This paper is devoted to investigate the existence and the forms of entire solutions of several Fermat type quadratic trinomial differential difference equations. Our results improve some results due to Liu and Yang [An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 2016], Han and Lü [J. Contemp. Math. Anal., 2019], Luo, Xu and Hu [Open Math., 2021].
Citation: Minghui Zhang, Jianbin Xiao, Mingliang Fang. Entire solutions for several Fermat type differential difference equations[J]. AIMS Mathematics, 2022, 7(7): 11597-11613. doi: 10.3934/math.2022646
This paper is devoted to investigate the existence and the forms of entire solutions of several Fermat type quadratic trinomial differential difference equations. Our results improve some results due to Liu and Yang [An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 2016], Han and Lü [J. Contemp. Math. Anal., 2019], Luo, Xu and Hu [Open Math., 2021].
[1] | I. N. Baker, On a class of meromorphic function, Proc. Amer. Math. Soc., 17 (1966), 819–822. https://doi.org/10.1090/S0002-9939-1966-0197732-X doi: 10.1090/S0002-9939-1966-0197732-X |
[2] | L. Y. Gao, Entire solutions of two types of systems of complex differential-difference equations, Acta Math. Sin., 59 (2016), 677–684. |
[3] | F. Gross, On the equation $f^n+g^n = 1$, Bull. Amer. Math. Soc., 72 (1966), 86–88. https://doi.org/10.1090/S0002-9904-1966-11429-5 doi: 10.1090/S0002-9904-1966-11429-5 |
[4] | F. Gross, On the equation $f^n+g^n = h^n$, Amer. Math. Monthy., 73 (1966), 1093–1096. https://doi.org/10.2307/2314644 doi: 10.2307/2314644 |
[5] | Q. Han, F. Lü, On the equation $f^n(z)+g^n(z) = e^{\alpha z+\beta}$, J. Contemp. Math. Anal., 54 (2019), 98–102. https://doi.org/10.3103/S1068362319020067 doi: 10.3103/S1068362319020067 |
[6] | W. K. Hayman, Meromorphic functions, Oxford: Clarendon Press, 1964. |
[7] | I. Laine, Nevanlinna theory and complex differential equations, Berlin: De Gruyter, 1993. https://doi.org/10.1515/9783110863147 |
[8] | B. Q. Li, On meromorphic solutions of $f^2+g^2 = 1$, Math Z., 258 (2008), 763–771. https://doi.org/10.1007/s00209-007-0196-2 doi: 10.1007/s00209-007-0196-2 |
[9] | B. Q. Li, On Fermat-type functional and partial differential equations, Math Z., 258 (2008), 763–771. |
[10] | B. Q. Li, Z. Ye, On meromorphic solutions of $f^3+g^3 = 1$, Arch Math., 90 (2008), 39–43. https://doi.org/10.1007/s00013-007-2371-4 doi: 10.1007/s00013-007-2371-4 |
[11] | K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. https://doi.org/10.1016/j.jmaa.2009.05.061 doi: 10.1016/j.jmaa.2009.05.061 |
[12] | K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), 147–155. https://doi.org/10.1007/s00013-012-0408-9 doi: 10.1007/s00013-012-0408-9 |
[13] | K. Liu, L. Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Stiint. Univ. Al. I.-Mat., 62 (2016), 317–325. |
[14] | J. Luo, H. Y. Xu, F. Hu, Entire solutions for several general quadratic trinomial differential difference equations, Open Math., 19 (2021), 1018–1028. https://doi.org/10.1515/math-2021-0080 doi: 10.1515/math-2021-0080 |
[15] | P. Montel, Leons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Parir, 1927,135–136. |
[16] | C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc., 26 (1970), 332–334. https://doi.org/10.1090/S0002-9939-1970-0264080-X doi: 10.1090/S0002-9939-1970-0264080-X |
[17] | C. C. Yang, P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math., 82 (2004), 442–448. https://doi.org/10.1007/s00013-003-4796-8 doi: 10.1007/s00013-003-4796-8 |
[18] | C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers Group, Dordrecht, 2003. |
[19] | L. Yang, Value distribution theory, Berlin: Spring-Verlag, 1993. |
[20] | H. X. Yi, L. Z. Yang, On meromorphic solutions of Fermat type functional equations, Sci. Sin. Math., 41 (2011), 907–932. https://doi.org/10.1360/012010-698 doi: 10.1360/012010-698 |