Research article

Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative

  • Received: 07 February 2022 Revised: 15 March 2022 Accepted: 28 March 2022 Published: 14 April 2022
  • MSC : 34G10, 26A33

  • In this paper, we investigate the existence of mild solutions for nonlocal delay fractional Cauchy problem with Caputo conformable derivative in Banach spaces. We establish a representation of a mild solution using a fractional Laplace transform. The existence of such solutions is proved under certain conditions, using the Mönch fixed point theorem and a general version of Gronwall's inequality under weaker conditions in the sense of Kuratowski measure of non compactness. Applications illustrating our main abstract results and showing the applicability of the presented theory are also given.

    Citation: Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil. Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative[J]. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647

    Related Papers:

  • In this paper, we investigate the existence of mild solutions for nonlocal delay fractional Cauchy problem with Caputo conformable derivative in Banach spaces. We establish a representation of a mild solution using a fractional Laplace transform. The existence of such solutions is proved under certain conditions, using the Mönch fixed point theorem and a general version of Gronwall's inequality under weaker conditions in the sense of Kuratowski measure of non compactness. Applications illustrating our main abstract results and showing the applicability of the presented theory are also given.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
    [2] A. B. Malinowska, D. F. M. Torres, Introduction to the fractional calculus of variations, Imp. Coll. Press, London, 2012.
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
    [4] I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1999.
    [5] T. Abdeljawad, On conformable fractional calculus, Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [6] T. Abdeljawad, M. Al-Horani, R. Khalil, Conformable fractional semigroups of operators, J. Semigroup Theory Appl., 7 (2015), 1–9.
    [7] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [8] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
    [9] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [10] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivatives, J. Compu. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [11] T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. https://doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
    [12] F. Jarad, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [13] A. Aphithana, S. K. Ntouyas, J. Tariboon, Existence and Ulam-Hyers stability for Caputo conformable differential equations with four-point integral conditions, Adv. Differ. Equ., 2019 (2019), 139. https://doi.org/10.1186/s13662-019-2077-5 doi: 10.1186/s13662-019-2077-5
    [14] D. Baleanu, S. Etemad, S. Rezapour, On a Caputo conformable inclusion problem with mixed Riemann-Liouville conformable integro-derivative conditions, Adv. Differ. Equ., 2020 (2020). https://doi.org/10.1186/s13662-020-02938-w doi: 10.1186/s13662-020-02938-w
    [15] V. F. Morales-Delgado, J. F. Gómez-Aguilar, M. A. Taneco-Hernandez, Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense, Int. J. Electron. Commun., 85 (2018), 108–117. https://doi.org/10.1016/j.aeue.2017.12.031 doi: 10.1016/j.aeue.2017.12.031
    [16] E. Piotrowska, Using the conformable fractional derivative in Caputo sense operator to describe the behavior of an RC electrical circuit containing a supercapacitor, Proc. SPIE, 2020.
    [17] E. Piotrowska, L. Sajewski, Analysis of an electrical circuit using two-parameter conformable operator in the Caputo sense, Symmetry, 13 (2021). https://doi.org/10.3390/sym13050771 doi: 10.3390/sym13050771
    [18] M. Bouaouid, K. Hilal, S. Melliani, Nonlocal conformable fractional Cauchy problem with sectorial operator, Indian J. Pure Appl. Math., 50 (2019), 999–1010. https://doi.org/10.1007/s13226-019-0369-9 doi: 10.1007/s13226-019-0369-9
    [19] L. Byszewski, H. Akca, On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. Appl. Math. Stoch. Anal., 10 (1997), 265–271. https://doi.org/10.1155/S1048953397000336 doi: 10.1155/S1048953397000336
    [20] R. Murugesu, V. Vijayakumar, J. P. C. Dos Santos, Existence of mild solutions for nonlocal Cauchy problem for fractional neutral integro-differential equation with unbounded delay, Commun. Math. Anal., 14 (2013), 59–71.
    [21] K. Kavitha, K. S. Nisar, A. Shukla, V. Vijayakumar, S. Rezapour, A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems, Adv. Differ. Equ., (2021) (2021), 467. https://doi.org/10.1186/s13662-021-03624-1 doi: 10.1186/s13662-021-03624-1
    [22] F. Li, Nonlocal cauchy problem for delay fractional integrodifferential equations of neutral type, Adv. Differ. Equ., 2012 (2012), 1–23. https://doi.org/10.1186/1687-1847-2012-47 doi: 10.1186/1687-1847-2012-47
    [23] B. Pervaiz, A. Zada, S. Etemad, S. Rezapour, An analysis on the controllability and stability to some fractional delay dynamical systems on time scales with impulsive effects, Adv. Differ. Equ., 2021 (2021), 1–36. https://doi.org/10.1186/s13662-021-03646-9 doi: 10.1186/s13662-021-03646-9
    [24] C. Ravichandran, D. Baleanu, Existence results for fractional integro-differential evolution equations with infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 1–12. https://doi.org/10.1186/1687-1847-2013-215 doi: 10.1186/1687-1847-2013-215
    [25] C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 1–13. https://doi.org/10.1186/1687-1847-2013-291 doi: 10.1186/1687-1847-2013-291
    [26] C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Soliton. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014
    [27] C. Ravichandran, J. J. Trujillo, Controllability of impulsive fractional functional integro-diffrential equations in Banach spaces, J. Funct. Space., 2013 (2013), 1–8.
    [28] R. Subashini, K. Jothimani, K. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. https://doi.org/10.1016/j.aej.2020.01.055 doi: 10.1016/j.aej.2020.01.055
    [29] A. Suechoei, P. S. Ngiamsunthorn, Existence uniqueness and stability of mild solutions for semilinear $\varphi$-Caputo fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 1–28.
    [30] A. Suechoei, P. S. Ngiamsunthorn, Extremal solutions of $\varphi$-Caputo fractional evolution equations involving integral kernels, AIMS Math., 6 (2021), 4734–4757. https://doi.org/10.3934/math.2021278 doi: 10.3934/math.2021278
    [31] N. Valliammal, C. Ravichandran, J. H. Park, On the controllability of fractional neutral integro-differential delay equations with nonlocal conditions, Math. Method. Appl. Sci., 40 (2017), 5044–5055.
    [32] V. Vijayakumar, A. Selvakumar, R. Murugesu, Controllability for a class of fractional neutral integro-differential equations with unbounded delay, Appl. Math. Comput., 232 (2014), 303–312. https://doi.org/10.1016/j.amc.2014.01.029 doi: 10.1016/j.amc.2014.01.029
    [33] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063–1077. https://doi.org/10.1016/j.camwa.2009.06.026 doi: 10.1016/j.camwa.2009.06.026
    [34] Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249–3256. https://doi.org/10.1016/j.na.2009.01.202 doi: 10.1016/j.na.2009.01.202
    [35] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Israel J. Math., 108 (1998), 109–138.
    [36] K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Meth. Appl. Sci., 44 (2020), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
    [37] D. Chalishajar, K. Karthikeyan, D. Tamizharasan, Controllability of nonlocal neutral impulsive differential equations with measure of noncompactness, Int. J. Math. Anal., 15 (2021), 157–165. https://doi.org/10.12988/ijma.2021.912199 doi: 10.12988/ijma.2021.912199
    [38] K. X. Li, J. X. Jia, Existence and uniqueness of mild solutions for abstract delay fractional differential equations, Comput. Math. Appl., 62 (2011), 1398–1404. https://doi.org/10.1016/j.camwa.2011.02.038 doi: 10.1016/j.camwa.2011.02.038
    [39] K. X. Li, J. G. Peng, J. H. Gao, Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness, Fract. Calc. Appl. Anal., 15 (2012), 591–610. https://doi.org/10.2478/s13540-012-0041-0 doi: 10.2478/s13540-012-0041-0
    [40] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2019), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [41] Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. https://doi.org/10.2298/FIL1717457A doi: 10.2298/FIL1717457A
    [42] S. Al-Sharif, M. Al-Horani, R. Khalil, The Hille Yosida theorem for conformable fractional semi-groups of operators, Missouri J. Math. Sci., 33 (2021), 18–26. https://doi.org/10.35834/2021/3301018 doi: 10.35834/2021/3301018
    [43] L. Rabhi, M. Al-Horani, R. Khalil, Inhomogeneous conformable abstract Cauchy problem, Open Math., 19 (2021), 690–705. https://doi.org/10.1515/math-2021-0064 doi: 10.1515/math-2021-0064
    [44] L. Rabhi, M. Al-Horani, R. Khalil, Semilinear abstract Cauchy problem of conformable type, Progr. Fract. Differ. Appl., 2022, In press.
    [45] J. Banas, K. Goebel, Measure of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980.
    [46] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014.
    [47] D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, Kluwer Academic, Dordrecht, 1996.
    [48] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1835) PDF downloads(183) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog