un(r))un(r)dr =

∫ 1

0
|u′n(r)|pdr,
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that is,

βn

∫ 1

0
m(r)

f (un(r))
||un||

p−1

un(r)
||un||

dr =
∫ 1

0

|u′n(r)|p

||un||
p dr.

From Lemma 3.1, after taking a subsequence and relabeling if necessary, un/||un|| converges to ϕ1

in E. ∫ 1

0
|ϕ′1(r)|pdr = µ1

∫ 1

0
m(r)|ϕ1(r)|pdr,

it follows that

βn

∫ 1

0
m(r)

f (un(r))
||un||

p−1

un(r)
||un||

dr = µ1

∫ 1

0
m(r)
|un(r)|p

||un||
p dr − ζ̂(n),

and accordingly,

βn

∫ 1

0
m(r) f (un(r))un(r)dr = µ1

∫ 1

0
m(r)|un(r)|pdr − ζ̂(n)||un||

p

with ζ̂ : N→ N satisfying limn→∞ ζ̂(n) = 0.
That is ∫ 1

0
m(r)

f (un(r)) − f0|un(r)|p−2un(r)

up−1+α
n (r)

∣∣∣∣un(r)
||un||

∣∣∣∣p+αdr

=
1
||un||

α

(
µ1 − f0βn

βn

∫ 1

0
m(r)

∣∣∣∣un(r)
||un||

∣∣∣∣pdr − ζ̂(n)
)
.

Lebesgue’s dominated convergence theorem, condition (H3) imply that∫ 1

0
m(r)

f (un(r)) − f0|un(r)|p−2un

|un|
p−2+α(r)un(r)

∣∣∣∣un(r)
||un||

∣∣∣∣p+αdr → f1

∫ 1

0
m(r)|ϕ1|

p+αdr > 0

and ∫ 1

0
m(r)

∣∣∣∣un(r)
||un||

∣∣∣∣pdr →
∫ 1

0
m(r)|ϕ1|

pdr > 0.

This contradicts βn ≥ µ1/ f0. □

Lemma 3.4. Assume that (H1), (H2) and (H5) hold. Let C be as in Lemma 2.6. If (λ, u) ∈ C such that
||u||∞ = s0, we have λ > λ1

f0
.

Proof. Let (λ, u) be a solution of (1.1) with ||u||∞ = u(τ) = s0. Let f∗ =
f0

µ1
∫ 1

0 |m(x)|dx
be from Lemma 2.2.

By condition (H5) and Lemma 2.2, we have

||u||∞ =
∫ τ

0
u′(x)dx <

∫ 1

0
|u′(x)|dx ≤ λ

1
p−1

( f0

µ1

∫ 1

0
|m(x)|dx

) 1
p−1
||u||∞

( ∫ 1

0
|m(x)|dx

) 1
p−1
,

that is
λ >
µ1

f0
.

□

Proof of Theorem 1.1. Let C be as in Lemma 2.6. By Lemma 2.6, C is bifurcating from (µ1
f0
, 0)

and joins (µ1/ f0, 0) to (0,∞). Since C is unbounded, there exists {(λn, un)} such that (λn, un) ∈ C and
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λn + ||un||∞ → ∞. By Lemma 2.6 , we have that ||un||∞ → ∞ and λn → 0, then there exists (λ0, u0) ∈ C
such that ||u0||∞ = s0 and Lemma 3.4 shows that λ0 >

µ1
f0

.
By Lemmas 2.6, 3.3, 3.4, C passes through some points (µ1

f0
, v1) and (µ1

f0
, v2) with ∥v1∥∞ < s0 < ∥v2∥∞,

and there exist λ and λ which satisfy 0 < λ < µ1
f0
< λ and both (i) and (ii):

(i) if λ ∈ (µ1
f0
, λ], then there exist u and v such that (λ, u), (λ, v) ∈ C and ∥u∥∞ < s0 < ∥v∥∞;

(ii) if λ ∈ (λ, µ1
f0

], then there exist u and v such that (λ, u), (λ, v) ∈ C and ∥u∥∞ < ∥v∥∞ < s0.

Define λ∗ = sup{λ : λ satisfies (i)} and λ∗ = inf{λ : λ satisfies (ii)}. Then by the standard arguments,
(1.1) has a positive solution at λ = λ∗ and λ = λ∗, respectively. Clearly, C is bifurcating from (µ1

f0
, 0)

and goes leftward. Moreover, C turns to the right at (λ∗, uλ∗) and to the left at (λ∗, uλ∗), finally to the
left near λ = 0 (see Figure 1). That is, C is a reversed S -shaped continuum. By figuring the shape of
unbounded continuum C of positive solutions, the statements (i)–(vi) hold. This complete the proof of
Theorem 1.1. □

4. Conclusions

The p-Laplacian operator in one and multi-dimensions is a current vigorous area of research. In
this paper, we extend the seminal work by Sim and Tanaka [11] on “Three positive solutions for the
one-dimensional p-Laplacian problem”, where the authors studied f (s)s1−p = f∞ with f∞ ∈ (0,∞).
The current work considers the case where f∞ = ∞ and aims to prove the existence of a reversed
S -shaped continuum. As a by-product, we assert further that (1.1) has one, or two or three positive
solutions under the suitable conditions on the weight function and nonlinearity. More interesting and
complex behavior of such problem will further be explored.
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