Research article Special Issues

On solutions for a class of Klein–Gordon equations coupled with Born–Infeld theory with Berestycki–Lions conditions on $ \mathbb{R}^3 $

  • Received: 19 January 2024 Revised: 13 March 2024 Accepted: 17 March 2024 Published: 25 March 2024
  • In this paper, the existence of multiple solutions for a class of Klein–Gordon equations coupled with Born–Infeld theory was investigated. The potential and the primitive of the nonlinearity in this kind of elliptic equations are both allowed to be sign-changing. Besides, we assumed that the nonlinearity satisfies the Berestycki–Lions type conditions. By employing Ekeland's variational principle, mountain pass theorem, Pohožaev identity, and various other techniques, two nontrivial solutions were obtained under some suitable conditions.

    Citation: Jiayi Fei, Qiongfen Zhang. On solutions for a class of Klein–Gordon equations coupled with Born–Infeld theory with Berestycki–Lions conditions on $ \mathbb{R}^3 $[J]. Electronic Research Archive, 2024, 32(4): 2363-2379. doi: 10.3934/era.2024108

    Related Papers:

  • In this paper, the existence of multiple solutions for a class of Klein–Gordon equations coupled with Born–Infeld theory was investigated. The potential and the primitive of the nonlinearity in this kind of elliptic equations are both allowed to be sign-changing. Besides, we assumed that the nonlinearity satisfies the Berestycki–Lions type conditions. By employing Ekeland's variational principle, mountain pass theorem, Pohožaev identity, and various other techniques, two nontrivial solutions were obtained under some suitable conditions.



    加载中


    [1] B. Felsager, B. R. Holstein, Geometry, particles and fields, Am. J. Phys., 52 (1984), 573. https://doi.org/10.1119/1.13608 doi: 10.1119/1.13608
    [2] M. Born, Modified field equations with a finite radius of the electron, Nature, 132 (1933), 282. https://doi.org/10.1038/132282a0 doi: 10.1038/132282a0
    [3] M. Born, On the quantum theory of the electromagnetic field, Proc. R. Soc. A, 143 (1934), 410–437. https://doi.org/10.1098/rspa.1934.0010 doi: 10.1098/rspa.1934.0010
    [4] M. Born, L. Infeld, Foundations of the new field theory, Proc. R. Soc. A, 144 (1934), 425–451. https://doi.org/10.1098/rspa.1934.0059 doi: 10.1098/rspa.1934.0059
    [5] M. E. Peskin, An Introduction to Quantum Field Theory, 1st edition, CRC press, 1995. https://doi.org/10.1201/9780429503559
    [6] N. Seiberg, E. Witten, String theory and noncommutative geometry, J. High Energy Phys., 1999 (1999), 032. https://doi.org/10.1088/1126-6708/1999/09/032 doi: 10.1088/1126-6708/1999/09/032
    [7] Y. S. Yang, Classical solutions in the Born-Infeld theory, Proc. R. Soc. A, 456 (2000), 615–640. https://doi.org/10.1098/rspa.2000.0533 doi: 10.1098/rspa.2000.0533
    [8] V. Benci, D. Fortunato, A. Masiello, L. Pisani, Solitons and the electromagnetic field, Math. Z., 232 (1999), 73–102. https://doi.org/10.1007/PL00004759 doi: 10.1007/PL00004759
    [9] M. Carmeli, Field theory on R$\times$S 3 topology. Ⅰ: the Klein-Gordon and Schrödinger equations, Found. Phys., 15 (1985), 175–-184. https://doi.org/10.1007/BF00735289 doi: 10.1007/BF00735289
    [10] D. Fortunato, L. Orsina, L. Pisani, Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43 (2002), 5698–5706. https://doi.org/10.1063/1.1508433 doi: 10.1063/1.1508433
    [11] D. Mugnai, Coupled Klein-Gorndon and Born-Infeld type equations: looking for solitary waves, Proc. R. Soc. A, 460 (2004), 1519–1527. https://doi.org/10.1098/rspa.2003.1267 doi: 10.1098/rspa.2003.1267
    [12] W. Lei, M. Ahsan, W. Khan, Z. Uddin, M. Ahmad, A numerical Haar wavelet-finite difference hybrid method and its convergence for nonlinear hyperbolic partial differential equation, Demonstratio Math., 56 (2023), 20220203. https://doi.org/10.1515/dema-2022-0203 doi: 10.1515/dema-2022-0203
    [13] N. S. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math., 42 (2022), 257–278. https://doi.org/10.7494/OpMath.2022.42.2.257 doi: 10.7494/OpMath.2022.42.2.257
    [14] P. d'Avenia, L. Pisani, Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Electron. J. Differ. Equations, 2002 (2002), 1–13.
    [15] F. Z. Wang, Solitary waves for the coupled nonlinear Klein-Gordon and Born-Infeld type equations, Electron. J. Differ. Equations, 2012 (2012), 1–12.
    [16] Y. Yu, Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory, Ann. Inst. Henri Poincare, 27 (2010), 351–376. https://doi.org/10.1016/j.anihpc.2009.11.001 doi: 10.1016/j.anihpc.2009.11.001
    [17] S. J. Chen, S. Z. Song, The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 38 (2017), 78–95. https://doi.org/10.1016/j.nonrwa.2017.04.008 doi: 10.1016/j.nonrwa.2017.04.008
    [18] K. M. Teng, K. J. Zhang, Existence of solitary wave solutions for the nonlinear Klein-Gordon equation coupled with BornInfeld theory with critical Sobolev exponent, Nonlinear Anal. Theory Methods Appl., 74 (2011), 4241–4251. https://doi.org/10.1016/j.na.2011.04.002 doi: 10.1016/j.na.2011.04.002
    [19] C. M. He, L. Li, S. J. Chen, D. O'Regan, Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents, Anal. Math. Phys., 12 (2022), 48. https://doi.org/10.1007/s13324-022-00661-1 doi: 10.1007/s13324-022-00661-1
    [20] C. M. He, L. Li, S. J. Chen, Nontrivial solution for Klein-Gordon equation coupled with Born-Infeld theory with critical growth, Adv. Nonlinear Anal., 12 (2023), 20220282. https://doi.org/10.1515/anona-2022-0282 doi: 10.1515/anona-2022-0282
    [21] L. Baldelli, R. Filippucci, Singular quasilinear critical Schrödinger equations in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 21 (2022), 2561–2586. https://doi.org/10.3934/cpaa.2022060 doi: 10.3934/cpaa.2022060
    [22] L. Baldelli, Y. Brizi, R. Filippucci, On symmetric solutions for (p,q)-Laplacian equations in $\mathbb{R}^N$ with critical terms, J. Geom. Anal., 32 (2022), 120. https://doi.org/10.1007/s12220-021-00846-3 doi: 10.1007/s12220-021-00846-3
    [23] Z. Feng, Y. Su, Lions-type properties for the p-Laplacian and applications to quasilinear elliptic equations, J. Geom. Anal., 33 (2023), 99. https://doi.org/10.1007/s12220-022-01150-4 doi: 10.1007/s12220-022-01150-4
    [24] F. Albuquerque, S. J. Chen, L. Li, Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in $\mathbb{R}^{2}$, Electron. J. Qual. Theory Differ. Equations, 12 (2020), 1–18. https://doi.org/10.14232/ejqtde.2020.1.12 doi: 10.14232/ejqtde.2020.1.12
    [25] K. M. Teng, Existence and multiple of the solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory on boundary domain, Differ. Equations Appl., 4 (2012), 445–457. https://doi.org/10.7153/dea-04-26 doi: 10.7153/dea-04-26
    [26] L. X. Wen, X. H. Tang, S. T. Chen, Infinitely many solutions and least energy solutions for Klein-Gordon equation coupled with Born-Infeld theory, Complex Var. Elliptic Equations, 64 (2019), 2077–2090. https://doi.org/10.1080/17476933.2019.1572124 doi: 10.1080/17476933.2019.1572124
    [27] X. Q. Liu, X. P. Wu, Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell system with Berestycki-Lions conditions, Appl. Math. Lett., 137 (2023), 108505. https://doi.org/10.1016/j.aml.2022.108505 doi: 10.1016/j.aml.2022.108505
    [28] H. Berestycki, P. L. Lions, Nonlinear scalar field equations. Ⅰ. existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [29] X. Q. Liu, G. D. Li, C. L. Tang, Existence of nontrivial solutions for the Klein-Gordon-Maxwell system with Berestycki-Lions conditions, Adv. Nonlinear Anal., 12 (2023), 20220294. https://doi.org/10.1515/anona-2022-0294 doi: 10.1515/anona-2022-0294
    [30] F. S. Gao, V. D. Radulescu, M. B. Yang, Y. Zhang, Standing waves for the pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity, J. Differ. Equations, 295 (2021), 70–112. https://doi.org/10.1016/j.jde.2021.05.047 doi: 10.1016/j.jde.2021.05.047
    [31] S. J. Chen, S. Z. Song, Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on $\mathbb{R}^{3}$, Nonlinear Anal. Real World Appl., 22 (2015), 259–271. https://doi.org/10.1016/j.nonrwa.2014.09.006 doi: 10.1016/j.nonrwa.2014.09.006
    [32] H. X. Shi, H. B. Chen, Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations, Appl. Math. Comput., 337 (2018), 504–513. https://doi.org/10.1016/j.amc.2018.05.052 doi: 10.1016/j.amc.2018.05.052
    [33] L. Wang, Two solutions for a nonhomogeneous Klein-Gordon-Maxwell system, Electron. J. Qual. Theory Differ. Equations, 40 (2019), 1–12. https://doi.org/10.14232/ejqtde.2019.1.40 doi: 10.14232/ejqtde.2019.1.40
    [34] D. L. Wu, H. Lin, Multiple solutions for superlinear Klein-Gordon-Maxwell equations, Math. Nachr., 293 (2020), 1827–1835. https://doi.org/10.1002/mana.201900129 doi: 10.1002/mana.201900129
    [35] L. Xu, H. Chen, Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations, Electron. J. Differ. Equations, 2015 (2015), 1–12.
    [36] Y. Luo, M. S. Ahmed, Cauchy problem of nonlinear Klein-Gordon equations with general nonlinearities, Rend. Circ. Mat. Palermo, Ser. 2, 71 (2022), 959–973. https://doi.org/10.1007/s12215-021-00698-4 doi: 10.1007/s12215-021-00698-4
    [37] S. J. Chen, L. Li, Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on $\mathbb{R}^{3}$, J. Math. Anal. Appl., 400 (2013), 517–524. https://doi.org/10.1016/j.jmaa.2012.10.057 doi: 10.1016/j.jmaa.2012.10.057
    [38] L. X. Wang, C. L. Xiong, P. P. Zhao, Two solutions for nonhomogeneous Klein-Gordon equations coupled with Born-Infeld type equations, Electron. J. Differ. Equations, 2022 (2022), 1–11.
    [39] T. Bartsch, Z. Q. Wang, M. Willem, The Dirichlet problem for superlinear elliptic equations, in Handbook of Differential Equations: Stationary Partial Differential Equations, 2 (2005), 1–5. https://doi.org/10.1016/S1874-5733(05)80009-9
    [40] W. M. Zou, M. Schechter, Critical Point Theory and Its Applications, Springer, New York, 2006. https://doi.org/10.1007/0-387-32968-4
    [41] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [42] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer Science + Business Media, New York, 1989. https://doi.org/10.1007/978-1-4757-2061-7
    [43] A. Azzollini, P. d'Avenia, A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. Henri Poincare, 27 (2010), 779–791. https://doi.org/10.1016/j.anihpc.2009.11.012 doi: 10.1016/j.anihpc.2009.11.012
    [44] X. Q. Liu, C. L. Tang, Infinitely many solutions and concentration of ground state solutions for the Klein-Gordon-Maxwell system, J. Math. Anal. Appl., 505 (2022), 125521. https://doi.org/10.1016/j.jmaa.2021.125521 doi: 10.1016/j.jmaa.2021.125521
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(591) PDF downloads(73) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog