Research article

Entire solutions of two certain types of quadratic trinomial q-difference differential equations

  • Received: 28 July 2023 Revised: 13 September 2023 Accepted: 13 September 2023 Published: 07 October 2023
  • MSC : 30D35, 39B32

  • The main purpose of this paper is to find the explicit forms for entire solutions of two certain types of Fermat-type q-difference differential equations. Some previous results are generalized and examples are constructed to show that the results are accurate.

    Citation: Zhenguang Gao, Lingyun Gao, Manli Liu. Entire solutions of two certain types of quadratic trinomial q-difference differential equations[J]. AIMS Mathematics, 2023, 8(11): 27659-27669. doi: 10.3934/math.20231415

    Related Papers:

  • The main purpose of this paper is to find the explicit forms for entire solutions of two certain types of Fermat-type q-difference differential equations. Some previous results are generalized and examples are constructed to show that the results are accurate.



    加载中


    [1] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math., 141 (1995), 443–551.
    [2] F. Gross, On the equation $f^n+g^n = 1$, Bull. Amer. Math. Soc., 72 (1966), 86–88.
    [3] F. Gross, On the equation $f^n+g^n = h^n$, Am. Math. Mon., 73 (1966), 1093–1096. https://doi.org/10.2307/2314644 doi: 10.2307/2314644
    [4] I. N. Baker, On a class of meromorphic functions, Proc. Am. Math. Soc. 17 (1966), 819–822. https://doi.org/10.2307/2036259
    [5] C. C. Yang, A generalization of a theorem of p. montel on entire functions, Proc. Am. Math. Soc., 26 (1970), 332–334. https://doi.org/10.2307/2036399 doi: 10.2307/2036399
    [6] K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), 147–155. https://doi.org/10.1007/s00013-012-0408-9 doi: 10.1007/s00013-012-0408-9
    [7] K. Liu, L. Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Stiint. Univ. Al. I. Cuza Lasi. Mat. (N.S.), 1 (2016), 317–325.
    [8] K. Liu, L. Z. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory, 13 (2013), 433–447. https://doi.org/10.1007/s40315-013-0030-2 doi: 10.1007/s40315-013-0030-2
    [9] K. Liu, T. B. Cao, Entire solutions of Fermat type q-difference differential equations, Electron. J. Differ. Equ., 59 (2013), 1–10.
    [10] J. Luo, H. Y. Xu, F. Hu, Entire solutions for several general quadratic trinomial differential difference equations, Open Math., 19 (2021), 1018–1028. https://doi.org/10.1515/math-2021-0080 doi: 10.1515/math-2021-0080
    [11] W. K. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964.
    [12] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Dordrecht: Springer, 2003.
    [13] Y. M. Chiang, S. J. Feng, On the nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105–129. https://doi.org/10.1007/s11139-007-9101-1 doi: 10.1007/s11139-007-9101-1
    [14] R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. https://doi.org/10.1016/j.jmaa.2005.04.010 doi: 10.1016/j.jmaa.2005.04.010
    [15] K. Ishizaki, A note on the functional equation $f^n+g^n+h^n = 1$ and some complex differential equations, Comput. Methods Funct. Theory, 2 (2003), 67–85. https://doi.org/10.1007/BF03321010 doi: 10.1007/BF03321010
    [16] B. Q. Li, Entire solutions of $(u_{z_1})^m+(u_{z_2})^n = e^g$, Nagoya Math. J., 178 (2005), 151–162.
    [17] B. Q. Li, On certain non-linear differential equations in complex domains, Arch. Math., 91 (2008), 344–353. https://doi.org/10.1007/s00013-008-2648-2 doi: 10.1007/s00013-008-2648-2
    [18] K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. https://doi.org/10.1016/j.jmaa.2009.05.061 doi: 10.1016/j.jmaa.2009.05.061
    [19] M. L. Liu, L. Y. Gao, Transcendental solutions of systems of complex differential-difference equations, Sci. Sin. Math., 49 (2019), 1633. https://doi.org/10.1360/N012018-00061 doi: 10.1360/N012018-00061
    [20] J. F. Tang, L. W. Liao, The transcendental meromorphic solutions of a certain type of nonlinear differential equations, J. Math. Anal. Appl., 334 (2007), 517–527. https://doi.org/10.1016/j.jmaa.2006.12.075 doi: 10.1016/j.jmaa.2006.12.075
    [21] H. Y. Xu, Y. Y Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, RACSAM, 116 (2022), 8. https://doi.org/10.1007/s13398-021-01154-9 doi: 10.1007/s13398-021-01154-9
    [22] H. Y. Xu, Y. H. Xu, X. L. Liu, On solutions for several systems of complex nonlinear partial differential equations with two variables, Anal. Math. Phys., 13 (2023), 47. https://doi.org/10.1007/s13324-023-00811-z doi: 10.1007/s13324-023-00811-z
    [23] H. Y. Xu, L. Xu, Transcendental entire solutions for several quadratic binomial and trinomial PDEs with constant coefficients, Anal. Math. Phys., 12 (2022), 64. https://doi.org/10.1007/s13324-022-00679-5 doi: 10.1007/s13324-022-00679-5
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1023) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog