In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [
Citation: Yong Liu, Chaofeng Gao, Shuai Jiang. On meromorphic solutions of certain differential-difference equations[J]. AIMS Mathematics, 2021, 6(9): 10343-10354. doi: 10.3934/math.2021599
In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [
[1] | G. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, D. Yang, Meromorphic solutions of generalized Schröder equations, Aequat. Math., 63 (2002), 110–135. doi: 10.1007/s00010-002-8010-z |
[2] | R. G. Halburd, R. Korhonen, Finite-order meromorphic solutions and the discrete Painlev$\acute{e}$ equations, Proc. London. Math. Soc., 94 (2007), 443–474. doi: 10.1112/plms/pdl012 |
[3] | R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463–478. |
[4] | W. K. Hayman, Meromorphic solutions, Oxford: The Clarendon Press, 1964. |
[5] | J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, K. Tohge, Complex difference equations of Malmquist type, Comput. Methods. Funct. Theory, 1 (2001), 27–39. doi: 10.1007/BF03320974 |
[6] | I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993. |
[7] | Z. Latreuch, On the existence of entire solutions of certain class of nonlinear difference equations, Mediterr. J. Math., 14 (2017), 115. doi: 10.1007/s00009-017-0914-x |
[8] | H. C. Li, On the existence of differential-difference equations, Math. Method. Appl. Sci., 39 (2016), 144–151. doi: 10.1002/mma.3465 |
[9] | K. Liu, T. B. Cao, X. L. Liu, The properties of differential-difference polynomials, Ukr. Math. J., 69 (2017), 85–100. doi: 10.1007/s11253-017-1348-0 |
[10] | K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. doi: 10.1016/j.jmaa.2009.05.061 |
[11] | K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat-type differential-difference equations, Arch. Math., 99 (2012), 147–155. doi: 10.1007/s00013-012-0408-9 |
[12] | K. Liu, L. Z. Yang, On of some differential-difference equations, Comput. Methods. Funct. Theory., 13 (2013), 433–447. doi: 10.1007/s40315-013-0030-2 |
[13] | K. Liu, T. B. Cao, Entire solutions of Fermat-type differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1–10. doi: 10.1186/1687-1847-2013-1 |
[14] | K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759–1771. doi: 10.1007/s00025-017-0736-y |
[15] | X. G. Qi, L. Z. Yang, Properties of meromorphic solutions to certain differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1–9. doi: 10.1186/1687-1847-2013-1 |
[16] | J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151–170. |
[17] | A. J. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math., 141 (1995), 443–551. doi: 10.2307/2118559 |
[18] | H. Wang, H. Y. Xu, J. Tu, The existence and forms of solutions for some Fermat-type differential-difference equations, AIMS Mathematics, 5 (2020), 685–700. doi: 10.3934/math.2020046 |
[19] | H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions of several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 123641. doi: 10.1016/j.jmaa.2019.123641 |
[20] | H. Y. Xu, S. Y. Liu, Q. P. Li, The existence and growth of solutions for several systems of complex nonlinear difference equations, Mediterr. J. Math., 16 (2019), 8. doi: 10.1007/s00009-018-1296-4 |
[21] | H. Y. Xu, J. Tu, Growth of solutions to systems of q-difference differential equations, Electron. J. Differ. Eq., 2016 (2016), 1–14. doi: 10.1186/s13662-015-0739-5 |
[22] | C. C. Yang, H. X. Yi, Uniqueness theroy of meromorphic functions, Dordrecht: Kluwer Academic Publishers, 2003. |
[23] | J. Zhang, On some spcial difference equations of Malmquist type, Bull. Korean Math. Soc., 55 (2018), 51–61. |