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1. Introduction and main results

We assume that the reader is familiar with the basic notions of Nevanlinna theory (see [4, 6, 22]).
Recently, a number of papers (including [1–3, 5, 7–21, 23]) have focused on solvability and existence
of meromorphic solutions of difference equations or differential-difference equations in complex plane.
In 2009, Liu [10] obtianed the Fermat type equation l(z)2 + [l(z+c)− l(z)]2 = 1 has a nonconstant entire
solution of finite order. In 2012, Liu et al. [11] proved that l(z)2+l(z+c)2 = 1 has a transcendental entire
solution of finite order. In 2018, Zhang [23] obtained the difference equations l(z)2 + [l(z + c)− l(z)]2 =

R(z) has no finite order transcendental meromorphic solutions with finitely many poles. In 2020, Wang
et al. [18] further discussed the existence and the forms of the solutions for some differential-difference
equations, they obtained
Theorem A. Let c be a nonzero constant, R(z) be a nonzero rational function, and α, β ∈ C satisfy
α2 − β2 , 1. Then the following difference equation of Fermat-type

l(z)2 + [αl(z + c) − βl(z)]2 = R(z),

has no finite order transcendental meromorphic solutions with finitely many poles.
Theorem B. Let c(, 0), α(, 0), β ∈ C, and P(z), Q(z) be nonzero polynomials satisfying one of two
following cases:
(i) degzP(z) ≥ 1, degzQ(z) ≥ 1;
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(ii) P(z), Q(z) are two constants and P2(α2 − β2) , 1. Then the following Fermat-type difference
equation

l(z)2 + P2(z)[αl(z + c) − βl(z)]2 = Q(z),

has no transcendental entire solutions with finite order.
For further study, we continue to discuss the existence and the forms of solutions for certain

differential-difference equations with more general forms than the previous forms by Liu et al. [10,
11, 18, 23] and obtain the following results.
Theorem 1.1. Let c j( j = 1, 2, · · · ,m) be distinct constants, a ∈ C\{0}, %i ∈ C (i = 1, 2, · · · ,m), R(z)

be a nonzero rational function, and
m∑

i=1
%i(expaci + exp−aci), 0. Then the following difference equation

l(z)2 + [%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)]2 = R(z) (1.1)

has no finite order transcendental meromorphic solutions with finitely many poles.
Theorem 1.2. Let c j( j = 1, 2, · · · ,m) be distinct constants, a ∈ C\{0}, %i ∈ C (i = 1, 2, · · · ,m), and
P(z), Q(z) be nonzero polynomials satisfying one of two following cases:
(i) degzP(z) ≥ 1;

(ii) P is a constant and P2[
m∑

i=1
%iexpaci

m∑
i=1
%iexp−aci] , 1. Then the following difference equation

l(z)2 + P(z)2[%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)]2 = Q(z) (1.2)

has no transcendental entire solutions with finite order.
Theorem 1.3. Let c j( j = 1, 2, · · · ,m) be distinct constants, a ∈ C\{0}, %i ∈ C (i = 1, 2, · · · ,m). Let
l(z) be a transcendental finite order meromorphic solution of difference-differential equation

l′(z)2 + [%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)]2 = R(z), (1.3)

where R(z) is a nonzero rational function. If l(z) has finitely many poles, and
m∑

j=1
c j

2% jexpac j
m∑

j=1
c j

2% jexp−ac j , 0, then R(z) is a nonconstant polynomial with degzR(z) 6 2, and
m∑

j=1
c j% jexpac j

m∑
j=1

c j% jexp−ac j = 1. Furthermore,

(i) If R(z) is a nonconstant polynomial with degzR(z) 6 2, and
m∑

i=1
%i , 0, then we have

l(z) =
s1(z)expaz+b + s2(z)exp−(az+b)

2
,

where R(z) = (m1 +as1(z))(m2−as2(z)), a , 0, b ∈ C and a, b, c j, %i satisfy i(%1expac1 + · · ·+%mexpacm) =

a and i(%1exp−ac1 + · · · + %mexp−acm) = a, where s j(z) = m jz + n j,m j, n j ∈ C( j = 1, 2).

(ii) If R(z) is a nonzero constant, and
m∑

i=1
%i , 0, then

l(z) =
n1expaz+b + n2exp−(az+b)

2
,
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where R(z) = −a2n1n2, a , 0, b ∈ C.
Theorem 1.4. Let c j( j = 1, 2, · · · ,m) be distinct constants, a ∈ C\{0}, %i ∈ C (i = 1, 2, · · · ,m). Let
l(z) be a transcendental meromorphic solution of the following difference-differential equation

l′′(z)2 + [%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)]2 = R(z), (1.4)

where R(z) is a nonzero rational function.

(i) If
m∑

i=1
%iexpaci +

m∑
i=1
%iexp−aci , 0, then (1.4) has no finite order transcendental meromorphic solution

with finitely many poles.

(ii) If
m∑

j=1
ic j% jexpac j , 2a,

m∑
j=1

ic j% jexp−ac j , 2a, and (1.4) has a finite order transcendental

meromorphic solution l(z) with finitely many poles, then R(z) is a constant. Furthermore if
m∑

i=1
%i , 0 ,

then we have

l(z) =
t1expaz+b + t2exp−(az+b)

2
,

where a, b, t1, t2, %i, c j satisfy
m∑

i=1
%iexpaci +

m∑
i=1
%iexp−aci = 0, R(z) = a4t1t2, b ∈ C.

2. Preliminary lemmas

The following two lemmas play an important role in the proof of our results.
Lemma 2.1. ([22]) Suppose that f1, f2, · · · , fn(n ≥ 2) are meromorphic functions and g1, g2, · · · , gn are
entire functions satisfying the following conditions:

(i)
n∑

j=1
f jexpg j ≡ 0;

(ii) g j − gk are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, f j) = o{T (r, expgh−gk)}(r → ∞, r < E), where E is a set of
r ∈ (0,∞) with finite linear measure.
Then f j ≡ 0( j = 1, 2, · · · ,m).
Lemma 2.2. ([22]) Let l(z) be a meromorphic function of finite order ρ(l). Write

l(z) = ckzk + ck+1zk+1 + · · · , (ck , 0),

near z = 0 and let {a1, a2, · · · } and {b1, b2, · · · } be the zeros and poles of l in C \ {0}, respectively. Then

l(z) = zkexpQ(z) P1(z)
P2(z)

,

where P1(z) and P2(z) are the canonical products of l formed with the non-null zeros and poles of l,
respectively, and Q(z) is a polynomial of degree 6 ρ(l).

3. Proof of Theorem 1.1

Suppose that (1.1) has a finite order transcendental meromorphic solution l(z) with finitely many
poles. Rewriting (1.1) as follows

(l(z) + i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)))(l(z)−
i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm))) = R(z).

(3.1)
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Since l(z) has finitely many poles, R(z) is a nonzero rational function, then l(z)+ i(%1l(z+c1)+%2l(z+

c2) + · · · + %ml(z + cm)) and l(z) − i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) both have finitely many
poles and zeros. Together Lemma 2.2 with (3.1), we obtain that

l(z) + i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) = R1(z)expp(z), (3.2)

and
l(z) − i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) = R2(z)exp−p(z), (3.3)

where R1(z),R2(z) are two nonzero rational functions such that R1(z)R2(z) = R(z), and p(z) is a
nonconstant polynomial. (3.2) and (3.3) imply that

l(z) =
R1(z)expp(z) + R2(z)exp−p(z)

2
, (3.4)

and

%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm) =
R1(z)expp(z) − R2(z)exp−p(z)

2i
. (3.5)

Substituting (3.4) into (3.5), we have

expp(z)(i%1R1(z + c1)expp(z+c1)−p(z) + i%2R1(z + c2)expp(z+c2)−p(z) + · · ·

+i%mR1(z + cm)expp(z+cm)−p(z) − R1(z))+
exp−p(z)(i%1R2(z + c1)expp(z)−p(z+c1) + i%2R2(z + c2)expp(z)−p(z+c2) + · · ·

+i%mR2(z + cm)expp(z)−p(z+cm) + R2(z)) = 0.

(3.6)

By Lemma 2.1 and (3.6), we have

i%1R1(z + c1)expp(z+c1)−p(z) + i%2R1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mR1(z + cm)expp(z+cm)−p(z) − R1(z) = 0,
(3.7)

and
i%1R2(z + c1)expp(z)−p(z+c1) + i%2R2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mR2(z + cm)expp(z)−p(z+cm) + R2(z) = 0.
(3.8)

Since R1(z),R2(z) are two nonzero rational functions and that l(z) is of finite order, we obtain that p(z)
is a polynomial of degree one. If degz p(z) ≥ 2, then we obtain that degz[p(z + c j) − p(z + ci)] ≥ 1.
Hence, we have T (r, i% jR j(z + c j)) = S (r, expp(z+ci)−p(z+c j)), Lemma 2.1 and (3.7) imply that R1(z) ≡ 0.
This is impossible. By the similar method as above, we also have R2(z) ≡ 0, a contradiction. So we
have degz p(z) = 1. Set p(z) = az + b, a , 0, b ∈ C. By (3.7) and (3.8), we have

lim
|z|→∞

i(%1
R1(z+c1)

R1(z) expp(z+c1)−p(z) + · · · + %m
R1(z+cm)

R1(z) expp(z+cm)−p(z))

= i(%1expac1 + · · · + %mexpacm) = 1,

and
lim
|z|→∞

i(%1
R2(z+c1)

R2(z) expp(z)−p(z+c1) + · · · + %m
R2(z+cm)

R2(z) expp(z)−p(z+cm))

= i(%1exp−ac1 + · · · + %mexp−acm) = −1.

Thus, it yields that
m∑

i=1
%i(expaci +exp−aci)= 0, this is a contradiction with the assumption of Theorem 1.1.

Hence, Theorem 1.1 holds.
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4. Proof of Theorem 1.2

If l(z) is a transcendental entire solution with finite order of (1.2), then by the similar method as the
proof of Theorem 1.1, we have

l(z) =
Q1(z)expp(z) + Q2(z)exp−p(z)

2
, (4.1)

and

%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm) =
Q1(z)expp(z) − Q2(z)exp−p(z)

2iP(z)
, (4.2)

where p(z) is a nonconstant polynomial and Q1(z)Q2(z) = Q(z), Q1(z), Q2(z) are nonzero polynomials.
Together (4.1) with (4.2), we have

expp(z)(i%1P(z)Q1(z + c1)expp(z+c1)−p(z) + i%2P(z)Q1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mP(z)Q1(z + cm)expp(z+cm)−p(z) − Q1(z))+
exp−p(z)(i%1P(z)Q2(z + c1)expp(z)−p(z+c1) + i%2P(z)Q2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mP(z)Q2(z + cm)expp(z)−p(z+cm) + Q2(z)) = 0.

(4.3)

By Lemma 2.1 and p(z) is a nonconstant polynomial, we have

i%1P(z)Q1(z + c1)expp(z+c1)−p(z) + i%2P(z)Q1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mP(z)Q1(z + cm)expp(z+cm)−p(z) − Q1(z) = 0,
(4.4)

and
i%1P(z)Q2(z + c1)expp(z)−p(z+c1) + i%2P(z)Q2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mP(z)Q2(z + cm)expp(z)−p(z+cm) + Q2(z) = 0.
(4.5)

If degz p(z) ≥ 2, then we have that degz[p(z+c j)−p(z+ci)] ≥ 1. Hence, we have T (r, i% jP(z)Q1(z+c j)) =

S (r, expp(z+ci)−p(z+c j)), Lemma 2.1 and (4.4) imply that Q1(z) ≡ 0. A contradiction. By the similar
method as above, we also obtain that Q2(z) ≡ 0, this is also impossible. Hence, degz p(z) = 1. Let
p(z) = az + b, a , 0, b ∈ C. (4.4) and (4.5) imply that

i%1P(z)Q1(z + c1)expp(z+c1)−p(z) + i%2P(z)Q1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mP(z)Q1(z + cm)expp(z+cm)−p(z) = Q1(z),

and
i%1P(z)Q2(z + c1)expp(z)−p(z+c1) + i%2P(z)Q2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mP(z)Q2(z + cm)expp(z)−p(z+cm) = −Q2(z).

By this, we have

P(z)2[%1
2Q(z + c1) + %2

2Q(z + c1) + · · · + %m
2Q(z + cm)+

%1%2Q1(z + c1)Q2(z + c2)expac1−ac2 + · · ·+

%1%mQ1(z + c1)Q2(z + cm)expac1−acm + %2%1Q1(z + c2)Q2(z + c1)expac2−ac1

+ · · · + %2%mQ1(z + c2)Q2(z + cm)expac2−acm

+ · · · + %m%m−1Q1(z + cm−1)Q2(z + cm)expacm−acm−1] = Q(z).

(4.6)

Set degzP(z) = p and degzQ(z) = q, then p ≥ 0, q ≥ 0 and p, q ∈ N+. Next we divided the following
proof into four cases:
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Case 1. p ≥ 1 and
m∑

i=1
%iexpaci

m∑
i=1
%iexp−aci = 0. If q ≥ 1, by comparing the order both sides of (4.6),

we have 2p + q − 1 6 q, that is, p 6
1
2

, this is impossible. If q = 0, that is, Q(z) is a constant. Hence,
by (4.6), we have Q(z) = 0, a contradiction.

Case 2. p ≥ 1 and
m∑

i=1
%iexpaci

m∑
i=1
%iexp−aci , 0. If q ≥ 1, by comparing the order both sides of (4.6),

we have 2p + q = q, that is, p = 0, a contradiction. If q = 0, that is, Q(z) is a constant. Hence, by (4.6),
we have P(z) is a constant, this is impossible.

Case 3. p = 0 and
m∑

i=1
%iexpaci

m∑
i=1
%iexp−aci = 0. That is, P(z) = K(, 0). If q ≥ 1, we have q − 1 = q,

this is impossible. If q = 0, we have Q(z) ≡ 0. A contradiction.

Case 4. p = 0 and
m∑

i=1
%iexpaci

m∑
i=1
%iexp−aci , 0. If q ≥ 1, set P(z) = K(, 0), Q(z) = bqzq + bq−1zq−1 +

· · · + b0, bq , 0, bq−1, · · · , b0 are constants. By comparing the coefficients of zq both sides of (4.6), we
have

K2[
m∑

i=1

%iexpaci

m∑
i=1

%iexp−aci] = 1. (4.7)

This is a contradiction with the condition of Theorem 1.2. If q = 0, then K2[
m∑

i=1
%iexpaci

m∑
i=1
%iexp−aci] =

1, this is impossible.
Hecne, Theorem 1.2 holds.

5. Proof of Theorem 1.3

Suppose that (1.3) has a finite order transcendental meromorphic solution l(z) with finitely many
poles. Rewriting (1.3) as follows

(l′(z) + i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)))(l′(z)−
i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm))) = R(z).

(5.1)

Since l(z) has finitely many poles, and R(z) is a nonzero rational function, then l′(z) + i(%1l(z + c1) +

%2l(z + c2) + · · ·+ %ml(z + cm)) and l′(z)− i(%1l(z + c1) + %2l(z + c2) + · · ·+ %ml(z + cm)) both have finitely
many poles and zeros. Hence, by Lemma 2.2, (5.1) can be written as

l′(z) + i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) = R1(z)expp(z), (5.2)

and
l′(z) − i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) = R2(z)exp−p(z), (5.3)

where R1(z),R2(z) are two nonzero rational functions such that R1(z)R2(z) = R(z), and p(z) is a
nonconstant polynomial. (5.2) and (5.3) imply that

l′(z) =
R1(z)expp(z) + R2(z)exp−p(z)

2
, (5.4)

and

%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm) =
R1(z)expp(z) − R2(z)exp−p(z)

2i
. (5.5)
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(5.5) implies that

%1l′(z + c1) + %2l′(z + c2) + · · · + %ml′(z + cm) =
A1(z)expp(z) − B1(z)exp−p(z)

2i
, (5.6)

where A1(z) = R′1 + R1(z)p′ and B1(z) = R′2 − R2(z)p′. Substituting (5.4) into (5.6), we have

expp(z)(i%1R1(z + c1)expp(z+c1)−p(z) + i%2R1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mR1(z + cm)expp(z+cm)−p(z) − A1(z))+
exp−p(z)(i%1R2(z + c1)expp(z)−p(z+c1) + i%2R2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mR2(z + cm)expp(z)−p(z+cm) + B1(z)) = 0.

(5.7)

Together Lemma 2.1 with (5.7), we have

i%1R1(z + c1)expp(z+c1)−p(z) + i%2R1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mR1(z + cm)expp(z+cm)−p(z) − A1(z) = 0,
(5.8)

and
i%1R2(z + c1)expp(z)−p(z+c1) + i%2R2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mR2(z + cm)expp(z)−p(z+cm) + B1(z) = 0.
(5.9)

Since R1(z),R2(z) are two nonzero rational functions and l(z) is of finite order, by the similar method
as the proof of Theorem 1.1, we have degz p(z) = 1. Let p(z) = az + b, a , 0, b ∈ C. Substituting p(z),
A1(z), B1(z) into (5.8) and (5.9), as z −→ ∞, we have

lim
|z|→∞

i(%1
R1(z+c1)

R1(z) expp(z+c1)−p(z) + · · · + %m
R1(z+cm)

R1(z) expp(z+cm)−p(z))

= i(%1expac1 + · · · + %mexpacm) =
R′1(z)
R1(z) +a = a,

and
lim
|z|→∞

i(%1
R2(z+c1)

R2(z) expp(z)−p(z+c1) + · · · + %m
R2(z+cm)

R2(z) expp(z)−p(z+cm))

= i(%1exp−ac1 + · · · + %mexp−acm) = −
R′2(z)
R2(z) +a = a.

That is
i(%1expac1 + · · · + %mexpacm) = a,
i(%1exp−ac1 + · · · + %mexp−acm) = a.

(5.10)

According to (5.8), (5.9) and (5.10), we have

i%1expac1(R1(z + c1) − R1(z)) + i%2expac2(R1(z + c2) − R1(z))
+ · · · + i%mexpacm(R1(z + cm) − R1(z)) = R1

′(z),
(5.11)

and
i%1exp−ac1(R2(z + c1) − R2(z)) + i%2exp−ac2(R2(z + c2) − R2(z))
+ · · · + i%mexp−acm(R2(z + cm) − R2(z)) = −R2

′(z).
(5.12)

If R1(z),R2(z) are two nonzero constants, then (5.11) and (5.12) hold and R1(z)R2(z) = R(z) is a
constant.
We next consider the case that R1(z),R2(z) are two nonzero rational functions. If R1(z) has a pole of
multiplicity v at z0, by (5.11), we know that there exists at least on index l1 ∈ {1, 2, · · · ,m} such that
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z0 + cl1 is a pole of R1(z) of multiplicity v + 1, following the above step, we know R1(z) has a sequence
of poles

{τn = z0 + cl1 + · · · + cln : n = 1, 2, · · · }.

Hence, we have λ( 1
R1(z) ) ≥ 1, this is impossible. So R1(z) is a polynomial. Using the same method as

above, we know that R2(z) is also a polynomial. If Ri(z) is a nonconstant polynomial with degzRi(z) ≥ 2.
Let Ri(z) = anzn + an−1zn−1 + · · · + a0, then

R′i(z) = nanzn−1 + (n − 1)an−1zn−2 + · · · , (5.13)

Ri(z + cm) − Ri(z) = nancmzn−1 + (anC2
nc2

m + (n − 1)an−1cm)zn−2 + · · · , (5.14)

where i = 1, 2. Substituting (5.13) and (5.14) into (5.11) and (5.12), comparing the coefficients of

zn−1, zn−2, we have
m∑

j=1
ic j% jexpac j = 1,

m∑
j=1

c j
2% jexpac j = 0 and

m∑
j=1

ic j% jexp−ac j = −1,
m∑

j=1
c j

2% jexp−ac j =

0, a contradiction with
m∑

j=1
c j

2% jexpac j
m∑

j=1
c j

2% jexp−ac j , 0. Hence, degzRi(z) ≤ 1. So degzR(z) =

degzR1(z)R2(z) ≤ 2.
(i) If R(z) is a nonconstant polynomial with degzR(z) 6 2, then by (5.4), we have

l(z) =
s1(z)expaz+b + s2(z)exp−(az+b)

2
+ ϑ, (5.15)

where s j(z) = m jz + n j,m j, n j ∈ C, ( j = 1, 2) and ϑ ∈ C;

Case 1. If degzR(z) = 2, then m j , 0, j = 1, 2. If
m∑

i=1
%i , 0, substituting (5.15) into (5.5), we have

ϑ ≡ 0, R(z) = (m1 + as1(z))(m2 − as2(z)). Hence, we have

l(z) =
s1(z)expaz+b + s2(z)exp−(az+b)

2
,

R(z) = (m1 + as1(z))(m2 − as2(z)), a , 0, b ∈ C .
Case 2. If degzR(z) = 1, then one of m1,m2 is zero, we can assume that m1 = 0. Substituting (5.15)

into (5.5), we have R1(z) is a constant and R2(z) is a polynomial of degree one. Using the same method
as case 1, we have ϑ ≡ 0. Hence, we obtain that

l(z) =
s1(z)expaz+b + s2(z)exp−(az+b)

2
,

R(z) = (m1 + as1(z))(m2 − as2(z)), a , 0, b ∈ C .
(ii) If R(z) is a nonzero constant, by (5.4), we have

l(z) =
n1expaz+b + n2exp−(az+b)

2
+ d, (5.16)

where n1, n2 ∈ C and d ∈ C. Substituting (5.16) into (5.5), we have d = 0, R(z) = −a2n1n2. Hence,
Theorem 1.3 holds.
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6. Proof of Theorem 1.4

Suppose that (1.4) has a finite order transcendental meromorphic solution l(z) with finitely many
poles. Rewriting (1.4) as follows

(l′′(z) + i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)))(l′′(z)−
i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm))) = R(z).

(6.1)

Since l(z) has finitely many poles, R(z) is a nonzero rational function, then l′′(z) + i(%1l(z + c1) +

%2l(z + c2) + · · ·+ %ml(z + cm)) and l′′(z)− i(%1l(z + c1) + %2l(z + c2) + · · ·+ %ml(z + cm)) both have finitely
many poles and zeros. Hence, we can rewrite (6.1) as follows

l′′(z) + i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) = R1(z)expp(z), (6.2)

and
l′′(z) − i(%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm)) = R2(z)exp−p(z), (6.3)

where R1(z),R2(z) are two nonzero rational functions such that R1(z)R2(z) = R(z), and p(z) is a
nonconstant polynomial. By (6.2) and (6.3), we obtain

l′′(z) =
R1(z)expp(z) + R2(z)exp−p(z)

2
, (6.4)

and

%1l(z + c1) + %2l(z + c2) + · · · + %ml(z + cm) =
R1(z)expp(z) − R2(z)exp−p(z)

2i
. (6.5)

(6.5) implies that

%1l′′(z + c1) + %2l′′(z + c2) + · · · + %ml′′(z + cm) =
A2(z)expp(z) − B2(z)exp−p(z)

2i
, (6.6)

where A2(z) = A′1 + A1(z)p′ and B2(z) = B′1 − B1(z)p′. Together (6.4) with (6.6), we obtain that

expp(z)(i%1R1(z + c1)expp(z+c1)−p(z) + i%2R1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mR1(z + cm)expp(z+cm)−p(z) − A2(z))+
exp−p(z)(i%1R2(z + c1)expp(z)−p(z+c1) + i%2R2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mR2(z + cm)expp(z)−p(z+cm) + B2(z)) = 0.

(6.7)

Lemma 2.1 and (6.7) imply that

i%1R1(z + c1)expp(z+c1)−p(z) + i%2R1(z + c2)expp(z+c2)−p(z)

+ · · · + i%mR1(z + cm)expp(z+cm)−p(z) − A2(z) = 0,
(6.8)

and
i%1R2(z + c1)expp(z)−p(z+c1) + i%2R2(z + c2)expp(z)−p(z+c2)

+ · · · + i%mR2(z + cm)expp(z)−p(z+cm) + B2(z) = 0.
(6.9)
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Since R1(z),R2(z) are two nonzero rational functions and l(z) is of finite order, using the similar method
as the proof of Theorem 1.1, we know that p(z) is a polynomial of degree one. Let p(z) = az + b, a ,
0, b ∈ C. Substituting p(z), A2(z), B2(z) into (6.8) and (6.9), and as z −→ ∞, we have

lim
|z|→∞

i(%1
R1(z+c1)

R1(z) expp(z+c1)−p(z) + · · · + %m
R1(z+cm)

R1(z) expp(z+cm)−p(z))

= i(%1expac1 + · · · + %mexpacm) =
A1
′(z)

R1(z) +a2 = a2,

and
lim
|z|→∞

i(%1
R2(z+c1)

R2(z) expp(z)−p(z+c1) + · · · + %m
R2(z+cm)

R2(z) expp(z)−p(z+cm))

= i(%1exp−ac1 + · · · + %mexp−acm) = −
B1
′(z)

R2(z) − a2 = −a2,

that is
i(%1expac1 + · · · + %mexpacm) = a2,

i(%1exp−ac1 + · · · + %mexp−acm) = −a2.
(6.10)

So, we have
m∑

i=1
%iexpaci +

m∑
i=1
%iexp−aci = 0.

(i) If
m∑

i=1
%iexpaci +

m∑
i=1
%iexp−aci , 0, this is a contradiction with

m∑
i=1
%iexpaci +

m∑
i=1
%iexp−aci = 0. Hence,

Theorem 1.4 (i) holds.

(ii) If
m∑

j=1
ic j% jexpac j , 2a and

m∑
j=1

ic j% jexp−ac j , 2a. By (6.8)–(6.10), we have

i%1expac1(R1(z + c1) − R1(z)) + i%2expac2(R1(z + c2) − R1(z))
+ · · · + i%mexpacm(R1(z + cm) − R1(z)) = R1

′′(z) + 2aR1
′(z),

(6.11)

and
i%1exp−ac1(R2(z + c1) − R2(z)) + i%2exp−ac2(R2(z + c2) − R2(z))
+ · · · + i%mexp−acm(R2(z + cm) − R2(z)) = −R2

′′(z) + 2aR2
′(z).

(6.12)

If R1(z),R2(z) are two nonzero rational functions, using the similar method as the proof of Theorem 1.3,
we know that Ri(z) is a polynomial. If degz Ri(z) ≥ 2. Let Ri(z) = anzn + an−1zn−1 + · · · + a0, then

R′i(z) = nanzn−1 + (n − 1)an−1zn−2 + · · · ,

R′′i(z) = n(n − 1)anzn−2 + (n − 1)(n − 2)an−1zn−3 + · · · ,

Ri(z + cm) − Ri(z) = nancmzn−1 + (anC2
nc2

m + (n − 1)an−1cm)zn−2+

(anC3
nc3

m + an−1C2
n−1c2

m + (n − 2)an−2cm)zn−3 + · · · ,

(6.13)

where i = 1, 2. Substituting (6.13) into (6.11) and (6.12), comparing the coefficients of zn−1, zn−2,

we have
m∑

j=1
ic j% jexpac j = 2a,

m∑
j=1

c j
2% jexpac j = 2 and

m∑
j=1

ic j% jexp−ac j = 2a,
m∑

j=1
c j

2% jexp−ac j = −2, a

contradiction. Hence, degz Ri(z) ≤ 1.

If degz Ri(z) = 1, then (6.11) and (6.12) imply that
m∑

j=1
ic j% jexpac j = 2a and

m∑
j=1

ic j% jexp−ac j = 2a, a

contradiction. Hence, R1(z), R2(z) are two nonzero constants, R(z) = R1(z)R2(z) is a constant. By (6.5),
we have

l(z) =
t1expaz+b + t2exp−(az+b)

2
+ P(z),
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where a , 0, b ∈ C, t1, t2 ∈ C \ {0} and P(z) is a polynomial of degree one. Since
m∑

i=1
%i , 0, then

by (6.5), we have P(z) ≡ 0. So, we have

l(z) =
t1expaz+b + t2exp−(az+b)

2
, (6.14)

where
m∑

i=1
%iexpaci +

m∑
i=1
%iexp−aci = 0, b ∈ C, R(z) = a4t1t2. Hence, Theorem 1.4 holds.
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