Research article Special Issues

On meromorphic solutions of certain differential-difference equations

  • Received: 20 May 2021 Accepted: 06 July 2021 Published: 16 July 2021
  • MSC : 30D35, 39A10

  • In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [19].

    Citation: Yong Liu, Chaofeng Gao, Shuai Jiang. On meromorphic solutions of certain differential-difference equations[J]. AIMS Mathematics, 2021, 6(9): 10343-10354. doi: 10.3934/math.2021599

    Related Papers:

  • In this article, we mainly use Nevanlinna theory to investigate some differential-difference equations. Our results about the existence and the forms of solutions for these differential-difference equations extend the previous theorems given by Wang, Xu and Tu [19].



    加载中


    [1] G. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, D. Yang, Meromorphic solutions of generalized Schröder equations, Aequat. Math., 63 (2002), 110–135. doi: 10.1007/s00010-002-8010-z
    [2] R. G. Halburd, R. Korhonen, Finite-order meromorphic solutions and the discrete Painlev$\acute{e}$ equations, Proc. London. Math. Soc., 94 (2007), 443–474. doi: 10.1112/plms/pdl012
    [3] R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463–478.
    [4] W. K. Hayman, Meromorphic solutions, Oxford: The Clarendon Press, 1964.
    [5] J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, K. Tohge, Complex difference equations of Malmquist type, Comput. Methods. Funct. Theory, 1 (2001), 27–39. doi: 10.1007/BF03320974
    [6] I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993.
    [7] Z. Latreuch, On the existence of entire solutions of certain class of nonlinear difference equations, Mediterr. J. Math., 14 (2017), 115. doi: 10.1007/s00009-017-0914-x
    [8] H. C. Li, On the existence of differential-difference equations, Math. Method. Appl. Sci., 39 (2016), 144–151. doi: 10.1002/mma.3465
    [9] K. Liu, T. B. Cao, X. L. Liu, The properties of differential-difference polynomials, Ukr. Math. J., 69 (2017), 85–100. doi: 10.1007/s11253-017-1348-0
    [10] K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. doi: 10.1016/j.jmaa.2009.05.061
    [11] K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat-type differential-difference equations, Arch. Math., 99 (2012), 147–155. doi: 10.1007/s00013-012-0408-9
    [12] K. Liu, L. Z. Yang, On of some differential-difference equations, Comput. Methods. Funct. Theory., 13 (2013), 433–447. doi: 10.1007/s40315-013-0030-2
    [13] K. Liu, T. B. Cao, Entire solutions of Fermat-type differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1–10. doi: 10.1186/1687-1847-2013-1
    [14] K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759–1771. doi: 10.1007/s00025-017-0736-y
    [15] X. G. Qi, L. Z. Yang, Properties of meromorphic solutions to certain differential-difference equations, Electron. J. Differ. Eq., 2013 (2013), 1–9. doi: 10.1186/1687-1847-2013-1
    [16] J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151–170.
    [17] A. J. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math., 141 (1995), 443–551. doi: 10.2307/2118559
    [18] H. Wang, H. Y. Xu, J. Tu, The existence and forms of solutions for some Fermat-type differential-difference equations, AIMS Mathematics, 5 (2020), 685–700. doi: 10.3934/math.2020046
    [19] H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions of several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 123641. doi: 10.1016/j.jmaa.2019.123641
    [20] H. Y. Xu, S. Y. Liu, Q. P. Li, The existence and growth of solutions for several systems of complex nonlinear difference equations, Mediterr. J. Math., 16 (2019), 8. doi: 10.1007/s00009-018-1296-4
    [21] H. Y. Xu, J. Tu, Growth of solutions to systems of q-difference differential equations, Electron. J. Differ. Eq., 2016 (2016), 1–14. doi: 10.1186/s13662-015-0739-5
    [22] C. C. Yang, H. X. Yi, Uniqueness theroy of meromorphic functions, Dordrecht: Kluwer Academic Publishers, 2003.
    [23] J. Zhang, On some spcial difference equations of Malmquist type, Bull. Korean Math. Soc., 55 (2018), 51–61.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2389) PDF downloads(176) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog